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WEIGHTED TURÁN TYPE INEQUALITY FOR
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(Communicated by I. Raşa)

Abstract. Firstly, we introduce a new type of weight functions named as N-doubling weights,
which is an essential generalization of the well known doubling weights. Secondly, we establish
a weighted Turán type inequality with N-doubling weights and a Nikolskii-Turán type inequality
for rational functions with prescribed poles. Our results generalize some known Turán type
inequality both for polynomials and rational functions.

1. Introduction

It is well know that Bernstein’s inequality for trigonometric polynomials and Mar-
kov’s inequality for algebraic polynomials play an important role in establishing the
converse results in approximation theory. There are many natural and important gen-
eralizations and improvements on Bernstein’s inequality and Markov’s inequality. For
example, one of the most important recent progress on this direction can be found in
[4], where the authors established some important Bernstein’s type inequalities with
doubling weights and A∗ weights.

In 1939, Turán [7] established an inequality which was later referred as Turán’s
inequality. Let Hn be the class of real algebraic polynomials of degree n, whose zeros
all lie in the interval [−1,1] . Then Turán’s inequality can be stated as follows:

‖ f ′‖∞ � C
√

n‖ f‖∞

for all f ∈ Hn , where ‖ f‖∞ is the usual supremum norm of f .
Turán’s inequality have attracted attention of many mathematicians and a lot of

generalizations were achieved. For examples, It was generalized to Lp spaces for 0 <
p < ∞ (see [8]–[10], [15]–[18]), the optimal constants were estimated (see [1]–[3],
[5], [8]–[10]), the weighted Turán’s inequality ([11], [12], [14]) and Nikol’skii type
inequalities ([16]–[18]) were considered as well.

It is natural to ask if one can generalize Turán type inequality to the rational system
Rn = {p/q : p,q ∈ Πn} with restricted zeros and poles. Min [6] in 1999 made such an
attempt to establish the following results:
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THEOREM 1. Let the nonreal elements in {ak}n
k=1 ⊂C\ [−1,1] be paired by com-

plex conjugation, and let {ak} satisfy that |ak| − 1 > ρ for some ρ > 2 and all k =
1,2, · · · ,n. Then, for f ∈ Pn (a1,a2, · · · ,an) with all zeros in [−1,1] , we have

∥∥ f ′
∥∥

∞ �
√

ρ2−4
6ρ

√
n‖ f‖∞

for n � max
{

ρ+2
9(ρ−2) ,

4ρ2

ρ2−4

}
, where

Pn(a1,a2, · · · ,an) =
{

P(x)
∏n

k=1(x−ak)
, P ∈ Πn

}
.

THEOREM 2. Let the nonreal elements in {ak}n
k=1 ⊂C\ [−1,1] be paired by com-

plex conjugation, and let {ak} satisfy that |ak| − 1 > ρ for some ρ > 2 and all k =
1,2, · · · ,n. Then, for f ∈ P (a1,a2, · · · ,an) with all zeros in [−1,1] , we have

∥∥ f ′
∥∥2

2 � 1
2

∫ 1

−1
Bn(x) f 2(x)dx,

where

B(x) =
n

∑
k=1

a2
k −1

(x−ak)2 > 0, x ∈ [−1,1],

and ‖ f‖2 is the L2 norm of f , that is,

‖ f‖2 :=
(∫ 1

−1
| f (x)|2 dx

)1/2

.

Yu and Zhou [15] generalized the Min’s results to the general space Lp for 1 �
p � ∞ while removing the unpleasant restriction ρ > 2 in Theorem 1.

