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Abstract. In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such
that the double inequalities

α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b)

α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b)

hold for all a,b > 0 with a �= b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively
the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a and b .

1. Introduction

For a,b > 0 with a �= b the Neuman-Sándor mean M(a,b) [1] is defined by

M(a,b) =
a−b

2sinh−1
(

a−b
a+b

) , (1.1)

where sinh−1(x) = log(x+
√

x2 +1) is the inverse hyperbolic sine function.
Recently, the Neuman-Sándor mean has been the subject of intensive research. In

particular, many remarkable inequalities for the Neuman-Sándor mean M(a,b) can be
found in the literature [1, 2].

Let H(a,b) = 2ab/(a + b) , G(a,b) =
√

ab , L(a,b) = (b− a)/(logb− loga) ,
P(a,b) = (a − b)/(4arctan

√
a/b − π) , A(a,b) = (a + b)/2, T (a,b) = (a − b)/

[2arctan((a − b)/(a + b))] , Q(a,b) =
√

(a2 +b2)/2 and C(a,b) = (a2 + b2)/(a +
b) be the harmonic, geometric, logarithmic, first Seiffert, arithmetic, second Seiffert,
quadratic and contra-harmonic means of a and b , respectively. Then it is well-known
that the inequalities

H(a,b)<G(a,b)< L(a,b) <P(a,b)< A(a,b)< M(a,b)< T (a,b)<Q(a,b)<C(a,b)
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hold for a,b > 0 with a �= b .
Neuman and Sándor [1, 2] proved that the inequalities

π
4log(1+

√
2)

T (a,b) < M(a,b) <
A(a,b)

log(1+
√

2)
,

√
2T 2(a,b)−Q2(a,b) < M(a,b) <

T 2(a,b)
Q(a,b)

,

H(T (a,b),A(a,b)) < M(a,b) < L(A(a,b),Q(a,b)), T (a,b) > H(M(a,b),Q(a,b)),

M(a,b) <
A2(a,b)
P(a,b)

, A2/3(a,b)Q1/3(a,b) < M(a,b) <
2A(a,b)+Q(a,b)

3
,

√
A(a,b)T (a,b) < M(a,b) <

√
A2(a,b)+T2(a,b),

G(x,y)
G(1− x,1− y)

<
L(x,y)

L(1− x,1− y)
<

P(x,y)
P(1− x,1− y)

<
A(x,y)

A(1− x,1− y)
<

M(x,y)
M(1− x,1− y)

<
T (x,y)

T (1− x,1− y)
,

1
A(1− x,1− y)

− 1
A(x,y)

<
1

M(1− x,1− y)
− 1

M(x,y)
<

1
T (1− x,1− y)

− 1
T (x,y)

,

A(x,y)A(1− x,1− y) < M(x,y)M(1− x,1− y) < T (x,y)T (1− x,1− y)

hold for all a,b > 0 and x,y ∈ (0,1/2] with a �= b and x �= y .
Li et al. [3] showed that the double inequality Lp0(a,b)< M(a,b)< L2(a,b) holds

for all a,b > 0 with a �= b , where Lp(a,b) = [(bp+1−ap+1)/((p+1)(b−a))]1/p(p �=
−1,0) , L0(a,b) = 1/e(bb/aa)1/(b−a) and L−1(a,b) = (b− a)/(logb− loga) is the
p− th generalized logarithmic mean of a and b , and p0 = 1.843 · · · is the unique solu-
tion of the equation (p+1)1/p = 2log(1+

√
2) .

In [4], Neuman proved that the double inequalities

αQ(a,b)+ (1−α)A(a,b) < M(a,b) < βQ(a,b)+ (1−β )A(a,b)

and
λC(a,b)+ (1−λ )A(a,b)< M(a,b) < μC(a,b)+ (1− μ)A(a,b)

hold for all a,b > 0 with a �= b if and only if α � [1− log(1+
√

2)]/[(
√

2−1) log(1+√
2)] = 0.3249 · · · , β � 1/3, λ � [1− log(1 +

√
2)]/ log(1 +

√
2) = 0.1345 · · · and

μ � 1/6.
Very recently, inequalities for quotients involving the Neuman-Sándormean M(a,b)

were obtained in [5].
The main purpose of this paper is to find the least values α1 , α2 and the greatest

values β1 , β2 such that the double inequalities

α1L(a,b)+ (1−α1)Q(a,b) < M(a,b) < β1L(a,b)+ (1−β1)Q(a,b),

α2L(a,b)+ (1−α2)C(a,b) < M(a,b) < β2L(a,b)+ (1−β2)C(a,b)

hold for all a,b > 0 with a �= b . All numerical computations are carried out using
MATHEMATICAL software.
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2. Lemmas

In order to establish our main results we need several lemmas, which we present
in this section.

