lournal of
athematical
nequalities
Volume 8, Number 1 (2014), 185-199 " doi:10.7153/jmi-08-12

SOME DYNAMIC HARDY-TYPE
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MARTIN BOHNER, AMMARA NOSHEEN, JOSIP PECARIC AND AWAIS YOUNUS

(Communicated by M. Krni¢)

Abstract. In this paper, we extend some Hardy-type inequalities with certain kernels to arbitrary
time scales. Certain classical and some new integral and discrete inequalities are deduced in seek
of applications.

1. Introduction

The well-known Hardy inequality as presented in [9] (both in the continuous and
discrete settings) has been extensively studied and used as a model for investigation of
more general integral inequalities [7, 10—13]. Recently, several papers have treated the
unification and extension of Hardy’s continuous and discrete integral inequalities by
means of the theory of time scales [16—18]. Measure spaces and measurable functions
for time scales are discussed in [3, 4, 8]. The aim of this paper is to extend some Hardy-
type inequalities with certain kernels to arbitrary time scales. In the next section, we
give some preliminaries about the theory of time scales. Our main results are given in
Section 3. In Section 4, we discuss inequalities with special kernels. The last section
is devoted to particular cases and examples of Hardy-type inequalities on various time
scales.

2. Preliminaries

We first briefly introduce some elements of time scale theory. By a time scale
T, we mean any nonempty closed subset of R. Since a time scale T may or may
not be connected, we need the concept of the forward and backward jump operators
o0,p : T — T defined by

o(t)=inf{se€T: s>t} and p(r)=sup{seT: s<t}.
If o(¢) > 1, then we say 7 is right-scattered. If p(r) <7, then we say ¢ is left-scattered.
If 6(t) =1, then we say 1 is right-dense. If p(z) =¢, then we say ¢ is left-dense. For
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further properties including the concept of delta differentiation, we refer the reader to
[5, 6].

Let n € N be fixed. For each i € {1,2,...,n}, let T; denote a time scale and let
o;, p; and A; denote the forward jump operator, the backward jump operator, and the
delta differentiation operator, respectively. Let us set

Q"z{a:(al,ag,...,an): a; €T, lgzgn}

We call Q" an n-dimensional time scale. The set Q" is a complete metric space with
the metric defined by

. 1/2
d(a,b) = (Zbi—ai2> . a,be Q.
i=1

In the following, for the convenience of the reader, we briefly describe the Carathéodory
construction of a Lebesgue measure in Q". Denote by .# the collection of all n-
dimensional time scale intervals in Q" of the form

V= [a,b) = xfl:l[a,-,b,-) = [al,bl) X [az,bz) X X [an,bn)

with a = (ay,az,...,a,), b= (by,by,...,b,) € Q" and a; < b; forall 1 <i<n. If
a; = b; for some values of i, then [a,b) is understood to be the empty set. Let m :
F — [0,00) be the set function that assigns to each n-dimensional time scale interval

V =a,b) its volume:
n

m(V) = H(b‘ — ai).
i=1
Then it is not difficult to verify that .# is a semiring of subsets of Q" and m is a
o -additive measure on .% . Let E be any subset of Q". If there exists at least one
finite or countable system of n-dimensional time scale intervals Vi = [ay,b;) such that

E C U Vi, then we define the outer measure m* of E by
keN

m*(E) = infE m(Vy),
keN

where the infimum is taken over all coverings of E by a finite or countable system of
intervals Vi € % . If there is no such covering of E, then we put m*(E) = oo.
A subset A of Q" is said to be m*-measurable (or A-measurable) if

m*(E) =m"(ENA)+m*(ENA®)