THEOREM 3. Let the nonreal elements in {ak}n
k=1 ⊂C\ [−1,1] be paired by com-

plex conjugation, and let {ak} satisfy that |ak| − 1 > ρ for some ρ > 0 and all k =
1,2, · · · ,n. Then, for f ∈ Pn (a1,a2, · · · ,an) with all zeros in [−1,1] , we have

‖ f ′‖p � C(ρ)
√

n‖ f‖p, 1 � p � ∞. (1.1)

In this paper, we will generalize (1.1) to the weighted cases and establish the
Nikol’skii type inequality. The paper is organized as follows: In section 2, we in-
troduce a new type of weight functions named as N-doubling weights, which is an
essential generalization of the well known doubling weights. We give some properties
of N-doubling weights and the main results (Theorem 4 and Theorem 5). In section 3,
we give some auxiliary lemmas. The proofs of the results are given in section 4.
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2. The main results

We say an integrable nonnegative function W (x) is a doubling weight if it satisfies
the so-called doubling condition (see [4], for example)

W (2I) � LW (I)

for all intervals I , where L is a constant independent of I , 2I is the interval twice the
length of I and with midpoint at the midpoint of I (note that parts of 2I may lie outside
[−1,1] , where we set W (x) = 0), and

W (I) :=
∫

I
W (u)dd

for any measurable set I ⊆ [−1,1] .
As we know, doubling condition has been applied widely in Fourier analysis and

harmonic analysis. Now, we further extend the doubling condition as follows:

DEFINITION 1. An integrable nonnegative function W (x) is said to be an N-
doubling weight function if W (x) is defined in the interval [−1,1] , and there is a
constant L � 1 such that

W (2I) � LW (2I\I)
holds for any 2I ⊆ [−1,1] , where L is independent of I,2I\I = {x|x ∈ 2I,x /∈ I} .

The following proposition means that the N-doubling condition is an essential
generalization of the doubling condition.

PROPOSITION 1. A doubling weight function is an N-doubling weight function,
but the converse is not true.

To consider the weighted Turán inequality, Wang and Zhou [11] introduced a class
of weight functions named as Generalized Jacobi Weight functions (GJW ), that is, one
says W (x) ∈ GJW , if W (x) � 0,

∫ 1
−1W (x)dx < ∞ and W (x1) ≈W (x2) for any −1 <

x1 < x2 � 0 and |x2 − x1| < 1+ x1 or for any 0 < x2 < x1 � 1 and |x2 − x1| < 1− x1 ,
where W (x1) ≈ W (x2) means that there is a constant M � 1 (M depends on W (x))
such that M−1W (x1) � W (x2) � MW (x1) .

Wei and Yu [14] pointed out that it is still an open problem whether any W (x) ∈
GJW must be a doubling weight. However, we have

PROPOSITION 2. Any W (x) ∈ GJW must be an N-doubling weight.

Proposition 2 shows that N-doubling condition is also a generalization of the con-
dition GJW.

Now, we can state our main results as follows:
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THEOREM 4. Let the nonreal elements in {ak}n
k=1 ⊂C\ [−1,1] be paired by com-

plex conjugation, and let {ak} satisfy that |ak| − 1 > ρ for some ρ > 0 and all k =
1,2, · · · ,n. Then, for f ∈ Pn (a1,a2, · · · ,an) with all zeros in [−1,1] , we have

‖ f ′‖p,W � Cρ ,L
√

n‖ f‖p,W , (2.1)

where ‖ f‖p,W is the weighted Lp norm, that is,

‖ f‖p,W :=
(∫ 1

−1
| f (x)|pW (x)dx

)1/p

, 0 < p < ∞.

Letting the poles tend to infinity, we have

COROLLARY 1. Let W (x) be an N-doubling weight. If f ∈ Hn, then for any
0 < p < ∞, we have

‖ f ′‖p,W � CL
√

n‖ f‖p,W .

THEOREM 5. Let the nonreal elements in {ak}n
k=1 ⊂C\ [−1,1] be paired by com-

plex conjugation, and let {ak} satisfy that |ak| − 1 > ρ for some ρ > 0 and all k =
1,2, · · · ,n. Suppose that 0 < p � q � ∞, 1−1/p+1/q� 0. Then, for any f ∈Pn(a1,
a2, · · · ,an) with all its zeros in [−1,1] , we have

‖ f ′‖p � Cρ(
√

n)1−1/p+1/q‖ f‖q. (2.2)

In this paper, we always use Cx to indicate a positive constant depending only upon
x , and C to indicate an absolute positive constant, which may take different values at
different situations. We also point out that the constants Cρ ,L in Theorem 4, CL in
Corollary 1, and Cρ in Theorem 2 may also depend on p when 0 < p < 1.