LEMMA 2.1. Let F(x) = x/
√

1+ x2 . Then the double inequality

x− x3

2
< F(x) < x− x3

2
+

2
5
x5 < x− x3

2
+

x5

2
(2.1)

holds for all x ∈ (0,1) .

Proof. Inequality (2.1) follows easily from the inequalities

F2(x)−
(

x− x3

2

)2

=
x6

4(1+ x2)
(3− x2) > 0

and (
x− x3

2
+

2
5
x5
)2

−F2(x) =
x6

100(1+ x2)
(5+65x2−24x4 +16x6) > 0

together with x− x3/2 > 0 for all x ∈ (0,1) . �

LEMMA 2.2. The inequality sinh−1(x) > x− x3/6 holds for all x ∈ (0,1) .

Proof. Let

w(x) = sinh−1(x)− x+
x3

6
. (2.2)

Then simple computations lead to

w(0) = 0, (2.3)

w′(x) =
w1(x)√
1+ x2

, (2.4)

where w1(x) = 1−√
1+ x2 + x2

√
1+ x2/2. Note that

w1(0) = 0, w′
1(x) =

3x3

2
√

1+ x2
> 0 (2.5)

for x ∈ (0,1) .
Therefore, Lemma 2.2 follows easily from (2.2)–(2.5). �

LEMMA 2.3. The inequality (30+ 9x2 − 68x4)sinh−1(x) < 30x+ 4x3 holds for
all x ∈ (0,1) .
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Proof. Let

η(x) = (30+9x2−68x4)sinh−1(x)−30x−4x3. (2.6)

Then simple computations lead to

η(0) = 0, (2.7)

η ′(x) = η1(x)+2x(9−136x2)sinh−1(x), (2.8)

where

η1(x) =
30+9x2−68x4

√
1+ x2

−30−12x2, (2.9)

η1(0) = 0, (2.10)

η1
′(x) = −x[12+263x2 +204x4 +24(1+ x2)3/2]

(1+ x2)3/2
< 0 (2.11)

for x ∈ (0,1) .
We claim that η ′(x) < 0 for all x ∈ (0,1) . Therefore, Lemma 2.3 follows easily

from (2.6) and (2.7).
Indeed, if x ∈ (3/(2

√
34),1) , then from (2.8) and (2.10) together with (2.11) we

clearly see that η ′(x) � η1(x) < η1(0) = 0 for x ∈ (0,1) .
If x ∈ (0,3/(2

√
34)) , then Lemma 2.1, (2.8) and (2.9) together with the fact that

30+9x2−68x4 > 0 and sinh−1(x) < x lead to the conclusion that

η ′(x) < (30+9x2−68x4)
(
1− x2

2
+

x4

2

)
−30−12x2+2x2(9−136x2)

= −x4

2
(659−77x2 +68x4) < 0

for x ∈ (0,1) . �

LEMMA 2.4. Let

G(x) =
x√

1+ x2(sinh−1(x))2
− 1

sinh−1(x)
.

Then G(x) is strictly decreasing on (0,1) . Moreover, the double inequality

− x
3

< G(x) < − x
3

+
17x3

90
(2.12)

holds for all x ∈ (0,1) .

Proof. Differentiating G(x) yields

G′(x) = − 2

(1+ x2)3/2(sinh−1(x))3
G1(x), (2.13)
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where

G1(x) = x
√

1+ x2− (1+
x2

2
)sinh−1(x). (2.14)

It follows from (2.14) that
G1(0) = 0, (2.15)

G′
1(x) = x

[
3x

2
√

1+ x2
− sinh−1(x)

]
> x[x− sinh−1(x)] > 0 (2.16)

for x ∈ (0,1) .
The first statement follows easily from (2.13) and (2.15) together with (2.16).
To prove inequality (2.12), it suffices to show that inequalities

g1(x) := x−
√

1+ x2 sinh−1(x)+
1
3
x
√

1+ x2(sinh−1(x))2 > 0 (2.17)

and

g2(x) := x−
√

1+ x2 sinh−1(x)+
(

1
3
x− 17

90
x3
)√

1+ x2(sinh−1(x))2 < 0 (2.18)

hold for x ∈ (0,1) .
We first prove inequality (2.17). From the expression of g1(x) we get

g1(0) = 0, (2.19)

g′1(x) =
sinh−1(x)
3
√

1+ x2
g∗1(x), (2.20)

where
g∗1(x) = −3x+2x

√
1+ x2 +(1+2x2)sinh−1(x). (2.21)