holds for all E C Q", where A® denotes the complement of A, i.e., A =Q"\ A. The
family .# of all m* -measurable subsets of Q" is a o -algebra, and the restriction of m*
to . , which we denote by U, , is a ¢ -additive measure on .# . We have .% C .# and
ua(V)=m(V) foreach V € .% . The measure [, is called the Carathéodory extension
of the original measure m defined on the semiring .% . The measure u obtained in
this way is also called the Lebesgue A-measure on Q" generated by the pair (% ,m).
We call (Q",.# ,p) an n-dimensional time scale measure space.
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REMARK 2.1. Foreachi€{1,2,...,n}, weput g; =infT; and b; =supT;. Then
we say that T; is upper bounded if b € R and upper unbounded if b =oo. Analogously,
T; is lower bounded if a; € R and lower unbounded if @; = —oo. We say that T; is
bounded if it is upper bounded and lower bounded. Let Q be the set of all points
b= (by,by,...,b,) € Q" for which there exists at least one b; such that b; = E,-. It is
known [4, Theorem 3.1] that if 1 = (¢1,2,...,1,) € Q"\ QL, then the single-point set
{t} is A-measurable, and its A-measure is given by

ua(()) = T(ou(t) 1),

i=1

Obviously, the set ) = Q" \ Q7 can be represented as a finite or countable union
of intervals of the family .%, and therefore it is A-measurable. Furthermore, the set
QL = Q"\ Qf is A-measurable as the difference of two A-measurable sets Q" and
€5, but Q7 does not have a finite or countable covering intervals of Z . It follows
that the set Q7 and also any A-measurable subset A of Q" such that ANQL # 0 has
A-measure infinity. In particular, if @ € T, where T is an arbitrary time scale, then the
set [a,00) = {r € T:a <t} is A-measurable.

We say that an extended real-valued function f : Q" — R := [—co, 0] is A-measu-
rable if for every o € R, the set

[0, 0)) = {1t = (t1,12,...,1a) € Q": f(1) < 0}

is A-measurable. It is easy to see that f is A-measurable if and only if for each open
set G C R, the set f~1(G) = {t € Q": f(t) € G} is A-measurable. Moreover, if
f: Q" — R is A-measurable and @ : / — R with I C R is a continuous function, then
®o f: Q" — R is A-measurable.

Having the o -additive measure La on ", we possess the corresponding integra-
tion theory for functions f: E C Q" — R, according to the general Lebesgue integration
theory (see, e.g., [19]). The Lebesgue integral associated with the measure pp on Q"
is called the Lebesgue A-integral. For a A-measurable set E C Q" and a A-measurable
function f : E — R, the corresponding A-integral of f over E will be denoted by

/ftl,tz, th)At1 Aty - - - Aty /f or /Ef(t)uA(z)

So all theorems of the general Lebesgue integration theory, including the Lebesgue
dominated convergence theorem, hold also for Lebesgue A-integrals on Q". Next, we
compare the Lebesgue A-integral with the Riemann A-integral (see [4, Theorem 3.4]).
Let V = [a,b) be an n-dimensional time scale interval in Q" and let f be a bounded
real-valued function on V. If f is Riemann A-integrable over V, then f is Lebesgue

A-integrable over V and
R / FA =L / F(1)Ar
v v

where R and L indicate the Riemann and Lebesgue A-integrals, respectively. In par-
ticular, if T is an arbitrary time scale and the interval [a,b) C T contains only isolated
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points, then

[ s =3 (ot -ns0).

t€la,b)

Finally, let (Q,.#,ua) and (A,.Z,Ax) be two finite dimensional time scale measure
spaces. We consider the measure space (Q X A, 4 X L, lUa X Ap), Where A x L is
o -algebra product generated by the family {E X F : E € .# ,F € £} and

(U X Aa)(E X F) = Ua(E)As(F).

Then Fubini’s theorem holds. More precisely, if f: Q x A — R isa ua x Ax-integrable
function and if we define the function @(y) = [, f(x,y)Ax fora.e. y € A and y(x) =
Ja f(x,y)Ay for a.e. x € Q, then @ is Ax-integrable on A, y is 4 -integrable on Q

and
Lo [ senay= [ ay [ rixyax

3. Inequalities with general kernels

The following Jensen inequality on time scales is given in [1, Theorem 4.2].