3. Auxiliary lemmas

Denote by −1 � x1 < x2 < · · ·< xs � 1 all the distinct zeros of f ∈Pn(a1,a2, · · · ,
an) and by lk the multiplicity of xk , 1 � k � s . Take a positive number σ satisfying
1 < σ−1 < 1+ ρ , say, σ = 1

1+ρ/2 , and let

mσ (x) :=
(1−σx2) f ′(x)

f (x)
=

s

∑
k=1

lk(1−σx2)
x− xk

−
n

∑
j=1

1−σx2

x−a j
.

The function mσ (x) will play very important roles in proving our results. By using
the compression factor 1−σx2 , we can prove Turán’s inequality for rational functions
with prescribed poles as convenient as that for polynomials.

LEMMA 1. Let a j = α j + iγ j , j = 1,2, · · · ,n. Then

|m′
σ (x)| =

s

∑
k=1

lk(1−σx2
k)

(x− xk)2 +
n

∑
j=1

σa2
j −1

(x−a j)2 , (3.1)
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|m′
σ (x)| =

s

∑
k=1

lk(1−σx2
k)

(x− xk)2 +
n

∑
j=1

σ |a j|2 −1
|x−a j|2 +

n

∑
j=1

2(1−σx2)γ2
j

|x−a j|4 . (3.2)

Proof. Firstly, (3.1) can be proved in the same way as Lemma 2 in [15].
To prove (3.2), we only need to prove the following equality:

n

∑
j=1

σa2
j −1

(x−a j)2 =
n

∑
j=1

σ |a j|2 −1
|x−a j|2 +

n

∑
j=1

2(1−σx2)γ2
j

|x−a j|4 .

In fact, by noting that any nonreal element in {a j}n
j=1 is paired by complex conjugation,

we have

n

∑
j=1

σa2
j −1

(x−a j)2 =
1
2

n

∑
j=1

( σa2
j −1

(x−a j)2 +
σ a2

j −1

(x− a j)2

)

=
n

∑
j=1

(σ |a j|2 −1)(x2−2xα j + |a j|2)+2(1−σx2)γ2
j

|x−a j|4

=
n

∑
j=1

σ |a j|2 −1
|x−a j|2 +

n

∑
j=1

2(1−σx2)γ2
j

|x−a j|4 . �

LEMMA 2. There is a unique point βv ∈ (xv,xv+1),v = 1,2, · · · ,s− 1 , such that
mσ (βv) = 0 . In other words, f ′(x) keeps the same sign as mσ (x) in (xv,βv) and
(βv,xv+1) , respectively.

Proof. The proof can be done exactly in the same way as that of Lemma 3 in [15].
We omit the details here. �

For x ∈ [−1,1] , it is easy to show that

s

∑
k=1

lk(1−σx2
k)

(x− xk)2 � (1−σ)
s

∑
k=1

lk
(x− xk)2 � 1−σ

4
n,

and for x ∈ [−σ−1,σ−1] , by Lemma 1, we have

n

∑
j=1

σa j
2−1

(x−a j)2 �
n

∑
j=1

σ |a j|2−1
|x−a j|2 �

n

∑
j=1

σ |a j|2−1
(1+ ρ + |a j|)2

�
n

∑
j=1

σ(1+ ρ)2−1
4(1+ ρ)2 >

ρ
4(1+ ρ)2n. (3.3)

Thus, for x ∈ [−1,1] , we have

|m′
σ (x)| �

(
1−σ

4
+

ρ
4(1+ ρ)2

)
n,
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|m′
σ (x)| � 1−σ

(x− xk)2 , 1 � k � s,

|m′
σ (x)| � σ |a j|2 −1

|x−a j|2 , 1 � j � n.