It follows from Lemma 2.2 and (2.21) one has

g∗1(x) > −3x+2x+(1+2x2)
(
x− 1

6
x3
)

=
1
6
x3(11−2x2) > 0 (2.22)

for x ∈ (0,1) .
Therefore, inequality (2.17) follows from (2.19) and (2.20) together with (2.22).
Next, we prove inequality (2.18). From the expression of g2(x) we have

g2(0) = 0, (2.23)

g′2(x) =
sinh−1(x)
90

√
1+ x2

g∗2(x), (2.24)

where

g∗2(x) = 2x[(30−17x2)
√

1+ x2−45]+ (30+9x2−68x4)sinh−1(x). (2.25)
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It follows from Lemma 2.3 and (2.25) together with
√

1+ x2 < 1+ x2/2 that

g∗2(x) < 2x
[
(30−17x2)

(
1+

x2

2

)
−45

]
+30x+4x3 = −17x5 < 0 (2.26)

for x ∈ (0,1) .
Therefore, inequality (2.18) follows from (2.23) and (2.24) together with (2.26). �

LEMMA 2.5. Let

H(x) =
1

log[(1+ x)/(1− x)]
− 2x

(1− x2) log2[(1+ x)/(1− x)]
.

Then H(x) is strictly decreasing on (0,1) . Moreover, the inequality

H(x) > − x
3
− x3

2
(2.27)

holds for 0 < x < 3/4 , and the inequality

H(x) < − x
3
− x3

6
(2.28)

holds for all 0 < x < 1 .

Proof. Differentiating H(x) gives

H ′(x) =
4H1(x)

(1− x2)2 log3[(1+ x)/(1− x)]
, (2.29)

where

H1(x) = 2x− log

(
1+ x
1− x

)
. (2.30)

From (2.30) one has

H1(0) = 0, H ′
1(x) = − 2x2

1− x2 < 0 (2.31)

for x ∈ (0,1) .
Therefore, the first conclusion follows easily from (2.29) and (2.31).
To show inequalities (2.27) and (2.28), it suffices to prove that inequality

h1(x) :=(1− x2) log2
(

1+ x
1− x

)[
H(x)+

x
3

+
x3

2

]

=(1− x2)
(

x
3

+
x3

2

)
log2

(
1+ x
1− x

)
+(1− x2) log

(
1+ x
1− x

)
−2x > 0 (2.32)
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holds for 0 < x < 3/4, and inequality

h2(x) :=(1− x2) log2
(

1+ x
1− x

)[
H(x)+

x
3

+
x3

6

]

=(1− x2)
(

x
3

+
x3

6

)
log2

(
1+ x
1− x

)
+(1− x2) log

(
1+ x
1− x

)
−2x < 0 (2.33)

holds for 0 < x < 1.
We first prove inequality (2.32). From the expression of h1(x) one has

h1(0) = 0, (2.34)

h′1(x) =
1
6

log

(
1+ x
1− x

)
h∗1(x), (2.35)

where

h∗1(x) = 4x(3x2−1)+ (2+3x2−15x4) log

(
1+ x
1− x

)
. (2.36)

Equation (2.36) leads to

h∗1(0) = 0, h∗1(3/4) = 0.0025 · · ·> 0, (2.37)

h∗1
′(x) =

2x
1− x2 h∗∗1 (x), (2.38)

where

h∗∗1 (x) =23x−33x3 +3(1−11x2+10x4) log

(
1+ x
1− x

)

=23x−33x3 +30

(√
10

10
− x

)(√
10

10
+ x

)
(1− x2) log

(
1+ x
1− x

)
. (2.39)

It is not difficulty to verify that⎧⎨
⎩

log
( 1+x

1−x

)
> 2x, x ∈ (0,1),

log
(

1+x
1−x

)
< 2x+ x3, x ∈ (0,

√
3/3).

(2.40)

We assert that
h∗∗1 (x) > 0 (2.41)

for all 0 < x � 1/2. In fact, if 0 < x �
√

10/10, then (2.39) and (2.40) lead to h∗∗1 (x) �
23x− 33x3 + 6x(1− 11x2 + 10x4) = x(29− 99x2 + 60x4) > 0. If

√
10/10 < x � 1/2,

then (2.39) and (2.40) imply that h∗∗1 (x) > 23x−33x3 +3(1−11x2+10x4)(2x+ x3) =
x(29−96x2 +27x4 +30x6) > 0.

