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PROPERTIES OF THE SYMBOL OF MULTIDIMENSIONAL

SINGULAR INTEGRALS IN THE WEIGHTED

SPACES AND OSCILLATING MULTIPLIERS

AKIF D. GADJIEV

(Communicated by S. Samko)

Abstract. Differential properties of symbols of multidimensional singular integrals in the weighted
space of Bessel potentials on the sphere with the weighted functions, having singularities on a
sphere are studied. The main results are applied to obtaining theorems on Fourier multipliers of
spherical harmonic expansions.

1. Introduction

We intend to investigate symbols of multidimensional singular integrals within the
frameworks of oscillatory multipliers of spheral harmonic expansions. The principle
reason is in the fact that symbol has representation as an operator with oscillatory mul-
tipliers. Firstly, we develop some results for the weighted space of Bessel potentials on
the sphere.

Let Sn−1 be the unit sphere in Rn . We will denote the points of this sphere by
x′, y′ such that x′ = (θ ,θ ′) , y′ = (ω ,ω ′) , where θ ′,ω ′ ∈ Sn−2 and 0 � θ ,ω < π .
Let Ym (x′) be n -dimensional spherical harmonics of order m . Then for each function

f ∈C∞ (Sn−1
)

we can write the expansion f (x′) =
∞
∑

m=0
fmYm (x′) , where fm are Fourier

coefficients of the function f . Any operator Λ , acting on a function f by the formula

Λ f
(
x′
)

=
∞

∑
m=0

λm fmYm
(
x′
)

is called the operator with multiplier λm . The numbers λm are called (p,q)- multiplier
on the sphere Sn−1 if

‖Λ f‖q � C‖ f‖p ,

where ‖·‖r is Lr - norm on the sphere Sn−1 .
The theory of singular integrals and the theory of Riesz potentials give us examples

of so-called oscillating multipliers ima(m) , where a(m) is a real-valued multiplier (see,
for example, the monographs [1–3] and the article [4]).
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Oscillating multipliers in the Sobolev space on sphere with p = 2 were studied
in Mikhlin’s monograph [1]. The properties of oscillating multipliers in the space of
Bessel potentials were studied in our papers [5] and [6].

We recall that the space of Bessel potentials on the sphere Sn−1 is the completion

of the space C∞ (Sn−1
)

by the norm
∥∥∥(E + δ )

l
2 f
∥∥∥

p
, where l > 0, E is a unit oper-

ator and δ is the spherical part of Laplace operator Δ . The operator δ is also called
Beltrami operator on the sphere. In [7] and [8]1 we denote this space by Hl

p

(
Sn−1

)
.

The purpose of this paper is to study oscillating multipliers in the weighted spaces
of Bessel potentials on the sphere, with a weight function, having singularities at the
pole or at the equator of the sphere.

Now we introduce these weighted spaces: Cβ Hl
p

(
Sn−1

)
is the space of functions

with the finite norm

‖g‖p,l,Cβ
= ‖g‖p +

∥∥∥(cosθ )β δ l/2g
∥∥∥

p

and Sβ Hl
p

(
Sn−1

)
is the space of the function g with the norm

‖g‖p,l,Sβ
= ‖g‖p +

∥∥∥(sinθ )β δ l/2g
∥∥∥

p
,

where l and β are real numbers, p > 1, and δ , as above, is the Beltrami operator on
the sphere. Note that this operator is a non-negative-definite self-adjoint differential
operator of second order in L2 . The spectrum of the operator δ consists of the eigen-
values λm = m(m+n−2) and corresponding eigenfunctions are the spherical functions
Ym (x′) .

We also set Cβ H0
p = Cβ Lp and Sβ H0

p = Sβ Lp . It is clear that the letters C and S
in these notations indicate the weighted functions are cosine and sine, respectively.

In the special case β = 0 the norms ‖g‖p,l,C0
and ‖g‖p,l,S0

are equivalent to the

norm of the space Hl
p

(
Sn−1

)
of Bessel potentials on the sphere

‖g‖p,l =
∥∥∥(E + δ )l/2 g

∥∥∥
p
.