Set
d j = |m′

σ (β j)|−1, j = 1,2, · · · ,s−1,

and take

δ = min
{√

1−σ ,
√

σ(1+ ρ)2−1
}
.

Then, we have

√
dv � min

1�k�s,1� j�n

{ |βv− xk|
δ

,
|βv−a j|

δ
,Cρn−1/2

}
, v = 1,2, · · · ,n. (3.4)

In the sequel, we always assume that all inequalities hold for sufficiently large n
if not specified.

LEMMA 3. If x ∈ [xv, βv− δ
8

√
dv]∪ [βv + δ

8

√
dv,xv+1] , then

|mσ (x)| � 16
625

δ√
dv

. (3.5)

If x ∈ [βv− δ
4

√
dv, βv + δ

4

√
dv] , then

|mσ (x)| � 128
81

δ√
dv

. (3.6)

Proof. For x ∈ [βv− δ
4

√
dv, βv + δ

4

√
dv] , k = 1,2, · · · ,s , by (3.4), we have

3
4
|xk −βv| � |xk −βv|− δ

4

√
dv � |xk − x| � |βv− xk|+ δ

4

√
dv � 5

4
|xk −βv|,

which leads to

16
25

s

∑
k=1

lk(1−σx2
k)

(βv − xk)2 �
s

∑
k=1

lk(1−σx2
k)

(x− xk)2 � 16
9

s

∑
k=1

lk(1−σx2
k)

(βv − xk)2 . (3.7)

For j = 1,2, · · · ,n , we have

3
4
|βv−a j| � |βv −a j|− δ

4

√
dv � |x−a j| � |βv−a j|+ δ

4

√
dv � 5

4
|βv−a j|.

Thus,
16
25

n

∑
j=1

σ |a j|2−1
|βv−a j|2 �

n

∑
j=1

σ |a j|2 −1
|x−a j|2 � 16

9

n

∑
j=1

σ |a j|2−1
|βv −a j|2 , (3.8)
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and

256
625

n

∑
j=1

2(1−σx2)γ2
j

|βv −a j|4 �
n

∑
j=1

2(1−σx2)γ2
j

|x−a j|4 � 256
81

n

∑
j=1

2(1−σx2)γ2
j

|βv−a j|4 . (3.9)

For x ∈ [βv − δ
4

√
dv, βv + δ

4

√
dv] and sufficiently large n , we have

1
2
(1−σβ 2

v ) � 1−σx2 � 2(1−σβ 2
v ). (3.10)

By (3.9) and (3.10), we deduce that

128
625

n

∑
j=1

2(1−σβv
2)γ2

j

|βv−a j|4 �
n

∑
j=1

2(1−σx2)γ2
j

|x−a j|4 � 512
81

n

∑
j=1

2(1−σβv
2)γ2

j

|βv−a j|4 . (3.11)

Combining (3.7), (3.8), (3.11) and Lemma 1, we have

128
625

|m′
σ (βv)| � |m′

σ (x)| � 512
81

|m′
σ (βv)|. (3.12)

In view of mσ (βv) = 0, it follows that∣∣∣∣mσ (βv ± δ
4

√
dv)
∣∣∣∣ =

∣∣∣∣
∫ βv

βv± δ
4
√

dv

m′
σ (x)dx

∣∣∣∣
� 512

81
|m′

σ (βv)|δ4
√

dv

� 128
81

δ√
dv

, (3.13)

and ∣∣∣∣m′
σ (βv ± δ

8

√
dv)
∣∣∣∣ =

∣∣∣∣
∫ βv

βv± δ
8
√

dv

m′
σ (x)dx

∣∣∣∣
� 128

625
|m′

σ (βv)|δ8
√

dv � 16
625

δ√
dv

. (3.14)

Now, by (3.13) and (3.14), noting that mσ (x) is monotone in (xv,xv+1), we have (3.5)
and (3.6) immediately. �

