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Abstract. In this paper, we establish the following converse of Alzer’s inequality, which is a
discrete analogue of Wirtinger’s inequality: Let z1,z2, · · · ,zn(n � 2) be complex numbers with

n

∑
k=1

zk = 0,

then
n

∑
k=1

|zk |2 � λ(n) min
1�k�n

{|zk+1 − zk|2}

where zn+1 = z1 and λ(n) = n
4 , for even n ; λ(n) = n

4sin2 (n−1)π
2n

, for odd n . The constant λ(n)

is best possible.

1. Introduction

We begin by stating the classical Wirtinger’s inequality in the following.

THEOREM A. Let f be a real-valued function with period 2π and f ′ ∈ L2[0,2π ] .
If ∫ 2π

0
f (x)dx = 0,

then ∫ 2π

0
f ′(x)2dx �

∫ 2π

0
f (x)2dx (1.1)

with equality holding if and only if

f (x) = acosx+bsinx,

where a,b are real constants.

Because of a wide variety of applications Wirtinger’s inequality (1.1) has been
generalized in many different directions and improved in many different ways [1, 2, 3,
5, 6, 7, 8, 10, 11, 12, 13, 14, 15]. Specially, some discrete version of (1.1) are discovered
[4, 7, 8, 10, 11, 12, 13, 15].

In 1950, Schoenberg [13, p. 399] established the following discrete analogue of
Wirtinger’s inequality.
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THEOREM B. If z1,z2, · · · ,zn (n � 2) are complex numbers with
n

∑
k=1

zk = 0,

then
n

∑
k=1

|zk+1− zk|2 � 4sin2 π
n

n

∑
k=1

|zk|2 (1.2)

where zn+1 = z1 . Equality holds in (1.2) if and only if zk = acos 2πk
n +bsin 2πk

n , where
a,b are real constants.

In 1992, Alzer [2, p. 86–87] provide a variant of Schoenberg’s inequality (1.2), he
established the following elegant discrete analogue of Wirtinger inequality.

THEOREM C. If z1,z2, · · · ,zn (n � 2) are complex numbers with
n

∑
k=1

zk = 0,

then
n

∑
k=1

|zk+1− zk|2 � 12n
n2−1

max
1�k�n

|zk|2 (1.3)

where zn+1 = z1 . The constant 12n
n2−1

is best possible.

In this paper, we establish the converse of Alzer’s inequality (1.3). Our main
results are the following three theorems.

THEOREM 1. If z1,z2, · · · ,zn (n � 2) are complex numbers with
n

∑
k=1

zk = 0,

then
n

∑
k=1

|zk|2 � λ (n) min
1�k�n

|zk+1 − zk|2 (1.4)

where zn+1 = z1 and

λ (n) =

⎧⎪⎨
⎪⎩

n
4
, for even n,

n

4sin2 (n−1)π
2n

, for odd n.

The constant λ (n) is best possible.

REMARK. Great thanks to the referee, he stated that formulation of theorem 1
could be easily seen from the proof of Theorem 4 in [13, p. 399]. However our proof is
new and can be considered as another proof of right hand side of Schoenberg’s inequal-
ities.

Noting that ∑n
k=1(zk−c) = 0, where c = z1+z2+···+zn

n , and applying Theorem 1 for
n complex numbers z1− c,z2− c, · · · ,zn − c , we have
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THEOREM 2. If z1,z2, · · · ,zn (n � 2) are complex numbers, let c = z1+z2+···+zn
n ,

then

n

∑
k=1

|zk − c|2 � λ (n) min
1�k�n

|zk+1 − zk|2 (1.6)

where zn+1 = z1 and λ (n) is given in Theorem 1 and it is best possible.

For complex numbers z1,z2, · · · ,zn (n � 2) , we define that

Δzk = zk+1 − zk, Δlzk = Δ(Δl−1zk),

where z j = zi if j ≡ i (mod n). Noting that ∑n
k=1 Δlzk = 0, and applying Theorem 1

for Δlz1,Δlz2, · · · ,Δl zn , we have

THEOREM 3. If z1,z2, · · · ,zn (n � 2) are complex numbers and l is a positive
integer, then

n

∑
k=1

|Δl zk|2 � λ (n) min
1�k�n

|Δl+1zk|2 (1.7)

where z j = zi if j ≡ i (mod n) , λ (n) is given in Theorem 1 and it is best possible.

