
Journal of
Mathematical

Inequalities

Volume 8, Number 1 (2014), 171–183 doi:10.7153/jmi-08-11

ON SOME MEANS DERIVED FROM THE SCHWAB–BORCHARDT MEAN

EDWARD NEUMAN

Abstract. Bivariate means defined as the Schwab-Borchardt mean of two bivariate means are
investigated. Explicit formulas for those means are obtained. It is demonstrated that they inter-
polate inequalities connecting the well known bivariate means. Optimal bounds for the means
under discussion are also obtained. The bounding quantities are convex combinations of the
generating means.
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[27] E. NEUMAN, J. SÁNDOR, On the Schwab-Borchardt mean II, Math. Pannon. 17, 1 (2006), 49–59.
[28] W.-M. QIAN AND Y.-M. CHU, On certain inequalities for Neuman-Sándor mean, Abstr. Appl. Anal.,

2013, Article ID 790783, 6 pages.
[29] H.-J. SEIFFERT, Problem 887, Nieuw. Arch. Wisk. 11 (1993), 176.
[30] H.-J. SEIFFERT, Aufgabe 16, Würzel 29 (1995), 87.
[31] Y.-Q. SONG, W.-M. QIAN, Y.-L. JIANG AND Y.-M. CHU, Optimal lower generalized logarithmic

mean bound for the Seiffert mean, J. Appl. Math., 2013, Article ID 273653, 5 pages.
[32] M.-K. WANG, Y.-M. CHU, B.-Y. LIU, Sharp inequalities for the Neuman-Sándor mean in terms of

arithmetic and contra-harmonic means, preperint, arXiv: 1209.5825 vol 1 [math CA] 26 Sept. 2012.
[33] A. WITKOWSKI, Interpolations of Schwab-Borchardt means, Math. Inequal. Appl. 16, 1 (2013), 193–

206.
[34] T.-H. ZHAO, Y.-M. CHU, Y.-L. JIANG AND Y.-M. LI, Best possible bounds for Neuman-Sándor

mean by identric, quadratic and contraharmonic means, Abstr. Appl. Anal., 2013, Article ID 348326,
12 pages.

[35] T.-H. ZHAO, Y.-M. CHU, B.-Y. LIU, Optimal bounds for the Neuman-Sándor mean in terms of the
convex combinations of harmonic, geometric, quadratic and contra-harmonic means, Abstract Appl.
Anal. Volume 2012, Article ID 302635, 9 pages.

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