Differential properties of the symbol and characteristics of n -dimensional singular
integral were investigated in our works [7] and [8]. Some other results were proved in
the book [9], in the papers [14], [19] and in the PhD dissertations [15]–[17]. Very
interesting connections are shown in the articles [10]–[13].

We present here the main theorem of the papers [7], [8], which will be used in this
study. Denoting, as in [8], operator “characteristic →symbol” by A , we can write

(A f )
(
x′
)

=
∫

Sn−1

{
ln

1
|(x′,y′)| −

iπ
2

sgn
(
x′,y′

)}
f
(
y′
)
dy′. (1)

In [8] we prove the inverse formula for this operator, which has the form

1Gadziev = Gadjiev.
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A−1 =
n/2

∑
k=1

Ckδ kAτ, if n is an even number,

A−1 =
(n−1)/2

∑
k=1

Ck (−Δ)1/2 δ kAτ, if n is odd,

where Ck are real numbers, and τ f (x) = f (−x) . Note that the other expression of this
formula was proposed in [4].

THEOREM A. (see [7], [8]) Let 1 < p < ∞ and l =
n
2
−
∣∣∣∣ 1p − 1

2

∣∣∣∣(n− 2). Then

the operator A is bounded from Hl
p

(
Sn−1

)
to Lp

(
Sn−1

)
.

THEOREM B. (see [7], [8]) Let 1 < p < ∞ and γ =
n
2

+
∣∣∣∣1p − 1

2

∣∣∣∣(n− 2) . Then

the operator A−1 is bounded from Hγ
p
(
Sn−1

)
to Lp

(
Sn−1

)
.

Using the well known result that the operator A acts on each function f ∈C∞ (Sn−1
)
,

f (x′) =
∞
∑

m=0
fmYm (x′) by the formula [1]

(A f )
(
x′
)

=
∞

∑
m=0

imπn/2 Γ
(

m
2

)
Γ
(

m+n
2

) fmYm
(
x′
)
,

we can rephrase the theorems A and B for oscillating mutipliers

THEOREM C. (see [5], [6]) Let p and l be as in Theorem A. Then im
Γ
(

m
2

)
Γ
(

m+n
2

) is

a multiplier from Hl
p

(
Sn−1

)
to Lp

(
Sn−1

)
.

THEOREM D. (see [5], [6]) Let p and γ be as in Theorem B. Then (−i)m Γ
(

n+m
2

)
Γ
(

m
2

)
is a multiplier from Lp

(
Sn−1

)
to Hγ

p
(
Sn−1

)
.

Theorem D follows from Theorem B and the following obvious multiplier repre-
sentation of the operator A−1

(
A−1 f

)
(θ ) =

∞

∑
m=1

(−i)m π−n/2 Γ
(

m+n
2

)
Γ
(

m
2

) fmYm
(
x′
)
.

2. Boundedness of the operator A

We shall prove the theorems of type A,B,C and D in weighted spaces Sβ Hl
p and

Cβ Hl
p . In connection with these spaces, we note the following. In [8] it was shown

that if the function f in (1) has a singularity at the equator of the sphere Sn−1 , then
A f has a singularity at the pole, and conversely, if f has a singularity at the pole, then
A f will have a singularity at the equator. Thus, in contrast to the singular integrals and
pseudodiferential operators, the operator A does not preserve the singular support and
this circumstance dictates the consideration of the weighted spaces Cβ Hl

p and Sβ Hl
p .
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For brevity we use the notation

∫
d1<θ<d2

g
(
x′
)
dx′ =

d2∫
d1

∫
Sn−2

g
(
θ ,θ ′) (sinθ )n−2 dθdθ ′.

THEOREM 1. Let p > 1 , l =
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) be an integer and − 1
p

< β <

l− 1
p

. Then the operator A defined in (1), is a bounded operator from Sβ Lp to Cβ Hl
p .

