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SOME NEW OSTROWSKI–TYPE BOUNDS FOR

THE ČEBYŠEV FUNCTIONAL AND APPLICATIONS

P. CERONE AND S. S. DRAGOMIR

(Communicated by J. Pečarić)

Abstract. Some new inequalities of Ostowski-type for the Čebyšev functional and applications
for Taylor’s expansion and generalised trapezoid formula are pointed out.

1. Introduction

For two Lebesgue integrable functions f ,g : [a,b] → R , consider the Čebyšev
functional:

T ( f ,g) :=
1

b−a

∫ b

a
f (t)g(t)dt− 1

b−a

∫ b

a
f (t)dt · 1

b−a

∫ b

a
g(t)dt. (1.1)

In 1934, G. Grüss [4] showed that

|T ( f ,g)| � 1
4

(M−m)(N−n) , (1.2)

provided m,M,n,N are real numbers with the property

−∞ < m � f � M < ∞, −∞ < n � g � N < ∞ a.e. on [a,b] . (1.3)

The constant 1
4 is best possible in (1.2) in the sense that it cannot be replaced by a

smaller one. Less known appears to be another inequality for T ( f ,g) derived in 1882
by Čebyšev [3] under the assumptions that f ′ , g′ exist and are continuous in [a,b] ,

|T ( f ,g)| � 1
12

∥∥ f ′
∥∥

∞

∥∥g′
∥∥

∞ (b−a)2 , (1.4)

where ‖ f ′‖∞ := sup
t∈[a,b]

| f ′ (t)| .

The constant 1
12 cannot be improved in the general case.

Čebyšev’s inequality (1.4) also holds if f ,g : [a,b] → R are assumed to be abso-
lutely continuous and f ′,g′ ∈ L∞ [a,b] .
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In 1970, A. M. Ostrowski [11] proved amongst others the following result that is
somehow a mixture of the Čebyšev and Grüss results

|T ( f ,g)| � 1
8

(b−a)(M−m)
∥∥g′

∥∥
∞ , (1.5)

provided f is Lebesgue integrable on [a,b] and satisfying (1.3) while g : [a,b] → R is
absolutely continuous and g′ ∈ L∞ [a,b] . The constant 1

8 in (1.5) is also sharp.
In 1973, [7], A. Lupaş pointed out another inequality in terms of the Euclidean

norms of f ′,g′

|T ( f ,g)| � 1
π2 (b−a)

∥∥ f ′
∥∥

2

∥∥g′
∥∥

2 , (1.6)

where ‖ f ′‖2 :=
(∫ b

a | f ′ (t)|2 dt
) 1

2
, provided f ,g are absolutely continuous and f ′,g′ ∈

L2 [a,b] . The quantity 1
π2 is best possible in the sense that it cannot be replaced by a

smaller constant.
For some recent results concerning the Čebyšev functional, see [6], [10], [12]–

[16], [17], [18], [19] and the references therein.
In this paper, some other inequalities in terms of the derivatives of f ,g are pointed

out. Applications for Taylor’s expansion and the generalised trapezoid formula are also
provided.

2. Some bounds for the Čebyšev functional

The following lemma holds.

LEMMA 1. If ϕ : [a,b] → R is an absolutely continuous function with

(·−a)(b−·)(ϕ ′)2 ∈ L [a,b] ,

then we have the inequality

T (ϕ ,ϕ) � 1
2(b−a)

∫ b

a
(x−a)(b− x)

[
ϕ ′ (x)

]2
dx. (2.1)

The constant 1
2 is best possible.

Proof. By Korkine’s identity represented by (see [9, p. 242]),

T ( f ,g) =
1

2(b−a)2

∫ b

a

∫ b

a
( f (x)− f (y)) (g(x)−g(y))dxdy (2.2)

we have

T (ϕ ,ϕ) =
1

2(b−a)2

∫ b

a

∫ b

a
(ϕ (t)−ϕ (s))2 dtds.
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The same identity applied for �(x) = x, g an integrable function, produces

T (�,g) =
1

2(b−a)2

∫ b

a

∫ b

a
(x− y)(g(x)−g(y))dxdy. (2.3)

Sonin’s identity given by (see [9, p. 246]),

T ( f ,g) =
1

b−a

∫ b

a

(
f (x)− 1

b−a

∫ b

a
f (y)dy

)
(g(x)− γ)dx, γ ∈ R,

produces

T (�,g) =
1

b−a

∫ b

a

(
x− a+b

2

)
g(x)dx.