LEMMA 4. If x ∈ [βv− δ
4

√
dv, βv + δ

4

√
dv] , then

| f (x)| � 49
81

| f (βv)|. (3.15)

Proof. For x ∈ [βv− δ
4

√
dv, βv + δ

4

√
dv] , by (3.6), we deduce that∣∣∣∣ f (βv)− f (βv ± δ

4

√
dv)
∣∣∣∣ = | f ′(ξv)|δ4

√
dv =

|mσ (ξv)|
1−σξ 2

v
| f (ξv)|δ4

√
dv

�
√

dv

4δ
|mσ (ξv)|| f (ξv)| � 32

81
| f (βv)|,
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where ξv ∈ [βv − δ
4

√
dv, βv + δ

4

√
dv] .

Therefore, by using the monotonicity of f (x) in (xv,xv+1), we have

| f (x)| �
∣∣∣∣ f(βv± δ

4

√
dv

)∣∣∣∣� 49
81

| f (βv)|. �

4. Proofs of results

4.1. Proof of Proposition 1

Assume that W (x) is a doubling weight function. For any 2I = [a, a + 2η ] ⊆
[−1,1] , we have

W ([a, a+ η ]) � LW ([a+ η/4, a+3η/4]) � LW ([a, a+3η/4])

� L3W
([

a, a+
(3

4

)3
η
])

� L3W ([a, a+ η/2]).

Similarly, we have

W ([a+ η , a+2η ]) � L3W ([a+3η/2, a+2η ]).

Therefore,

W (2I) = W ([a, a+2η ])
� L3{W ([a, a+ η/2])+W([a+3η/2, a+2η ])}= L3W (2I \ I),

which shows that W (x) is an N-doubling weight.
Now, we prove the second assertion. We construct a weight function W (x) as

follows:

W (x) :=
{

1, x ∈ [−1,−δ )∪ (δ ,1],
0, x ∈ [−δ ,δ ],

where 0 < δ < 1/2. We shall verify that W (x) is an N-doubling weight function but
not a doubling weight function.

Let I = [−δ ,δ ] , then 2I = [−2δ ,2δ ] ⊂ [−1,1] . Then, W (I) = 0, W (2I) = 2δ �=
0. Therefore, W (x) is not a doubling weight function.

Now we show that W (x) is an N-doubling weight function by considering the
following four cases:

Case 1. If 2I ⊂ [−δ ,δ ] , then W (2I) = W (2I \ I) = 0.
Case 2. If 2I = [a,b],and −δ < a < δ < b (the argument for the case a < −δ <

b < δ is similar), then W (2I) = b−a− δ , and

W (2I \ I) > min{(b−a)/4,b− δ}.
Thus, W (2I) � 4W (2I \ I) .

Case 3. If 2I = [a,b] , and a < −δ < δ < b , then W (2I) = b− δ , and

W (2I \ I) > min{(b−a)/4,b− δ}+min{(b−a)/4,−δ −a}.
Thus, we also have W (2I) � 4W (2I \ I) in this case.

Case 4. If 2I = [a,b] , and a > δ ,or b < −δ , then W (2I) = b− a, W (2I \ I) =
(b−a)/2. Thus, we still have W (2I) � 4W(2I \ I) in this case.
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4.2. Proof of Proposition 2

Assume that W (x) ∈ GJW . Let 2I = [a,b] ⊆ [−1,1] , then

I =
[3a+b

4
,
a+3b

4

]
=
[3a+b

4
,
a+b

2

]
∪
[a+b

2
,
a+3b

4

]
,

and

2I \ I =
[
a,

3a+b
4

]
∪
[a+3b

4
,b
]
.

We show that W (x) is an N-doublingweight function by considering the following
cases.

Case 1. −1 � a < b � 0. For x ∈ [ 3a+b
4 , a+b

2 ] , we have

3a+b
4

� x � a+b
2

� min
{

0,1+
3a+b

2

}
,

hence,

W (x) ≈W
(3a+b

4

)
.