Proof. Consider the norm ‖A f‖Cβ Hl
p
. Since the operator A acts from Lp to Lp

for any p ∈ (1,∞) it is sufficient to estimate only the term with the weighted function
(cosθ )β . Moreover, (cosθ )β is separated from zero outside of the neighborhood of
π/2. Therefore, we must estimate only the part where θ is near to π/2. So, consider
the integral

∫
0<| π

2 −θ |< 1
2

(cosθ1)
pβ
∣∣∣δ 1/2(A f )(x′)

∣∣∣p dx′, x′ =
(
θ ,θ ′) .

We note that the integrals with 0 <
π
2
−θ <

1
2

and 0 < θ − π
2

<
1
2

are estimated

in the same way, and therefore we present only estimates in the case 0 <
π
2
−θ <

1
2

.

We denote the kernel of the operator A in (1) by K (x′,y′) , that is let K (x′ · y′) =

ln
1

|(x′ · y′)| −
iπ
2

sgn(x′ · y′) .

Then we have

∫
0< π

2 −θ< 1
2

(cosθ )pβ

∣∣∣∣∣∣δ l/2
∫

Sn−1

f
(
y′
)
K
(
x′ · y′)dy′

∣∣∣∣∣∣
p

dx′

�C
∞

∑
k=1

∫
2−k−1< π

2 −θ<2−k

(cosθ )pβ

∣∣∣∣∣∣δ l/2
( ∫

0<ω<2−k−2

+
∫

2−k−2<ω<2−k+1

+
p∫

2−k+1<ω<π

)
f
(
y′
)
K
(
x′ · y′)dy′

∣∣∣∣∣∣dx′ = I1 + I2 + I3. (2)

Denoting by χk (ω) the characteristic function of the set −2−k−2 < ω < 2−k+1 ,



MULTIDIMENSIONAL SINGULAR INTEGRALS IN THE WEIGHTED SPACES 231

we obtain by using the Theorem A

I2 � C
∞

∑
k=1

∫
2−k−1< π

2 −θ<2−k

(π
2
−θ
)pβ

∣∣∣∣∣∣δ l/2
∫

Sn−1

K
(
x′ · y′)χk (ω)dy′

∣∣∣∣∣∣
p

dx′

� C
∞

∑
k=1

2−kpβ
∫

Sn−1

∣∣∣δ l/2A(χk f )
∣∣∣p dx′ = C

∞

∑
k=1

2−kpβ
∥∥∥δ l/2A(χk f )

∥∥∥p

p

� C
∞

∑
k=1

2−kpβ ‖χk f‖p
p = C

∞

∑
k=1

∫
Sn−1

|sinω |pβ χk (ω)
∣∣ f (y′)∣∣p dy′

= C
∫

Sn−1

|sinω |pβ ∣∣ f (y′)∣∣p dy′.

That is
I2 � ‖ f‖p

p.l,Sβ
. (3)

Consider I1 . Since 1 is a natural number∣∣∣δ l/2K
(
x′ · y′)∣∣∣� c

|cos(x′ · y′)|l

and we can write

I1 + I3 �
∞

∑
k=1

∫
2−k−1< π

2 −θ<2−k

(π
2
−θ
)pβ

⎧⎨
⎩
⎛
⎝ ∫

0<ω<2−k−2

| f (y′)|
|cos(x′ · y′)|l dy′

⎞
⎠

p

dx′

+

⎛
⎝ ∫

2−k+1<ω<π

| f (y′)|
|cos(x′ · y′)|l dy′

⎞
⎠

p

dx′

⎫⎬
⎭ . (4)

Consider only the integrals with respect to the variable ω . We have

∫
ω>2−k+1

| f (y′)|
|cos(x′ · y′)|l dy′ � C

∫
ω>2−k+1

| f (y′)|
|cos(x′ · y′)|l ωn−2dωdω ′

�
π∫

2−k+1

ωn−2dω

⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|l

⎞
⎠

1/p′⎛
⎝ ∫

Sn−2

∣∣ f (y′)∣∣p dy′
⎞
⎠

1/p

.