Integrating by parts, we have

∫ b

a

(
x− a+b

2

)
g(x)dx =

1
2

∫ b

a
(x−a)(b− x)g′ (x)dx

to give (see also [11, p. 366])

T (�,g) =
1

2(b−a)

∫ b

a
(x−a)(b− x)g′ (x)dx. (2.4)

Since ϕ is absolutely continuous, ϕ (t)− ϕ (s) =
∫ t
s ϕ ′ (u)du, and by the Cauchy-

Schwarz inequality, we have from (2.2)

T (ϕ ,ϕ) =
1

2(b−a)2

∫ b

a

∫ b

a
(t− s)2

(
ϕ (t)−ϕ (s)

t− s

)2

dtds

=
1

2(b−a)2

∫ b

a

∫ b

a
(t− s)2

(∫ t
s ϕ ′ (u)du

t − s

)2

dtds

� 1

2(b−a)2

∫ b

a

∫ b

a
(t− s)2

(
1

t − s

∫ t

s

[
ϕ ′ (u)

]2
du

)
dtds

=
1

2(b−a)2

∫ b

a

∫ b

a
(t− s)

(∫ t

s

[
ϕ ′ (u)

]2
du

)
dtds

(
by (2.3) and (2.4) for g(x) =

∫ x

a

[
ϕ ′ (u)

]2
du

)

=
1

2(b−a)

∫ b

a
(u−a)(b−u)

[
ϕ ′ (u)

]2
du,

and the inequality (2.1) is proved.
To prove the sharpness of the constant 1

2 , assume that (2.1) holds with a constant
C > 0, namely,

T (ϕ ,ϕ) � C
b−a

∫ b

a
(x−a)(b− x)

[
ϕ ′ (x)

]2
dx. (2.5)
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If we choose ϕ (x) = x, then we observe that

T (ϕ ,ϕ) =
(b−a)2

12
,

1
b−a

∫ b

a
(x−a)(b− x)

[
ϕ ′ (x)

]2
dx =

(b−a)2

6

and by (2.5) we deduce C � 1
2 . �

REMARK 1. The inequality (2.1) in an equivalent form, with a = 0 and b = 1
was obtained by Ostrowski in [11, p. 372]. However, he did not consider the sharpness
of the constant 1

2 .

The following Grüss type inequality holds.

THEOREM 1. Let f ,g : [a,b]→R be two absolutely continuous functions on [a,b]
with (·−a)(b−·)[ f ′]2 , (·−a)(b−·)[g′]2 ∈ L [a,b] . Then we have the inequality

|T ( f ,g)| � 1√
2

[T ( f , f )]
1
2

1√
b−a

(∫ b

a
(x−a)(b− x)

[
g′ (x)

]2
dx

) 1
2

(2.6)

� 1
2(b−a)

(∫ b

a
(x−a)(b− x)

[
f ′ (x)

]2
dx

) 1
2

×
(∫ b

a
(x−a)(b− x)

[
g′ (x)

]2
dx

) 1
2

.

The constant 1√
2

and 1
2 are best possible in (2.6).

The proof follows by (2.1) and by the fact that, using Korkine’s identity and
Cauchy-Schwartz’s inequality for double integrals,

(T ( f ,g))2 � T ( f , f )T (g,g) .

We omit the details.
The following inequality of Grüss type holds.

THEOREM 2. Assume that g : [a,b] → R is monotonic nondecreasing on [a,b]
and f : [a,b] → R is absolutely continuous with f ′ ∈ L∞ [a,b] . Then we have the in-
equality

|T ( f ,g)| � 1
2(b−a)

∥∥ f ′
∥∥

∞

∫ b

a
(x−a)(b− x)dg(x) . (2.7)

The constant 1
2 is best possible.