From (2.39) and the monotonicity of log[(1+ x)/(1− x)] we get

h∗∗1 (1/2) = 3.667 · · ·> 0, h∗∗1 (3/4) = −8.48 · · ·< 0, (2.42)
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h∗∗1
′(x) =29−159x2 +6x(20x2−11) log

(
1+ x
1− x

)
< 29− 159

4
+

9
2

(
45
4
−11

)
log7

=
−86+9log7

8
< 0 (2.43)

for 1/2 < x < 3/4.
From (2.41)–(2.43) we clearly see that there exists x0 ∈ (1/2,3/4) such that

h∗∗1 (x) > 0 for x ∈ (0,x0) and h∗∗1 (x) < 0 for x ∈ (x0,3/4) . Then (2.37) and (2.38)
lead to the conclusion that

h∗1(x) > 0 (2.44)

for x ∈ [0,3/4] .
Therefore, inequality (2.32) follows from (2.34) and (2.35) together with (2.44).
Next, we prove inequality (2.33). From the expression of h2(x) we obtain

h2(0) = 0, (2.45)

h′2(x) =
1
6

log

(
1+ x
1− x

)
h∗2(x), (2.46)

where

h∗2(x) =4x(x2−1)+ (2−3x2−5x4) log

(
1+ x
1− x

)

=4x(x2−1)+5(x2 +1)(x+

√
2
5
)(

√
2
5
− x) log

(
1+ x
1− x

)
. (2.47)

We announce that
h∗2(x) < 0 (2.48)

for all x ∈ (0,1) . Indeed, if 0 < x <
√

3/3, then (2.40) and (2.47) lead to h∗2(x) <

4x(x2 − 1) + (2− 3x2 − 5x4)(2x + x3) = −x5(13 + 5x2) < 0; if
√

3/3 � x �
√

2/5,
then from (2.40) and (2.47) together with the monotonicity of log[(1+ x)/(1− x)] we
get h∗2(x) � 4x(x2−1)+(2−3x2−5x4) log[(

√
5+

√
2)/(

√
5−√

2)] = 4x3 +2log[(7+
2
√

10)/3] − 4x − 3log[(7 + 2
√

10)/3]x2 − 5log[(7 + 2
√

10)/3]x4 � 4(
√

2/5)3 +
2log[(7+2

√
10)/3]−4

√
3/3−3log[(7+2

√
10)/3]×(

√
3/3)2−5log[(7+2

√
10)/3]×

(
√

3/3)4 = 8
√

10/25+4log[(7+2
√

10)/3]/9−4
√

3/3=−0.6348 · · ·< 0; if
√

2/5<
x < 1, then (2.40) and (2.47) lead to h∗2(x) < 4x(x2−1)+2x(2−3x2−5x4) =−2x3(1+
5x2) < 0.

Therefore, inequality (2.33) follows from (2.45) and (2.46) together with (2.48). �

LEMMA 2.6. Let λ1 = 1− 1/[
√

2log(1 +
√

2)] = 0.1977 · · ·, then the function
ϕ(x) = (1− λ1)F(x) + 2λ1H(x) is strictly decreasing on (3/4,1) , where F(x) and
H(x) are defined as in Lemmas 2.1 and 2.5, respectively.

Proof. Differentiating (2.29) gives

H ′′(x) =
8ζ (x)

(1− x2)3 log4[(1+ x)/(1− x)]
, (2.49)
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where

ζ (x) = −6x+3(1+ x2) log

(
1+ x
1− x

)
−2x log2

(
1+ x
1− x

)
. (2.50)

From (2.50) and log[(1+ x)/(1− x)] > log7 = 1.945 · · ·> 3/2 we get

ζ (3/4) = −9
2

+
75
16

log7− 3
2

log2 7 = −1.0583 · · ·< 0, (2.51)

ζ ′(x) =
2

1− x2

[
6x2− (x+3x3) log

(
1+ x
1− x

)
− (1− x2) log2

(
1+ x
1− x

)]
(2.52)

<
2

1− x2

[
6x2− 3

2
(x+3x3)− 9

4
(1− x2)

]
(2.53)

=− 3[3− x2 +5x(1− x)]
2(1+ x)

< 0 (2.54)

for x ∈ (3/4,1) .
It follows from (2.49) and (2.51) together with (2.52) that H ′(x) is strictly de-

creasing on (3/4,1) . Then from (2.29) and (2.30) we have

ϕ ′(x) =
1−λ1

(1+ x2)3/2
+2λ1H

′(x) <
64
125

(1−λ1)+2λ1H
′(3/4)

=
64
125

−
[

64
125

+
1024(2log7−3)

49log3 7

]
λ1 = −0.0893 · · ·< 0

for x ∈ (3/4,1) . This completes the result. �

LEMMA 2.7. Let H(x) be defined as in Lemma 2.5 and λ2 = 1− 1/[2log(1 +√
2)] = 0.4327 · · ·, then the function φ(x) = 2(1−λ2)x+2λ2H(x) is strictly decreasing

on [4/5,1) . Moreover, φ(x) > 1/2 for x ∈ [3/4,4/5] .