THEOREM 3.1. Assume ® € C(I,R) is convex, where I C R is an interval. Let
(A, L, Ap) be a time scale measure space. Suppose [ is Aa-integrable on A such that
f(A) =1. Moreover, let h: A — R be Ap-integrable such that [|h(t)|At > 0. Then

A

JIR@If @A [0 @(f (1)) At
A A

T | S T
A A

THEOREM 3.2. Assume

(Q, A ,up) and (N, L, Ap) are two time scale measure spaces, (3.1
k:QxA— Ry is such that K(x) := / k(x,y)Ay < oo, x € Q (3.2)
A
and
k
E:Q — Ry is such that w(y) := / MAX < oo, yEA. (3.3)
o K

If ® € C(I,R) is convex, where I C R is an interval, then

[ gwe (g [Kensoa) ars [ woie(on

holds for all Aa-integrable f: A — R such that f(A) CI.
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Proof. By using Jensen’s inequality given in Theorem 3.1 and the Fubini theorem
on time scales, we find that

[ gwe (i Ko ) as
Sy kG F0)Ay

= fewe (B )
x,V)|®(f(y)A

< JEw fAkf(AzzLy()Iiy) R

[ S0 ([ reneuma) a
_/q)f (/ (y()j)()Ax)Ay
= / )4y,

and the proof is complete. []

COROLLARY 3.3. Assume (3.1), (3.2) and (3.3). If p > 1, then

[60) (i [ Henrom) sv< [ worronrs

holds for all Ax-integrable f: A — R, .
Proof. Use ®(r) =rP and I =Ry in Theorem 3.2. [

COROLLARY 3.4. Assume (3.1), (3.2) and (3.3). If p > 1, then

[ E@em KD A < [ ) g(3))ay
Q A
holds for all Aa-integrable g : A — (0,00).
Proof. Use ®(r) =¢" and I =R and let f =1In(g”) in Theorem 3.2. [

COROLLARY 3.5. Assume (3.1), (3.2) and (3.3). Then

/s;é(x)eﬁ fAk(xv)’)ln(g(}’))AyAx < / W(y)g(y)Ay

A

holds for all Ax-integrable g : A — (0,00).

Proof. Use p=1 in Corollary 3.4. [

In the following, the entries of a vector x € R" are called x;, where 1 <i<n.
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THEOREM 3.6. Let T be a time scale and assume
ai,b; €T, 0<a; <b;<oo, 1 <i<n, Q=A:=x"[a;,b;)r, (3.4)
(3.2) and

Y1 'Ynk(x:)’)“(x)

u:Q— Ry is such that v(y) := 0 o) oK)

Ax<oo,yeEA. (3.5

If ® € C(I,R) is convex, where I C R is an interval, then

[ [ o) o2

0'(x1) G(xn

b by,
/ ! / ;Ay” (3.6)
Y1 Yn

holds for all A-integrable f: A — R such that f(A) C I, where

by
(A x / / K(e.9)F()Ay1 Ay
Proof. We replace & (xi,...,x,) by % in Theorem 3.2 and notice that
therefore ( )
V yl""’yn
W(y17---a})n) e
Y1 Yn

holds. An application of Theorem 3.2 completes the proof. []

COROLLARY 3.7. Assume (3.4), (3.2) and (3.5). If p > 1, then

/’“ / U i) (ARF) (1 00) )P i A

o(x)-- 0(x)

by bn Ayy--- Ay
<[ [0t ) ()
ap dn ylyn

holds for all Ax-integrable f: A — R, .
Proof. Use ®(r) =rP and I =Ry in Theorem 3.6. [

COROLLARY 3.8. Assume (3.4), (3.2) and (3.5). If p > 1, then

/bl /bn u(xy,...,x eP(Akln( 8))(x 1WM)M
G()Cl) G(Xn)
by A . n
/ / V(s 30) (81, -y ym)) P 20 o
Vi Vn

holds for all Ax-integrable g : A — (0,00).
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Proof. Use ®(r) =¢" and I =R and let f =1In(g”) in Theorem 3.6. O