2. The proof of the main result

Proof of Theorem 1. Since the inequality (1.4) is homogeneous, we may assume
that

min
1�k�n

|zk+1 − zk|2 = 1. (2.1)

Consider first the case when n is even.
By the parallelogram identity ‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2), we have

n

∑
k=1

|zk|2 =
1
2

n

∑
k=1

(|zk|2 + |zk+1|2)

=
1
4

n

∑
k=1

(|zk + zk+1|2 + |zk − zk+1|2)

� 1
4

n

∑
k=1

|zk − zk+1|2

� n
4

min
1�k�n

|zk+1− zk|2 =
n
4
, (2.2)

the equality in the above inequality holds if and only if zk + zk+1 = 0 (k = 1,2, · · · ,n) .
For example, since n is even, the sequence ( 1

2 ,− 1
2 , · · · , 1

2 ,− 1
2) satisfies such condition.

Consider the second case when n is odd.
Let θk = arg zk+1

zk
∈ [0,2π) , k = 1,2, · · · ,n.
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(1) If θk � π
2 or θk � 3π

2 , by (2.1), we obtain

|zk|2 + |zk+1|2 = |zk − zk+1|2 +2|zk||zk+1|cosθk

� |zk − zk+1|2
� 1. (2.3)

(2) If θk ∈ (π
2 , 3π

2 ) , from the fact that cosθk < 0 and (2.1), we have

1 � |zk − zk+1|2 = |zk|2 + |zk+1|2 −2|zk||zk+1|cosθk

� (|zk|2 + |zk+1|2)(1− cosθk)

= (|zk|2 + |zk+1|2)2sin2 θk

2
,

this is equivalent to

|zk|2 + |zk+1|2 � 1

2sin2 θk
2

. (2.4)

It implies that

|zk|2 + |zk+1|2 � 1
2
. (2.5)

Now we consider the following two cases:

Case 1. If all θk ∈ (π
2 , 3π

2 ) , k = 1,2, · · · ,n.
By (2.4), we have

n

∑
k=1

|zk|2 =
1
2

n

∑
k=1

(|zk|2 + |zk+1|2) � 1
4

n

∑
k=1

1

sin2 θk
2

. (2.6)

On the other hand, since zn+1 = z1 , we have

n

∏
k=1

zk+1

zk
= 1.

Therefore

n

∑
k=1

θk = arg
n

∏
k=1

zk+1

zk
+2kπ = 2kπ , (2.7)

where k is some positive integer and k < n .
Noting that nπ

2 < ∑n
k=1 θk < 3nπ

2 , it follows that

π
4

<
kπ
n

<
3π
4

. (2.8)
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Since k < n is positive integer and n is odd, by (2.8), we have

∣∣∣sin kπ
n

∣∣∣ � sin
(n−1)π

2n
. (2.9)

Let f (x) = 1
sin2 x

, x ∈ [π
4 , 3π

4 ] . It is easy to see that f (x) is convex function. Using
Jensen’s inequality and combining (2.6), (2.7) and (2.9), we infer that

n

∑
k=1

|zk|2 � 1
4

n

∑
k=1

1

sin2 θk
2

� n
4

1

sin2(∑n
k=1 θk
2n )

=
n
4

1

sin2 kπ
n

� n
4

1

sin2 (n−1)π
2n

. (2.10)

Case 2. If there exist θ j /∈ (π
2 , 3π

2 ) .
Let I = { j|θ j /∈ (π

2 , 3π
2 ), j = 1,2, · · · ,n} . By (2.3), for j ∈ I , we have

|z j|2 + |z j+1|2 � 1.

But for j /∈ I, by (2.5), we have

|z j|2 + |z j+1|2 � 1
2
.

Hence

n

∑
k=1

|zk|2 =
1
2

(
∑
j∈I

(|z j|2 + |z j+1|2)+ ∑
j/∈I

(|z j|2 + |z j+1|2)
)

� 1
2
(|I|+ 1

2
(n−|I|)) =

|I|+n
4

� n+1
4

. (2.11)

Now we claim that

sin2 (n−1)π
2n

� n
n+1

. (2.12)

In fact, when n = 3, by it is obvious that the equality of (2.12) holds; when n � 5, from
the fact cosx � 1− x2

2 (x ∈ (0, π
2 )) , we have

sin2 (n−1)π
2n

= cos2
π
2n

�
(
1− ( π

2n )2

2

)
� 1−

( π
2n

)2
>

n
n+1

.

Hence (2.12) is proved.
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By (2.11) and (2.12), we implies that

n

∑
k=1

|zk|2 � n+1
4

� n

4sin2 (n−1)π
2n

.

Thus, we have proved that when n is odd, the inequality

n

∑
k=1

|zk|2 � n

4sin2 (n−1)π
2n

(2.13)

holds. On the other hand, taking

zk =
e

i(n−1)kπ
n

2sin (n−1)π
2n

, k = 1,2, · · · ,n,

it is easy to see that for all k = 1,2, · · · ,n ,

|zk − zk+1| = 1,
n

∑
k=1

zk = 0

and the equality of (2.13) holds. Hence the constant λ (n) is best possible.
We complete the proof of Theorem 1. �
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