Proof. From the proof of Lemma 2.6 we know that H ′(x) is strictly decreasing on
(3/4,1) . Then from (2.29) and (2.30) we get

φ ′(x) =2(1−λ2)+2λ2H
′(x) � 2(1−λ2)+2λ2H

′(4/5)

=2−
[
2+

250(5log3−4)
81log3 3

]
λ2 = −0.369 · · ·< 0

for x ∈ [4/5,1) . This in turn implies that φ(x) is strictly decreasing on [4/5,1) .
Moreover, it follows from φ ′(3/4) = 2− [1024(2log7− 3)/(49log3 7)+ 2]λ2 =

0.04012 · · ·> 0 and φ ′(4/5)= 2− [250(5log3−4)/(81log3 3)+2]λ2 =−0.369 · · ·< 0
together with the monotonicity of H ′(x) on (3/4,1) that there exists x1 ∈ (3/4,4/5) ,
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such that φ ′(x) > 0 for x ∈ [3/4,x1) and φ ′(x) < 0 for x ∈ (x1,4/5] . This implies that

φ(x) � min{φ(3/4),φ(4/5)}

= min

{
3
2
−
(

3
2

+
48−14log7

7log2 7

)
λ2,

8
5
−
(

8
5

+
20−9log3

9log2 3

)
λ2

}

= min{0.5120 · · ·,0.5048 · · ·} >
1
2

for x ∈ [3/4,4/5] . �

3. Main Results

THEOREM 3.1. The double inequality

α1L(a,b)+ (1−α1)Q(a,b) < M(a,b) < β1L(a,b)+ (1−β1)Q(a,b)

holds true for all a,b > 0 with a �= b if and only if α1 � 2/5 and β1 � 1−1/[
√

2log(1+√
2)] = 0.1977 · · · .

Proof. Since L(a,b) , M(a,b) and Q(a,b) are symmetric and homogenous of de-
gree 1. Without loss generality, we assume that a > b . Let x = (a− b)/(a + b) ,
λ1 = 1−1/[

√
2log(1+

√
2)] = 0.1977 · · · and p ∈ (0,1) . Then x ∈ (0,1) ,

L(a,b)
A(a,b)

=
2x

log[(1+ x)/(1− x)]
,

M(a,b)
A(a,b)

=
x

sinh−1(x)
,

Q(a,b)
A(a,b)

=
√

1+ x2. (3.1)

Q(a,b)−M(a,b)
Q(a,b)−L(a,b)

=

√
1+ x2− x/sinh−1(x)√

1+ x2−2x/ log[(1+ x)/(1− x)]
, (3.2)

lim
x→0+

√
1+ x2− x/sinh−1(x)√

1+ x2−2x/ log[(1+ x)/(1− x)]
=

2
5
, (3.3)

lim
x→1−

√
1+ x2− x/sinh−1(x)√

1+ x2−2x/ log[(1+ x)/(1− x)]
= λ1, (3.4)

pL(a,b)+ (1− p)Q(a,b)−M(a,b)
A(a,b)

=p
2x

log[(1+ x)/(1− x)]
+ (1− p)

√
1+ x2− x

sinh−1(x)
:= Dp(x). (3.5)

Equation (3.5) leads to

Dp(0+) = 0, Dp(1−) =
√

2(1− p)− 1

log(1+
√

2)
, Dλ1

(1−) = 0, (3.6)
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D′
p(x) =

(1− p)x√
1+ x2

+
x√

1+ x2[sinh−1(x)]2
− 1

sinh−1(x)

+2p

[
1

log[(1+ x)/(1− x)]
− 2x

(1− x2) log2[(1+ x)/(1− x)]

]
=(1− p)F(x)+G(x)+2pH(x), (3.7)

where F(x) , G(x) and H(x) are defined as in Lemmas 2.1, 2.4 and 2.5, respectively.
From Lemmas 2.1, 2.4 and 2.5 together with (3.7) one has

D′
2/5(x) =

3
5
F(x)+G(x)+

4
5
H(x)

<
1
5

[
3
(
x− x3

2
+

2
5
x5
)

+5
(
− 1

3
x+

17
90

x3
)
−4
(1

3
x+

1
6
x3
)]

= − x3

225
(55−54x2) < 0 (3.8)

for all x ∈ (0,1) .
It follows from (3.5) and (3.6) together with (3.8) we clearly see that

2
5
L(a,b)+

3
5
Q(a,b) < M(a,b). (3.9)