EXAMPLE 3.9. If in Corollary 3.8 we take T =R and a; =0 forall 1 <i<n
then (3.7) takes the form

[}

h n
/ 1 / u x1 ep(Akln( ))( X1 5eees xn)u
IRREEP. “Xn
by b dy;---dy
g/ / V(yla--.ayn)(g(yl""’y”))pin'
0 o Y1 Yn
COROLLARY 3.10. Assume (3.4), (3.2) and (3.5). Then
. b
w o o)+ o(x)
by by Ay Ay
</ / v(yh-..»yn)g(ylv""y")#
ap dn ylyn

holds for all Ax-integrable g : A — (0,00).
Proof. Use p =1 in Corollary 3.8. [

4. Inequalities with special kernels
COROLLARY 4.1. Assume (3.4), (3.2) and (3.5) with the kernel k such that
(X1, X, V1,--590) =0 if a;<yi<o(x) <b;, 1<i<n. 4.1)

If ® € C(I,R) is convex, where I C R is an interval, then (3.6) holds for all Ax-
integrable f: A — R suchthat f(A) C I, where

K(x):/( / x1»~~~7xn7)J17-~~>yn)AYI"'Aym
o(x) o (x,)

VU (X X Ve
yn/ / xla s Xny Y1 yn)”(xl x”)Axl---Axn
ay

o(x1) -0 () K(x1,- .. %)

and
h)l
(Akf / A( )k(x7y17'"ayn)f(yla'“)yn)Ayl"'Ay"'

Proof. The statement follows from Theorem 3.6 by using (4.1). [
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EXAMPLE 4.2. If in Corollary 4.1 we take T =R and b; = forall 1 <i< n,
then (3.6) takes the form

dx - dx
/ / X )@ (A ) (o1, ) S
o o dydy
</ / v(yl,...,yn)q)(f(ylv..q)%))#,
ay an Y1t In
where

x)Z/ / (X1, s Xns V15, ) dy1 - - - dyn,
1 I K(X1, .y X, V1 u(xy,...,x
/ / 1 ns Y1 7yn) (1 s n)dxl'--dxn

K(xlr"axn)

and

1 oo oo
A x:—/ / k(X,¥1,.+,Vn sevsyp)dyy - dyy
(Arf)(x) ko h ) (V1Y) f (V1Y) dyr -+ dy
This result is the same as [15, inequality (2.2)].
COROLLARY 4.3. Assume (3.4), (3.2) and (3.5) with the kernel k such that
k(xla"'axn7y17"'ayn):0 lf aiga(xi)gyl b 1 i<n. (42)

If ® € C(I,R) is convex, where I C R is an interval, then (3.6) holds for all Ax-
integrable f: A — R suchthat f(A) C I, where

o(x1) o (xn)
K()C):/ / k(xl7...,xn,y1,...,yn)Ayl...Ayn,

ay dan
by bn (X1 Xy V1 s Y ) U(X T -y X))
v(y) =y Vu AU LS SRR 2T Ay Ay
R A M e e
and
1

o(x1) o (xn)
/ / k(x7YI7~--»yn)f(hw-an)Ayl"'Ayn-

(Aef)(x) = K Luy |

Proof. The statement follows from Theorem 3.6 by using (4.2). [

EXAMPLE 4.4. If in Corollary 4.3 we take T =R and a; =0 forall 1 <i<n,
then (3.6) takes the form

[ [t e e S

X1 Xp

by bn dy dyn
</0 [ 2

Y ¥n
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where
X1 'Xn
:‘/0 /0 k(xla"'7xn7y17""y")dyl"'dyl’H

by On k(X1 ey Xy Ve e oy Y )U(XT, - - o5 Xn)
1% = 1... / / dxldx
() =y1--ym v Y X xn K (xq, .00 %) "

and

(Akf / / k x sVl 7yn)f(y17 7yn)dyl d

This result is the same as [15, inequality (2.5)]. Special cases are given (for n = 1) in
[10, Theorem 4.1] and (for k(x,y) = 1) in [14, inequality (2.2)].