Moreover

⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|l

⎞
⎠

1/p′

=C

⎛
⎝ π∫

0

(sinϕ)n−2 dϕ
|cosθ cosω + sinθ sinω cosϕ |l p

⎞
⎠

1/p′
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�C

⎛
⎝− 1

sinθ sinω

π∫
0

d (sinθ sinω cosϕ)

|cosθ cosω + sinθ sinω cosϕ |l p

⎞
⎠

1/p′

=C

(
1

sinθ sinω

[
1

|cos(θ + ω |l p′−1
− 1

|cos(θ −ω |l p′−1

])1/p′

.

The inequalities
π
2
−θ < 2−k , ω > 2−k+1 imply θ + ω >

π
2

. Therefore, if ω <

π
2

, then

|cos(θ + ω)| = sinθ sinω − cosθ cosω < cos(θ −ω)
sinθ sinω > |cos(θ + ω)|

and we obtain ⎛
⎝ ∫

Sn−1

dy′

|cos(x′ · y′)|l p′

⎞
⎠

1/p′

� C

|cos(θ + ω)|l . (5)

If ω >
π
2

, then

cos(θ + ω) = −cosθ |cosω |+ sinθ sinω
|cos(θ + ω)| = cosθ |cosω |+ sinθ sinω
cos(ω −θ ) = cosθ cosω + sinθ sinω = −cosθ |cosω |+ sinθ sinω .

Consider two cases. If ω >
π
2

and ω −θ <
π
2

then

|cos(θ + ω)| > cos(ω −θ )

sinθ sinω > cos(ω −θ )

and so ⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|l p′

⎞
⎠

1/p′

� C

|cos(ω −θ )|l . (6)

In the case ω >
π
2

and ω −θ >
π
2

|cosθ cosω + sinθ sinω cosϕ | = |cosθ cosω + sinθ sinω − sinθ sinω(1− cosϕ)|
=
∣∣∣cos(θ −ω)−2sinθ sinω sin2 ϕ

4

∣∣∣
= |cos(θ −ω)|+2sinθ sinω sin2 ϕ

2
> |cos(θ −ω)| .
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Therefore, in this case⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|1p′

⎞
⎠

1/p′

= C

⎛
⎝ π∫

0

(sinϕ)n−2dϕ
|cosθ cosω + sinθ sinω cosϕ |l p′

⎞
⎠

1/p′

� C

|cos(θ −ω)|l . (7)

Inequalities (5), (6) and (7) cover all possible cases, when 0 < θ <
π
2

and 0 <

ω < π .
Now consider the second integral with respect to ω in (4). Since

π
2
−θ > 2−k−1

and ω < 2−k−2 , then θ + ω <
π
2

. Hence, as above

∫
ω<2−k−2

| f (y′)|
|cos(x′ · y′)|l dy′ �

2k−2∫
0

ωn−2dω

⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|l p′

⎞
⎠

1/p′⎛
⎝ ∫

Sn−2

∣∣ f (y′)∣∣p dy′
⎞
⎠

1/p

and we have the estimate⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|1p′

⎞
⎠

1/p′

= C

⎛
⎝ π∫

0

(sinϕ)n−2dϕ
|cosθ cosω + sinθ sinω cosϕ |l p′

⎞
⎠

1/p′

= C

⎛
⎜⎝

π∫
0

(sinϕ)n−2dϕ∣∣∣cos(θ + ω)+2sinθ cosω cos2
ϕ
2

∣∣∣l p′
⎞
⎟⎠

1/p′

� C

|cos(θ + ω)|l .

Therefore, we have the estimates

⎛
⎝ ∫

Sn−2

dy′

|cos(x′ · y′)|l p′

⎞
⎠

l/p′

�

⎧⎪⎪⎨
⎪⎪⎩

C

|cos(θ+ω)|l i f θ ,ω <
π
2

, θ+ω >
π
2

or θ + ω <
π
2

C

|cos(θ−ω)|l i f ω >
π
2

, θ + ω >
π
2

,
(

θ <
π
2

)
.