Next, we prove that

λ1L(a,b)+ (1−λ1)Q(a,b) > M(a,b). (3.10)

It follows from Lemmas 2.1, 2.4 and 2.5 together with (3.7) we clearly see that

D′
λ1

(x) >(1−λ1)
(

x− 1
2
x3
)
− 1

3
x−2λ1

(
1
3
x+

1
2
x3
)

=
(1+ λ1)x

2

[
2(2−5λ1)
3(1+ λ1)

− x2
]

>
(1+ λ1)x

2

[
2(2−5λ1)
3(1+ λ1)

−
(

3
4

)2
]

>
(1+ λ1)x

2
×0.00045 > 0 (3.11)

for x ∈ (0,3/4) .
From Lemmas 2.4 and 2.6 together with (3.7) we clearly see that D′

λ1
(x) is strictly

decreasing on x∈ (3/4,1) , D′
λ1

(1−)=−∞ and D′
λ1

(3/4)= (1−λ1)F(3/4)+G(3/4)+
2λ1H(3/4) = 3(1− λ1)/5 + (3 − 5log2)/(5log2 2) + (14log7 − 48)λ1/(7log2 7) =
0.1326 · · · > 0. Hence, we know that there exists x2 ∈ (3/4,1) such that D′

λ1
(x) > 0

for x ∈ [3/4,x2) and D′
λ1

(x) < 0 for x ∈ (x2,1) . This in conjunction with (3.11) leads
to that Dλ1

(x) is strictly increasing on (0,x2] and strictly decreasing on [x2,1) .
Therefore, inequality (3.10) follows from (3.5) and (3.6) together with the piece-

wise monotonicity of Dλ1
(x) , and Theorem 3.1 follows from (3.9) and (3.10) in con-

junction with the following statements.

• If α1 < 2/5, then equations (3.2) and (3.3) lead to the conclusion that there exists
0 < δ1 < 1 such that M(a,b) < α1L(a,b) + (1−α1)Q(a,b) for all a,b > 0 with
(a−b)/(a+b)∈ (0,δ1) .
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• If β1 > λ1 , then equations (3.2) and (3.4) lead to the conclusion that there exists
0 < δ2 < 1 such that M(a,b) > β1L(a,b) + (1− β1)Q(a,b) for all a,b > 0 with
(a−b)/(a+b)∈ (1− δ2,1) . �

THEOREM 3.2. The double inequality

α2L(a,b)+ (1−α2)C(a,b) < M(a,b) < β2L(a,b)+ (1−β2)C(a,b)

holds true for all a,b > 0 with a �= b if and only if α2 � 5/8 and β2 � 1−1/[2log(1+√
2)] = 0.4327 · · · .

Proof. We will follow, to some extent, lines in the proof of Theorem 3.1. Since
L(a,b) , M(a,b) and C(a,b) are symmetric and homogenous of degree 1. Without loss
generality, we assume that a> b . Let x =(a−b)/(a+b) , λ2 = 1−1/[2log(1+

√
2)] =

0.4327 · · · and q ∈ (0,1) . Then x ∈ (0,1) , making use of (3.1) and C(a,b)/A(a,b) =
1+ x2 we get

C(a,b)−M(a,b)
C(a,b)−L(a,b)

=
1+ x2− x/sinh−1(x)

1+ x2−2x/ log[(1+ x)/(1− x)]
, (3.12)

lim
x→0+

1+ x2− x/sinh−1(x)
1+ x2−2x/ log[(1+ x)/(1− x)]

=
5
8
, (3.13)

lim
x→1−

1+ x2− x/sinh−1(x)
1+ x2−2x/ log[(1+ x)/(1− x)]

= λ2, (3.14)

qL(a,b)+ (1−q)C(a,b)−M(a,b)
A(a,b)

=q
2x

log[(1+ x)/(1− x)]
+ (1−q)(1+ x2)− x

sinh−1(x)
:= Eq(x). (3.15)

Equation (3.15) leads to

Eq(0+) = 0, Eq(1−) =
√

2(1−q)− 1

log(1+
√

2)
, Eλ2

(1−) = 0, (3.16)

E ′
q(x) =2(1−q)x+

x√
1+ x2[sinh−1(x)]2

− 1

sinh−1(x)

+2q

[
1

log[(1+ x)/(1− x)]
− 2x

(1− x2) log2[(1+ x)/(1− x)]

]
=2(1−q)x+G(x)+2qH(x), (3.17)

where G(x) and H(x) are defined as in Lemmas 2.4 and 2.5, respectively.