REMARK 4.5. Using (4.2) in Example 3.9, we obtain [10, inequality (4.2)] (for
n=1).

5. Examples and special cases

THEOREM 5.1. Assume (3.4) and

E:Q — Ry is such that w(y) ::/yf)l. /y n%

i=1

Axp--Axy, < oo, y €A

5.1
If ® € C(I,R) is convex, where I C R is an interval, then

/bl / (e1, % ((Af)(xl, X ))Axl...Axn

b b
</al‘_,./an WOty yn) P01y V0)) A1 - Ay, (5.2)

holds for all Ax-integrable f: A — R such that f(A) C I, where

_ o) role)
(Af)(x);z%/a / FO1re s v AV Ay,

Proof. Let K and A f be defined as in the statements of Theorem 3.2 and Theo-
rem 3.6, respectively. The statement follows from Theorem 3.2 by using

1 if aigyi<6(xi)<b,-71<i<n

. (5.3)
0 otherwise,

k(xla"'vxn7yl7'”7yn) :{
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since in this case we have

o(x1) o (xn) n
K(xl,...,xn):/a / Ay Ave = [[(0 (%) — a)
1 n i=1

and thus A, =A and w=w. 0O

REMARK 5.2. By using k of the form (5.3), we may also give results correspond-
ing to Corollary 3.3, Corollary 3.4, Corollary 3.5, Theorem 3.6, Corollary 3.7, Corol-
lary 3.8, Corollary 3.10 and Corollary 4.2.

COROLLARY 5.3. Assume (3.4) with a; =0 forall 1 <i<n. If ® € C(I,LR) is
convex, where I C R is an interval, then

/bl /bn Xf Y )>Axi -Ax,
/b1 / {, 1(__bli)}q;(f(yl,...,yn))Ayl...Ayn (5.4)

holds for all Ax-integrable f: A — R such that f(A) C I, where

~ o(x1) o (xn)
Af)x) = - L [ st s,

n
I1.0(xi)
Proof. The statement follows from Theorem 5.1 by using
1
E(xlyeeesxy) = P

since in this case we have

i [ [ ()
W\V1s--5Yn) = o 1" n — - 3
Y n 1 \vi b

x,-G(x,-)

T

1

as the function /(x) = 1/x is known [5, Example 1.25] to have the time scales derivative
WA (x) = —1/(xo(x)). O

EXAMPLE 5.4. If b; = o for all 1 < i < n in addition to the assumptions of
Corollary 5.3, then (5.4) takes the form

/ / Af Xlyeeey X )) xi.“x z
. = Ayi ---Ay.
</ / O(f(y1.... yn)) LA
0 0 Vi---Yn

For T =N and n = 1, this result is given in [2, 1 1].
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Now we give a Hardy—Hilbert-type inequality on time scales.

THEOREM 5.5. Assume (3.4) with n=1, a; =0 and by = 0. If we define

o (Y77 w (1173
ki) = [ G " Ay and ko) = JA Gy

xX+y xX+y

then

[T ([[Ea) me [Tooeors 69

holds for all Ax-integrable g: A — R, .