NEW BOUNDS FOR THE ČEBYŠEV FUNCTIONAL 163

Proof. We have, by Korkine’s identity, that

|T ( f ,g)| = 1

2(b−a)2

∣∣∣∣
∫ b

a

∫ b

a
( f (x)− f (y)) (g(x)−g(y))dxdy

∣∣∣∣
� 1

2(b−a)2

∫ b

a

∫ b

a

∣∣∣∣ f (x)− f (y)
x− y

∣∣∣∣ |(x− y)(g(x)−g(y))|dxdy

� ‖ f ′‖∞

2(b−a)2

∫ b

a

∫ b

a
|(x− y)(g(x)−g(y))|dxdy

=
‖ f ′‖∞

2(b−a)2

∫ b

a

∫ b

a
(x− y)(g(x)−g(y))dxdy

=
∥∥ f ′

∥∥
∞ T (�,g) ,

where �(x) = x, x ∈ [a,b] .
Using the following identity obtained by Ostrowski in [11, p. 366] for the mono-

tonic function y : [a,b] → R

T (�,y) =
1

2(b−a)

∫ b

a
(b− x)(x−a)dy(x) ,

that may easily be proved on applying the integration by parts formula for Stieltjes
integrals, we deduce (2.7).

Now for the sharpness. Assume that (2.7) holds with a constant D > 0, that is

|T ( f ,g)| � D
b−a

∥∥ f ′
∥∥

∞

∫ b

a
(x−a)(b− x)dg(x) . (2.8)

If we choose f (x) = g(x) = x, x ∈ [a,b] , then obviously

T ( f , f ) =
1
12

(b−a)2 ,
∥∥ f ′

∥∥
∞ = 1,

1
b−a

∫ b

a
(x−a)(b− x)dx =

1
6

(b−a)2

and so, by (2.8), we deduce D � 1
2 . �

REMARK 2. If, in addition to the hypotheses of Theorem 2, we assume that the
function g is absolutely continuous on [a,b] and g′ ∈ L∞ [a,b] , then

∫ b

a
(x−a)(b− x)dg(x) =

∫ b

a
(x−a)(b− x)g′ (x)dx

�
∥∥g′

∥∥
∞

∫ b

a
(x−a)(b− x)dx

=
1
6

(b−a)3
∥∥g′

∥∥
∞
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providing the following refinement of the Čebyšev result (1.4)

|T ( f ,g)| � 1
2(b−a)

∥∥ f ′
∥∥

∞

∫ b

a
(x−a)(b− x)dg(x) (2.9)

� 1
12

∥∥ f ′
∥∥

∞

∥∥g′
∥∥

∞ (b−a)2 .

In (2.9) the constants 1
2 and 1

12 are best possible.

Another result of this type is incorporated in the following.

THEOREM 3. Assume that f ,g : [a,b]→ R are continuous on [a,b] and differen-
tiable on [a,b] with g′ (t) �= 0 for each t ∈ (a,b) . Then we have the inequality

|T ( f ,g)| �
∥∥∥∥ f ′

g′

∥∥∥∥
∞
·T (g,g) (2.10)

� 1
2(b−a)

∥∥∥∥ f ′

g′

∥∥∥∥
∞

∫ b

a
(x−a)(b− x)

[
g′ (x)

]2
dx.

The first inequality in (2.10) and the constant 1
2 in the second inequality are sharp.