While for x ∈ [ 7a+b
8 , 3a+b

4 ] , we see that

7a+b
8

� x � 3a+b
4

� min
{

0,1+
7a+b

4

}
,

hence,

W (x) ≈W
(7a+b

8

)
.

Therefore, we have

∫ a+b
2

3a+b
4

W (x)dx � L1W
(3a+b

4

)
� L2W

(7a+b
8

)
� L3

∫ 3a+b
4

7a+b
8

W (x)dx.

Similarly, we have ∫ a+3b
4

a+b
2

W (x)dx � L4

∫ b

a+3b
4

W (x)dx.

Therefore, we have W (2I) � LW (2I \ I) in this case.
Case 2. 0 � a < b � 1. In a similar way to case 1, we also have W (2I) �

LW (2I \ I).
Case 3. −1 � a < 0 < b � 1. Without loss of generality, we assume that a+b

2 < 0.
Subcase 3.1. a+b

2 < 0 < a+3b
4 . In this case, by the result of case 1, we have

W
([3a+b

4
,
a+b

2

])
� L5W

([
a,

3a+b
4

])
,

and

W
([a+b

2
,0
])

� L6W
([3a+b

4
,
a+b

2

])
.
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While by the result of the case 2, we have

W
([

0,
3a+b

4

])
� L7W

([3a+b
4

,b
])

.

Thus, we have W (2I) � LW (2I \ I).
Subcase 3.2. a+b

2 < a+3b
4 < 0. By the result of the subcase 3.1, we have

W
([a+3b

4
,0
])

� L8W
[(a+b

2
,
a+3b

4

])
� L9W

[(3a+b
4

,
a+b

2

])
� W

([
a,

3a+b
4

])
.

Thus, we also have W (2I) � LW (2I \ I) in this case.

4.3. Proof of Theorem 4

(1) For v = 1,2, · · · ,s−1, it follows from (3.4) that(∫ βv− δ
4
√

dv

xv

+
∫ xv+1

βv+ δ
4
√

dv

)
| f ′ (x) |pW (x)dx

�
(∫ βv− δ

4
√

dv

xv

+
∫ xv+1

βv+ δ
4
√

dv

)(
1−σx2)p | f ′ (x) |p|mσ (x)|pW (x)dx

=

(∫ βv− δ
4
√

dv

xv

+
∫ xv+1

βv+ δ
4
√

dv

)
| f (x)|pW (x)dx

�
(

16
625

δ√
dv

)p
(∫ βv− δ

4
√

dv

xv

+
∫ xv+1

βv+ δ
4
√

dv

)
| f (x)|pW (x)dx

� (Cρ)p(
√

n)p

(∫ βv− δ
4
√

dv

xv

+
∫ xv+1

βv+ δ
4
√

dv

)
| f (x)|pW (x)dx. (4.1)

By the definition of W (x) and the monotonicity of f (x) , together with (3.4), (3.5) and
(3.15), we deduce that(∫ βv− δ

8
√

dv

βv− δ
4
√

dv

+
∫ βv+ δ

4
√

dv

βv+ δ
8
√

dv

)(
1−σx2)p | f ′ (x) |pW (x)dx

=

(∫ βv− δ
8
√

dv

βv− δ
4
√

dv

+
∫ βv+ δ

4
√

dv

βv+ δ
8
√

dv

)
| f (x)|p|mσ (x)|pW (x)dx

�
(

49
81

· 16
625

δ√
dv

)p

| f (βv)|p
(∫ βv− δ

8
√

dv

βv− δ
4
√

dv

+
∫ βv+ δ

4
√

dv

βv+ δ
8
√

dv

)
W (x)dx

� L−1
(

49
81

· 16
625

δ√
dv

)p

| f (βv)|p
∫ βv+ δ

4
√

dv

βv− δ
4
√

dv

W (x)dx
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� L−1
(

49
81

· 16
625

δ√
dv

)p ∫ βv+ δ
4
√

dv

βv− δ
4
√

dv

| f (x)|pW (x)dx

� L−1(Cρ)p(
√

n)p
∫ βv+ δ

4
√

dv

βv− δ
4
√

dv

| f (x)|pW (x)dx. (4.2)