Proof. We use

y\~1/p )
é(x):Kl(w and k(x,y)={ am i ¥F0yFEO x+y#E0
! 0 otherwise

in Corollary 3.3 to obtain

o o (V\1/P P -
| winr ( / ()C)Tyf(%) =< [wouora, 6o

where

_ [TRa)E() 7k y)Ax
W) = [ e A RIS
)l—l/p

1 /= Y
:_/<x Av—
yJo xX+y y

Using this in (5.6) and letting f(y) = g(y)y_% , we obtain (5.5). [

EXAMPLE 5.6. If we take T = R in Theorem 5.5 and use the known fact that

o (Y —1/p e 1-1/p
/(x) w- [ G T
0 x+y 0o x+y sin(7/p)
then (5.5) turns into the classical Hilbert inequality (see e.g., [9])
oo oo (y) )P ( T )p/oo
—=dy) dx< | —— Pdy.
[ ([ 2 ) [ o

Now we consider some generalizations of Pélya—Knopp type inequalities.
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COROLLARY 5.7. Assume 3.4)with n=1, ay =a >0, by = and (5.1). If
@ € C(I,R) is convex, where I C R is an interval, then

[T (s [ o) avs [ ([T S Y ogronsy 5)

holds for all Ax-integrable f: A — R such that f(A) C I

Proof. The statement follows from Theorem 5.1 by using n=1. [J

EXAMPLE 5.8. In addition to the assumptions of Corollary 5.7, if T consists of
only isolated points, then (5.7) takes the form

Z 5 ( o) > ) )) (o(x) —x)

X€a,eo) ye[a X

<Y ( Y E(X)G(x)_x>d)(f(y))(c(y)—y)- (5.8)

selamir \achmy 0K 4@

This result is the same as [20, Theorem 1.1], but here we use time scales notation
instead of the notation given in [20].

REMARK 5.9. Asin Example 5.8, one can write the discrete version of (5.2).

In the following three examples, we consider Example 5.8 with ®(r) = r?, where
p>1.

EXAMPLE 5.10. For T=hN = {hn:n € N} with h >0, a =h, and

1
Ex) = W,
(5.8) takes the form
o1 (13 L& (k)
Sl 30 e

EXAMPLE 5.11. For T =N? = {n?:n € N} with a =1 and

B 2(c(x)—1)
0 o e

(5.8) takes the form

oo 2)) n P oo
ﬁ(i 2%+ 1)f ) < T ().

n=1 k=1
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If instead

then (5.8) takes the form

& (2n+1)(n+2)7 [ & 2n+1 »
2 1 1) Y (2k+1)f( g :

k=1

EXAMPLE 5.12. For T=¢" = {¢" :n € N} with ¢ > 1, a=q and
o(x)—a

)= —~—~—~—
o(x)(o(x) —x)
(5.8) takes the form

=

P
> a(g-1)"(q"—1)" (qu 'f(d* ) <

n=1

(f(g")" (5.10)

1M

In the following three examples, we consider Example 5.8 with ®(r) = ¢” and

f(v) =1In(g(y)) for g(y) > 0.

EXAMPLE 5.13. For T, a and & as in Example 5.10, (5.8) takes the form

Y
;;1"—'H<kl_[1g(kh)> <

If we let @(y) = g(y)/y in (5.11), then we get

1

oo 1 n n oo
Y n[Jekn) | < o(nh). (5.12)
am it k=1 n=1

Since ¢! < (n!)u /(n+1), from (5.12) we obtain
1

i (;f[l (p(kh)) <e 2(p(nh

n=1

g(nh)
1

(5.11)

=3

n

which is the well-known Carleman inequality [10, p. 141].

EXAMPLE 5.14. For T, a and the two choices of & as in Example 5.11, (5.8)
takes the forms

1
oo 2n n+2) n ke n(n+2) oo 5
-~ @7 <

and .

> (2 n n Wt = o
2 %1;'2) (p(g(kz))2k+1> < 2 2n+ lg(nz).
n=1 =1
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EXAMPLE 5.15. For T, a and & as in Example 5.12, (5.8) takes the form

oo n g —1 oo

Y a1 [ [Te@)” " <Y gld. (5.13)

n=1 k=1 n=1

REMARK 5.16. For h =1, inequalities (5.9) and (5.12) are given in [13, (12.6),
(12.7), p. 153]. Also, (5.10) and (5.13) are the same as [13, (12.1), (12.2), p. 153].
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