Denoting

F(ω) =

⎛
⎝ ∫

Sn−2

| f (y)|p dy′
⎞
⎠

1/p

,

we can write

∫
ω>2−k+1

| f (y′)|
|cos(x′ · y′)|l dy′ �

π∫
2−k+1

ωn−2F(ω)

{
1

|cos(θ + ω)|l +
1

|cos(θ −ω)|l
}

dω .
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Since ω > 2−k+1,
π
2
−θ < 2−k, then

ω
2

>
π
2
−θ or ω >

ω
2

+
π
2
−θ , ω − π

2
+

θ >
ω
2

. In addition
π
2
−θ + ω > ω and therefore

∫
ω>2−k+1

| f (y)|
|cos(y′ · x′)|l dy′ �

π∫
2−k+1

F (ω)ωn−2−ldω .

So for the integral I3 in (4) we can write

I3 �
∞

∑
k=1

∫
2−k−1< π

2 −θ<2−k

(π
2
−θ
)pβ

⎛
⎝ π∫

2−k+1

F (ω)ωn−2−ldω

⎞
⎠

p

dθ

� C
∞

∑
k=1

2−k∫
2−k−1

θ pβ

⎛
⎝ π∫

θ

F (ω)ωn−2−ldω

⎞
⎠

p

dθ .

Given the condition β > − 1
p

, we can apply the Hardy inequality and get

I3 �
∞

∑
k=1

2−k∫
2−k−1

θ pβ
(

θ n−1−lF(θ )
)p

dθ =
∞

∑
k=1

2−k∫
2−k−1

θ pβ θ (n−1−l)pF(θ )dθ .

In the case p � 2 we have l =
n−2

p′
+1 where p′ =

p
p−1

and then (n−1− l)p=

n−2.

If p � 2, then l =
n−2

p
+1 and (n−1− l)p = n = 2.

Hence θ (n−2)(p−1) = θ (n−2)(p−2)θ n−2 <
π
2

(n−2)(p−2)
·θ n−2 . Therefore, since x′ =

(θ ,θ ′) ,

I3 � C
∞

∑
k=1

2−k∫
2−k−1

(sinθ )pβ (sinθ )n−2
∫

Sn−2

∣∣ f (x′)∣∣p dθ ′dθ

� C
∫

Sn−1

(
sinx′

)pβ | f (θ )|p dx′. (8)

For the integral I1 in (4) we have

I1 �
∞

∑
k=1

∫
2−k−1< π

2 −θ<2−k

(π
2
−θ
)pβ

⎛
⎜⎝

2−k−2∫
0

F(ω)
ωn−2∣∣∣π

2
−ω −θ

∣∣∣l dω

⎞
⎟⎠

p

dθ .
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Since
π
2
− θ > 2−k−1 and ω < 2−k−2 , then

1
2

(π
2
−θ
)

> ω , that is
π
2
− θ >

1
2

(π
2
−θ
)

+ ω . So
π
2
−θ −ω >

1
2

(π
2
−θ
)

. Therefore, replacing
π
2
−θ by θ we

have

I1 �
∞

∑
k=1

2−k∫
2−k−1

θ p(β−l)

⎛
⎝ θ∫

0

F(ω)ωn−2dω

⎞
⎠

p

dθ .

Since β < l− 1
p

, we can apply the other inequality of Hardy and get

I1 �
∞

∑
k=1

2−k∫
2−k−1

θ p(β−l)(θ n−1F(θ )
)p

dθ

� C
∞

∑
k=1

2−k∫
2−k−1

(sinθ )pβ (sinθ )n−2
∫

Sn−2

| f (θ )|p dθ ′dθ

= C
∫

Sn−1

(sinθ )pβ ∣∣ f (x′)∣∣p dx′. (9)

Form (8), (9) and (4)

I1 + I3 �
∫

Sn−1

|sinθ |pβ ∣∣ f (x′)∣∣p dx′ = ‖ f‖p
p,l,Sβ

. (10)

From (10), (3) and (2) the proof is complete. �

Similarly we prove

THEOREM 2. Let p > 1 , l =
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) be a natural number and −n−1
p

< β < l− n−1
p

. Then, A is a bounded operator from Cβ Lp to Sβ Hl
p .