COMBINATION OF LOGARITHMIC AND QUADRATIC OR CONTRA-HARMONIC MEANS 213

From Lemmas 2.4 and 2.5 together with (3.17) one has

E ′
5/8(x) =

3
4
x+G(x)+

5
4
H(x)

<
3
4
x− x

3
+

17x3

90
− 5

4

(
x
3

+
x3

6

)
= − 7x3

360
< 0 (3.18)

for all x ∈ (0,1) .
Equations (3.15) and (3.16) together with (3.18) lead to the conclusion that

5
8
L(a,b)+

3
8
C(a,b) < M(a,b). (3.19)

Next, we prove that

λ2L(a,b)+ (1−λ2)C(a,b) > M(a,b). (3.20)

From Lemmas 2.4, 2.5 and 2.7 together with (3.17) we have

E ′
λ2

(x) > 2(1−λ2)x− x
3
−2λ2

(
x
3

+
x3

2

)

= λ2x

(
5−8λ2

3λ2
− x2

)
= λ2x(1.1850 · · ·− x2) > 0 (3.21)

for x ∈ (0,3/4) ,

E ′
λ2

(x) = φ(x)+G(x) >
1
2

+G

(
4
5

)
>

1
2
− 1

3
× 4

5
=

7
30

> 0 (3.22)

for x ∈ [3/4,4/5) ,

E ′
λ2

(4/5) =
8
5
(1−λ2)+G

(
4
5

)
+2λ2H

(
4
5

)

=
8
5

+
4−√

41log2( 4+
√

41
5 )

√
41log2( 4+

√
41

5 )
+
(

18log9−80

9log2 9
− 8

5

)
λ2

=0.3037 · · ·> 0, (3.23)

E ′
λ2

(1−) = −∞, (3.24)

and E ′
λ2

(x) is strictly decreasing on [4/5,1) .
From (3.21)–(3.24) and the monotonicity of E ′

λ2
(x) we know that there exists

x3 ∈ (4/5,1) such that Eλ2
(x) is strictly increasing on (0,x3] and strictly decreasing

on [x3,1) .
Therefore, inequality (3.20) follows from (3.15) and (3.16) together with the piece-

wise monotonicity of E ′
λ2

(x) , and Theorem 3.2 follows from (3.19) and (3.20) in con-
junction with the following statements.
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• If α2 < 5/8, then equations (3.12) and (3.13) lead to the conclusion that there exists
0 < δ3 < 1 such that M(a,b) < α2L(a,b) + (1−α2)C(a,b) for all a,b > 0 with
(a−b)/(a+b)∈ (0,δ3) .

• If β2 > λ2 , then equations (3.12) and (3.14) lead to the conclusion that there exists
0 < δ4 < 1 such that M(a,b) > β2L(a,b) + (1− β2)C(a,b) for all a,b > 0 with
(a−b)/(a+b)∈ (1− δ4,1) . �

REMARK 3.3. The bounds in (3.9) and (3.19) are not comparable to each other.
In fact, if we let

J(a,b) =
[
5
8
L(a,b)+

3
8
C(a,b)

]
−
[
2
5
L(a,b)+

3
5
Q(a,b)

]
, (3.25)

then numerical computations show that

J(1,10) = 0.0588 · · ·> 0, J(1,20) = 0.0918 · · ·> 0, J(1,30) = 0.0826 · · ·> 0,

J(1,40) = 0.0461 · · ·> 0, J(1,50) = −0.0095 · · ·< 0, J(1,60) = −0.0798 · · ·< 0,

J(1,70) = −0.1617 · · ·< 0, J(1,80) = −0.2531 · · ·< 0, J(1,90) = −0.3526 · · ·< 0.

More precisely, let a > b and x = a/b > 1, then

J(a,b) =
3

40(x+1) logx

[
3(x2−1)+

(
5(x2 +1)−4

√
2(x+1)

√
x2 +1

)
logx

]
(3.26)

:=
3

40(x+1) logx
f (x),

f (1) = f ′(1) = f ′′(1) = f ′′′(1) = f (4)(1) = 0, f (5)(1) = 44
√

2, (3.27)

lim
x→+∞

f (x) = lim
x→+∞

{
3

(
1

logx
− 1

x2 logx

)

+

[
5

(
1+

1
x2

)
−4

√
2

(
1+

1
x

)√
1+

1
x2

]}
x2 logx (3.28)

= −∞.

Equations (3.25)–(3.28) imply that there exist small enough δ > 0 and large enough
X > 1 such that

5
8
L(a,b)+

3
8
C(a,b) >

2
5
L(a,b)+

3
5
Q(a,b)

for all a/b ∈ (1,1+ δ ) and

5
8
L(a,b)+

3
8
C(a,b) <

2
5
L(a,b)+

3
5
Q(a,b)

for all a/b ∈ (X ,+∞) .
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REMARK 3.4. The bound in (3.10) is better than that in (3.20).