Combining (4.1) with (4.2) gives

∫ xv+1

xv

| f ′ (x) |pW (x)dx � L−1(Cρ)p(
√

n)p
∫ xv+1

xv

| f (x)|pW (x)dx. (4.3)

(2) If xs < 1, by noting m(x) is decreasing in (xs,σ−1/2) and m(σ−1/2) = 0, and

taking τ = 1+σ−1/2

2 , then by (3.3), for any x ∈ [xs,1] , there is a ξ ∈ [xs,σ−1/2] such
that

|mσ (x)| = |mσ (τ)|+ |m′
σ (ξ )||x− τ| � |τ −1||m′

σ(ξ )|

� σ−1/2−1
2

ρ
4(1+ ρ)2n := Cρn. (4.4)

Therefore,

∫ 1

xs

| f ′ (x) |pW (x)dx �
∫ 1

xs

(1−σx2)p| f ′ (x) |pW (x)dx

=
∫ 1

xs

| f (x)|p|mσ (x)|pW (x)dx

� (Cρn)p
∫ 1

xs

| f (x)|pW (x)dx. (4.5)

Similarly, if x1 > −1, we have

∫ x1

−1
| f ′ (x) |pW (x)dx � (Cρn)p

∫ x1

−1
| f (x)|pW (x)dx. (4.6)

With (4.3), (4.5) and (4.6), by summing over all v , we get (2.1).

4.4. Proof of Theorem 5

(1) Let

Nv =
[
16

βv− xv

δ
√

dv

]
, v = 1,2, · · · ,s−1,

where [x] denotes the greatest integer not larger than x , and ξv,i = xv + i
16δ

√
dv , i =

0,1, · · · ,Nv . Since

xv +(Nv −2)
1
16

δ
√

dv � βv − 1
8

δ
√

dv
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for 0 � i � Nv −4, by applying Lemma 3, we get

∫ ξv,i+2

ξv,i+1

| f ′ (x) |pdx

�
∫ ξv,i+2

ξv,i+1

(1−σx2)p| f ′ (x) |pdx

=
∫ ξv,i+2

ξv,i+1

| f (x)|p|mσ (x)|pdx

�
(

16δ
625

√
dv

)p δ
16

√
dv| f (ξv,i+1)|p

�
(

16δ
625

√
dv

)p( δ
16

√
dv

)1−p/q(∫ ξv,i+1

ξv,i

| f (x)|qdx

)p/q

. (4.7)

Applying Lemma 4, we have

∫ βv− δ
8
√

dv

βv− δ
4
√

dv

| f ′ (x) |pdx

�
∫ βv− δ

8
√

dv

βv− δ
4
√

dv

(1−σx2)p| f ′ (x) |pdx

=
∫ βv− δ

8
√

dv

βv− δ
4
√

dv

| f (x)|p|mσ (x)|pdx

�
(

16δ
625

√
dv

)p ∣∣∣∣49
81

f (βv)
∣∣∣∣
p δ

8

√
dv

� 1
2

(
49
81

· 16δ
625

√
dv

)p(δ
4

√
dv

)1−p/q(∫ βv

βv− δ
4
√

dv

| f (x)|qdx

)p/q

. (4.8)

Noting that

xv +(Nv−3)
1
16

δ
√

dv � βv − δ
4

√
dv,

xv +(Nv−2)
1
16

δ
√

dv � βv − δ
8

√
dv,

by (4.7) and (4.8), we deduce that

2
∫ βv

xv

| f ′ (x) |pdx �
(

Nv−4

∑
i=0

∫ ξv,i+2

ξv,i+1

+
∫ βv− δ

8
√

dv

βv− δ
4
√

dv

)
| f ′ (x) |pdx

�
(

16δ
625

√
dv

)p( δ
16

√
dv

)1−p/q Nv−4

∑
i=0

(∫ ξv,i+1

ξv,i

| f (x)|qdx

)p/q

+
1
2

(
49
81

· 16δ
625

√
dv

)p(δ
4

√
dv

)1−p/q(∫ βv

βv− δ
4
√

dv

| f (x)|qdx

)p/q
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� 1
2

(
49
81

· 16δ
625

√
dv

)p( δ
16

√
dv

)1−p/q(∫ βv

xv

| f (x)|qdx

)p/q

.