Proof. Applying Cauchy’s mean value theorem, for any t,s ∈ [a,b] , with t �= s,
there is an η between t and s such that

[ f (t)− f (s)]g′ (η) = [g(t)−g(s)] f ′ (η) ,

and thus ∣∣∣∣ f (t)− f (s)
g(t)−g(s)

∣∣∣∣ �
∥∥∥∥ f ′

g′

∥∥∥∥
∞

for any t,s ∈ [a,b] with t �= s.
Using Korkine’s identity (2.2), we deduce

|T ( f ,g)| � 1

2(b−a)2

∫ b

a

∫ b

a
|( f (t)− f (s))(g(t)−g(s))|dtds

=
1

2(b−a)2

∫ b

a

∫ b

a

∣∣∣∣ f (t)− f (s)
g(t)−g(s)

∣∣∣∣(g(t)−g(s))2 dtds

� 1

2(b−a)2

∥∥∥∥ f ′

g′

∥∥∥∥
∞

∫ b

a

∫ b

a
(g(t)−g(s))2 dtds

=
∥∥∥∥ f ′

g′

∥∥∥∥
∞

T (g,g) ,

and the first inequality in (2.10) follows.
The second inequality is obvious by Lemma 1.
The sharpness of the inequalities may be proved in a similar way as in Theorem 2

and we omit the details. �
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3. Applications for Taylor’s expansion

Let I ⊂R be a closed interval, let a∈ I and let n be a positive integer. If f : I →R

is such that f (n) is absolutely continuous, then for each x ∈ I

f (x) = Tn ( f ;a,x)+Rn ( f ;a,x) , (3.1)

where Tn ( f ;a,x) is Taylor’s polynomial, i.e.,

Tn ( f ;a,x) =
n

∑
k=0

(x−a)k

k!
f (k) (a) (3.2)

(note that f (0) = f and 0! = 1), and the remainder is given by

Rn ( f ;a,x) =
1
n!

∫ x

a
(x− t)n f (n+1) (t)dt. (3.3)

We note that, many authors have considered recently different perturbations for
Taylor’s formula and pointed out bounds for the remainders that are, some times, better
than the ones provided in the classical case. The reader may consult for example [8],
[1] and the references therein. This motivates our interest to apply the Grüss type
inequalities obtained before in pointing out different bounds for the remainder in the
perturbed Taylor’s formula below.

Using Theorem 1, we may point out the following perturbation of the Taylor’s
expansion.

THEOREM 4. Let f : I → R be such that f (n+1) is absolutely continuous and
a ∈ I. Then we have the perturbed Taylor’s formula:

f (x) = Tn ( f ;a,x)+
(x−a)n+1

(n+1)!

[
f (n);a,x

]
+Gn ( f ;a,x) (3.4)

and the remainder Gn ( f ;a,x) satisfies the estimation

|Gn ( f ;a,x)| � 1√
2
· n
(n+1)!

|x−a|n+ 1
2

∣∣∣∣
∫ x

a
(t −a)(x− t)

[
f (n+2) (t)

]2
dt

∣∣∣∣
1
2

(3.5)

for any x ∈ I, where [
f (n);a,x

]
=

f (n) (x)− f (n) (a)
x−a

,

is the divided difference.

Proof. If we apply Theorem 1 for f → (x−·)n , g → f (n+1), we deduce∣∣∣∣ 1
x−a

∫ x

a
(x−t)n f (n+1) (t)dt− 1

x−a

∫ x

a
(x−t)n dt · 1

x−a

∫ x

a
f (n+1) (t)dt

∣∣∣∣ (3.6)

� 1√
2

[T ((x−·)n ,(x−·)n)] 1
2

1√
x−a

∣∣∣∣
∫ x

a
(t−a)(x− t)

[
f (n+2) (t)

]2
dt

∣∣∣∣
1
2

=
1√
2
· n
n+1

|x−a|n− 1
2

∣∣∣∣
∫ x

a
(t−a)(x− t)

[
f (n+2) (t)

]2
dt

∣∣∣∣
1
2

,



166 P. CERONE AND S. S. DRAGOMIR

since

T ((x−·)n ,(x−·)n) =
1

x−a

∫ x

a
(x− t)2n dt−

[
1

x−a

∫ x

a
(x− t)n dt

]n

=
n2

(n+1)2
(x−a)2n .

Using (3.1) and (3.6), we deduce the representation (3.4) and the bound (3.5). �
The following result also holds.