From Theorems 1-2 it follows

COROLLARY. Let p > 1 , l =
n
2
−
∣∣∣∣ 1p − 1

2

∣∣∣∣(n−2) be an integer and α any pos-

itive number. Then the operator A is bounded from Sβ Hα
p to CpHα+l

p if − 1
p

< β <

l− 1
p

and is bounded from Cβ Hα
p to Sβ Hα+l

p if −n−1
p

< β < l− n−1
p

.

Proof. Let f ∈ Sβ Hα
p and then (sinθ )β δ α/2 f = g(θ ) ∈ Lp . Introducing a func-

tion ϕ(θ ) =
g(θ )

(sinθ )β we have ϕ ∈ Sβ Lp and ‖ϕ‖p,β ,0 = ‖g‖p . By Theorem 1 Aϕ ∈
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Cβ Hl
p that is ∥∥∥(cos)β δ l/2Aϕ

∥∥∥
p
� C‖ϕ‖p,β ,0 = C‖g‖p .

But ϕ = δ α/2 f and g = (sinθ )β δ α/2 f .
Therefore ∥∥∥∥∥∥(cosθ )β δ

l + α
2 A f

∥∥∥∥∥∥
p

�

∥∥∥∥∥∥(sinθ )β δ
α
2 f

∥∥∥∥∥∥
p

an the first part is proved.
Similarly we can prove the second assertion. �

3. Boundedness of the operator A−1 and concluding remarks

Now we can prove corresponding statements about the boundedness of the inverse
operator A−1 in the weighted spaces.

THEOREM 3. Let p > 1 , γ =
n
2

+
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) be an integer and − 1
p

< β <

γ − 1
p

. Then the inverse operator A−1 is bounded from Sβ Hγ
p to Cβ Lp .

Proof. If A−1 f ∈ Sβ Hγ
p , then by Theorem 1 f ∈Cβ Hγ+l

p . Hence, for any j : 1 �
j � n

2
δ jAA−1 f ∈Cβ Hγ+l−2 j

p ⊂Cβ Hγ+l−n
p ,

where l =
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) . From this we have

γ −n− l =
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2)−n+
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) = 0. �

By the same way we can prove

THEOREM 4. Let p > 1 , γ =
n
2

+
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) be an integer and −n−1
p

<

β < γ − n−1
p

. Then the inverse operator A−1 is bounded from Cβ Hγ
p to SβLp .

Theorems 1, 2, 3, 4 and corollary to Theorems 1-2 allow us to formulate the fol-
lowing results on oscillating multipliers.

THEOREM 5. Let p > 1 , l =
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) be an integer and −n−1
p

<

β < l− n−1
p

. Then im
Γ
(

m
2

)
Γ
(

n+m
2

) is a multiplier from Cβ Hα
p to Sβ Hl+α

p for any α > 0 .
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THEOREM 6. Let p > 1 , l =
n
2
−
∣∣∣∣1p − 1

2

∣∣∣∣(n−2) be an integer and −n−1
p

<

β < l− n−1
p

.

Then im
Γ(m/2)
Γ
(

n+m
2

) is a multiplier from Cβ Hα
p to Sβ Hl+α

p for any α > 0.

As a final remark we note that it would be interesting to prove theorems 1, 2, 3
and 4 for a fractional values l . Lemma 4 of the paper [18] and Lemma 2.1 of the paper
[8] may be probably useful for this. The other direction is the obtaining the weighted
Lp → Lq estimates by using the corresponding generalizations of the paper [8] given in
[19].
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