Proof. Let a > b and x = (a−b)/(a+b)∈ (0,1) , then

[λ2L(a,b)+ (1−λ2)C(a,b)]− [λ1L(a,b)+ (1−λ1)Q(a,b)]

=
[
(λ2−λ1)

2x
log(1+ x)− log(1− x)

+ (1−λ2)(1+ x2)− (1−λ1)
√

1+ x2

]
A(a,b)

(3.29)

Let

g(x) = (λ2−λ1)
2x

log(1+ x)− log(1− x)
+ (1−λ2)(1+ x2)− (1−λ1)

√
1+ x2,

(3.30)

g1(x) = (λ2−λ1)
2x

log(1+ x)− log(1− x)
, (3.31)

g2(x) = (1−λ2)(1+ x2)− (1−λ1)
√

1+ x2. (3.32)

We claim that
2x

log(1+ x)− log(1− x)
> 1− x2

3
− x4

4
(3.33)

for all x ∈ (0,0.96) . Indeed, let

ϕ(x) = 2x−
(

1− x2

3
− x4

4

)
log

1+ x
1− x

. (3.34)

Then

ϕ(0) = 0, ϕ(0.96) = 0.0501 · · ·> 0, (3.35)

ϕ ′(x) =
xϕ1(x)

6(1− x2)
, (3.36)

where

ϕ1(x) = −8x+3x3 +(4+2x2−6x4) log

(
1+ x
1− x

)
. (3.37)

Equation (3.37) leads to

ϕ1(x) > −8x+3x3 +(4+2x2−6x4)
(

2x+
2x3

3
+

2x5

5

)

=
x3

15
(145−136x2−48x4−36x6)

� x3

15
(145−136×0.82−48×0.84−36×0.86)

=
x3

15
×28.862 · · ·> 0

(3.38)
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for x ∈ (0,0.8] , and

ϕ1(0.8) = 1.3374 · · ·> 0, ϕ1(0.96) = −2.11813 · · ·< 0, (3.39)

ϕ ′
1(x) = xϕ2(x), (3.40)

where

ϕ2(x) = 21x+(4−24x2) log

(
1+ x
1− x

)
,

ϕ2(0.8) = −8.16047 · · ·< 0, (3.41)

ϕ ′
2(x) =

1
1− x2

[
29−69x2−48x(1− x2) log

(
1+ x
1− x

)]

<
29−69×0.82

1− x2 = − 15.16
1− x2 < 0 (3.42)

for x ∈ (0.8,0.96) .
From (3.38)–(3.42) we clearly see that there exists x1 ∈ (0.8,0.96) such that

ϕ1(x) > 0 for x ∈ (0,x1) and ϕ1(x) < 0 for x ∈ (x1,0.96) . Then (3.36) implies that
ϕ(x) is strictly increasing on (0,x1] and strictly decreasing on [x1,0.96) .

Therefore, inequality (3.33) follows from (3.34) and (3.35) together with the piece-
wise monotonicity of ϕ(x) .

It follows from (3.30)–(3.33) and
√

1+ x2 < 1+ x2/2 that

g(x) > (λ2−λ1)
(

1− x2

3
− x4

4

)
+(1−λ2)(1+ x2)− (1−λ1)

(
1+

x2

2

)

=
x2

12
[6+10λ1−16λ2−3(λ2−λ1)x2]

>
x2

12
[6+10λ1−16λ2−3(λ2−λ1)×0.962]

=
x2

12
×0.404282 · · ·> 0

(3.43)

for x ∈ (0,0.96) , and

g′1(x) =
(λ2−λ1)[2(1− x2) log( 1+x

1−x )−4x]

(1− x2)[log( 1+x
1−x )]

2
(3.44)

g′2(x) =
x

2log(1+
√

2)

(
2−

√
2√

1+ x2

)
, (3.45)

g′′1(x) =
8(λ2−λ1)[2x− log( 1+x

1−x )]

(1− x2)2[log( 1+x
1−x )]

3
< 0 (3.46)

for x ∈ [0.96,1) .
From (3.30)–(3.32) and (3.44), (3.45) together with (3.46) we clearly see that

g′(x) = g′1(x)+g′2(x) < g′1(0.96)+g′2(1) = −0.0718 · · ·< 0 (3.47)
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for x ∈ [0.96,1) .
Note that

lim
x→1

g(x) = 0. (3.48)

Therefore, Remark 3.4 follows easily from (3.29), (3.30), (3.43), (3.47) and (3.48). �
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