THEOREM 5. Let f : I → R be such that f (n+1) is absolutely continuous and
f (n+1) � 0 on I. If a ∈ I, then we have the representation (3.4) and the remainder
Gn ( f ;a,x) satisfies the bound

|Gn ( f ;a,x)| � |x−a|n
(n−1)!

{
f (n) (x)+ f (n) (a)

2
−

[
f (n−1);a,x

]}
, (3.7)

for any x ∈ I.

Proof. We apply Theorem 2 for f → (x−·)n and g → f (n+1), to get∣∣∣∣ 1
x−a

∫ x

a
(x− t)n f (n+1) (t)dt− 1

x−a

∫ x

a
(x− t)n dt · 1

x−a

∫ x

a
f (n+1) (t)dt

∣∣∣∣ (3.8)

� 1
2 |x−a|n |x−a|n−1

∣∣∣∣
∫ x

a
(t−a)(x− t) f (n+2) (t)dt

∣∣∣∣ := K.

Since∫ x

a
(t −a)(x− t) f (n+2) (t)dt =

∫ x

a
f (n+1) (t) [2t− (a+ x)]dt

= (x−a)
[
f (n) (x)+ f (n) (a)

]
−2

(
f (n−1) (x)− f (n−1) (a)

)
,

then

K = n |x−a|n−1

{
f (n) (x)+ f (n) (a)

2
−

[
f (n−1);a,x

]}
.

Using the representation (3.1) and the inequality (3.8), we deduce (3.7). �
Finally, we may point out the following result as well.

THEOREM 6. Let f : I →R be such that f (n+1) is absolutely continuous. If a,x∈
I and there exists a constant M (x) such that∣∣∣ f (n+2) (t)

∣∣∣ � M (x) |x− t|n−1 for t ∈ [a,x] ([x,a]) , (3.9)

then we have the representation (3.4) and the remainder Gn ( f ;a,x) satisfies the esti-
mate

|Gn ( f ;a,x)| � n
n+1

· 1
(n+1)!

M (x) |x−a|2n+1 . (3.10)
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Proof. We apply Theorem 3 for g → (x−·)n and f → f (n+1), to get∣∣∣∣ 1
x−a

∫ x

a
(x−t)n f (n+1) (t)dt− 1

x−a

∫ x

a
(x−t)n dt · 1

x−a

∫ x

a
f (n+1) (t)dt

∣∣∣∣ (3.11)

� M (x)
n

·T ((x−·)n ,(x−·)n)

=
M (x)

n
· n2

(n+1)2
(x−a)2n ,

giving the desired result (3.9). �

4. Applications for the generalised trapezoid formula
for n -time differentiable functions

Let f : [a,b] → R be a function such that the derivative f (n−1) (n � 1) is abso-
lutely continuous on [a,b] . In [2], the authors have obtained the following generalisa-
tion of the trapezoid formula:

∫ b

a
f (t)dt =

n−1

∑
k=0

1
(k+1)!

[
(x−a)k+1 f (k) (a)+ (−1)k (b− x)k+1 f (k) (b)

]

+
1
n!

∫ b

a
(x− t)n f (n) (t)dt. (4.1)

The following perturbed version of (4.1) holds.

THEOREM 7. Let f : [a,b] → R be such that f (n) is absolutely continuous on
[a,b] . Then we have the representation

∫ b

a
f (t)dt =

n−1

∑
k=0

1
(k+1)!

[
(x−a)k+1 f (k) (a)+ (−1)k (b− x)k+1 f (k) (b)

]

+
(x−a)n+1 +(−1)n (b− x)n+1

(n+1)!

[
f (n−1);a,b

]
+Sn ( f ,x) , (4.2)

where the remainder Sn ( f ,x) satisfies the estimate

|Sn ( f ,x)| � 1√
2
· 1
n!