By (3.4), we have

∫ βv

xv

| f ′ (x) |pdx � 1
4
(Cρ)p(

√
n)p−1−p/q

(∫ βv

xv

| f (x)|qdx

)p/q

. (4.9)

In a similar way to (4.9) we have

∫ xv+1

βv

| f ′ (x) |pdx � 1
4
(Cρ)p(

√
n)p−1−p/q

(∫ xv+1

βv

| f (x)|qdx

)p/q

. (4.10)

(2) If xs < 1, taking βs = 1, ds = |m′
σ (βs)|−1 , and copying the proof of (3.12), for

x ∈ [1− δ
4

√
ds,1] , we have

128
625

|m′
σ (1)| � |m′

σ (x)| � 512
81

|m′(1)|,

thus in view of the monotonicity of mσ (x) , we get∣∣∣∣mσ

(
1− δ

4

√
ds

)∣∣∣∣= |mσ (1)|+
∣∣∣∣
∫ 1

1− δ
4
√

ds

m′
σ (x)dx

∣∣∣∣� |mσ (1)|+ 128
81

δ√
ds

. (4.11)

Let
d∗

s = min
{
ds, |m(1)|−1} .

For any x ∈ [1− δ 2

4

√
d∗

s , 1] , there is a ξs ∈ [1− δ 2

4

√
d∗

s , 1] such that

∣∣∣∣ f (1)− f
(
1− δ 2

4

√
d∗

s

)∣∣∣∣ = | f ′(ξs)|δ
2

4

√
d∗

s

=
|mσ (ξs)|
1−σξ 2

s
| f (ξs)|δ

2

4

√
d∗

s

� | f (1)|
4

(
|mσ (1)|+ 128

81
δ√
ds

)√
d∗

s

� 209
324

| f (1)|.

Thus,

| f (x)| �
∣∣∣∣ f(1− δ 2

4

√
d∗

s

)∣∣∣∣� 115
324

| f (1)|.

From (4.4), by using the same technique as that for (4.8), we obtain that

∫ 1− δ2
8

√
d∗s

1− δ2
4

√
d∗s

| f ′ (x) |pdx � 1
2
(Cρ )p(

√
n)p−1−p/q

(∫ 1

1− δ2
4

√
d∗s
| f (x)|qdx

)p/q

.
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Meanwhile, let Ns = [ 16(1−xs)
δ 2
√

d∗s
] , and ξs,i = xs + i

16 δ 2
√

d∗
s , then for i = 0,1, · · · ,Ns −4,

by the same technique as that for (4.7), we get

∫ ξs,i+2

ξs,i+1

| f ′ (x) |pdx � (Cρ )p(
√

n)p−1−p/q
(∫ ξs,i+1

ξs,i

| f ′qdx

)p/q

.

Notice that

xs +(Ns−3)
1
16

δ 2
√

d∗
s � 1− δ 2

4

√
d∗

s ,

xs +(Ns−2)
1
16

δ 2
√

d∗
s � 1− δ 2

8

√
d∗

s .

Therefore, by the same technique as that for (4.5), it yields that

∫ 1

xs

| f ′ (x) |pdx � 1
4
(Cρ)p(

√
n)p−1−p/q

(∫ 1

xs

| f (x)|qdx

)p/q

. (4.12)

Similarly, if x1 > −1, we have

∫ x1

−1
| f ′ (x) |pW (x)dx � 1

4
(Cρ)p(

√
n)p−1−p/q

∫ x1

−1
| f (x)|pW (x)dx. (4.13)

By (4.9), (4.10), (4.12), (4.13), and summing over all v , we get (2.2).
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