·√b−a [Bn (x)]
1
2

(∫ b

a
(t−a)(b− t)

[
f (n+1) (t)

]2
dt

) 1
2

, (4.3)

and Bn (x) is defined by

Bn (x) =
(b− x)2n+1 +(x−a)2n+1

(b−a)(2n+1)
−

[
(b− x)n+1 +(−1)n (x−a)n+1

(n+1)(b−a)

]2

(4.4)

for any x ∈ [a,b] .
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Proof. If we apply Theorem 1 for f → (x−·)n and g → f (n), we obtain∣∣∣∣ 1
b−a

∫ b

a
(x− t)n f (n) (t)dt− 1

b−a

∫ b

a
(x− t)n dt · 1

b−a

∫ b

a
f (n) (t)dt

∣∣∣∣ (4.5)

� 1√
2

[T ((x−·)n ,(x−·)n)]
1
2

1√
b−a

(∫ b

a
(t−a)(b−t)

[
f (n+1) (t)

]2
dt

) 1
2

.

Since

T ((x−·)n ,(x−·)n) =
1

b−a

∫ b

a
(x− t)2n dt−

(
1

b−a

∫ b

a
(x− t)n dt

)2

= Bn (x) ,

then, by (4.1) and (4.5) we deduce the representation (4.2) and the bound (4.3).
We omit the details. �
It is natural to consider the following particular case.

COROLLARY 1. With the assumptions in Theorem 7, we have

∫ b

a
f (t)dt =

n−1

∑
k=0

1
(k+1)!

(
b−a

2

)k+1 [
f (k) (a)+ (−1)k f (k) (b)

]

+
(

b−a
2

)n [1+(−1)n]
(n+1)!

[
f (n−1);a,b

]
+Sn ( f ) (4.6)

and the remainder Sn ( f ) satisfies the bound:

|Sn ( f )| � 1
n!

· (b−a)n+ 1
2

2n+ 1
2

[
1

2n+1
− [1+(−1)n]2

(n+1)2

] 1
2

×
(∫ b

a
(t−a)(b− t)

[
f (n+1) (t)

]2
dt

) 1
2

. (4.7)

The following result also holds.

THEOREM 8. Assume that f (n) (n � 2) is absolutely continuous and f (n+1) � 0
on [a,b] . Then we have the representation (4.2) and the remainder Sn ( f ,x) satisfies
the estimate

|Sn ( f ,x)| � 1
(n−1)!

[
1
2

(b−a)+
∣∣∣∣x− a+b

2

∣∣∣∣
]n−1

× (b−a)

{
f (n−1) (a)+ f (n−1) (b)

2
−

[
f (n−2);b,a

]}
(4.8)

for any x ∈ [a,b] .



NEW BOUNDS FOR THE ČEBYŠEV FUNCTIONAL 169

Proof. If we use in Theorem 2 for f → (x−·)n and g → f (n), we get∣∣∣∣ 1
b−a

∫ b

a
(x− t)n f (n) (t)dt− 1

b−a

∫ b

a
(x− t)n dt · 1

b−a

∫ b

a
f (n) (t)dt

∣∣∣∣ (4.9)

� 1
2(b−a)

n [max(x−a,b− x)]n−1
∫ b

a
(t−a)(b− t) f (n+1) (t)dt

= n

[
1
2

(b−a)+
∣∣∣∣x− a+b

2

∣∣∣∣
]n−1

{
f (n−1) (a)+ f (n−1) (b)

2
−

[
f (n−2);b,a

]}
.

Using (4.1) and (4.9) we deduce (4.8). �

COROLLARY 2. With the assumptions in Theorem 8, we have the representation
(4.6). The remainder Sn ( f ) satisfies the bound

|Sn ( f )| � 1
2n−1 (n−1)!

(b−a)n
{

f (n−1) (a)+ f (n−1) (b)
2

−
[
f (n−2);b,a

]}
. (4.10)
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[9] D. S. MITRINOVIĆ, J. PEČARIĆ AND A. M. FINK, Classical and New Inequalities in Analysis,

Kluwer Academic Publishers, 1993.
[10] B. MOND, J. PEČARIĆ AND B. TEPEŠ, Counterparts of Schwarz’s inequality for Čebyšev functional,
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