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MATRIX INEQUALITIES INCLUDING GRAND

FURUTA INEQUALITY VIA KARCHER MEAN

MASATOSHI ITO

(Communicated by Masatoshi Fujii)

Abstract. In our previous paper, we have shown a generalization of Furuta inequality via Karcher
mean (Riemannian mean) by using Yamazaki’s results which are generalizations of Ando-Hiai
inequality and related ones. In this paper, we shall show a generalization of grand Furuta in-
equality as an extension of our previous result.

1. Introduction

For two positive definite matrices A and B , the weighted geometric mean is de-
fined by A �α B = A

1
2 (A

−1
2 BA

−1
2 )αA

1
2 for α ∈ [0,1] . Recently, many authors discuss

natural extensions of the (weighted) geometric mean for three or more positive definite
matrices [2, 4, 5, 15, 17, 18].

Let Pm(C) be the set of m×m positive definite matrices on C and Δn be the set
of probability vectors (the components satisfy ∑i wi = 1 and wi > 0 for i = 1, . . . ,n if
ω = (w1, . . . ,wn) ∈ Δn ). For A,B ∈ Pm(C) , Riemannian metric between A and B is

defined as δ2(A,B) = ‖ logA
−1
2 BA

−1
2 ‖2 , where ‖X‖2 = (trX∗X)

1
2 (details are in [3]).

We remark that δ2(A,A �α B) = αδ2(A,B) for α ∈ [0,1] . By using Riemannian metric,
weighted Karcher mean of A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) ∈ Δn is defined
by

Λ(ω ;A1, . . . ,An) = arg min
X∈Pm(C)

n

∑
i=1

wiδ 2
2 (Ai,X),

where arg min f (X) means the point X0 which attains minimum value of the function
f (X) (see [4, 17, 18]). In particular, we call Λ(ω ;A1, . . . ,An) Karcher mean if ω =
( 1

n , . . . , 1
n) . Karcher mean is also called Riemannian mean, the least squares mean, and

so on.
Weighted Karcher mean satisfies ten properties proposed in [2], which should be

required for a reasonable geometric mean of positive definite matrices, for example,
consistency with scalars, monotonicity, congruence invariance, and so on (details are in
[14] or other related papers). In the case of two matrices, Λ(ω ;A,B) = A �α B holds for

Mathematics subject classification (2010): Primary 15A45, 47A63. Secondary 15B48, 47A64.
Keywords and phrases: Positive definite matrix, Karcher mean, Furuta inequality and grand Furuta

inequality.

c© � � , Zagreb
Paper JMI-08-19

279

http://dx.doi.org/10.7153/jmi-08-19


280 MASATOSHI ITO

α ∈ [0,1] and ω = (1−α,α) . It was obtained in [17, 18] that weighted Karcher mean
coincides with the unique positive solution of the following Karcher equation:

n

∑
i=1

wi log(X
1
2 A−1

i X
1
2 ) = 0.

Furuta inequality [9] (see also [6, 10, 16, 19]) is established as a generalization of
Löwner-Heinz theorem “A � B � 0 ensures Aα � Bα for any α ∈ [0,1] .” Ando-Hiai
[1] obtained an equivalent inequality to the main result of log majorization, which is
called Ando-Hiai inequality. These inequalities can be expressed by using the weighted
geometric mean. We remark that these inequalities hold even in the case of bounded
linear operators on a complex Hilbert space. In what follows, we denote A � 0 if A
is a positive semidefinite matrix (or operator), and we denote A > 0 if A is a positive
definite matrix (or operator).

THEOREM 1.A. (Satellite form of Furuta inequality [9, 16])

A � B � 0 with A > 0 implies A−r � 1+r
p+r

Bp � B � A for p � 1 and r � 0 .

THEOREM 1.B. (Ando-Hiai inequality [1]) For A,B > 0 ,

A �α B � I for α ∈ [0,1] implies Ar �α Br � I for r � 1 ,

or equivalently

A � B > 0 implies A−r+1 � 1
p
(A �r Bp) � A for p � 1 and r � 1 .

We remark that we can interpret Theorem 1.A as a consequence of monotonicity
of an operator function shown in [7], that is, A � B � 0 with A > 0 ensures that

f (p,r) = A−r � 1+r
p+r

Bp (1.1)

is decreasing for p � 1 and r � 0.
Recently, Yamazaki [21] has obtained an excellent generalization of Theorem 1.B

and related results in [7, 11] via weighted Karcher mean of n -matrices. By using Ya-
mazaki’s results, we have shown a generalization of Theorem 1.A. We remark that ‖·‖1

means 1-norm, that is, ‖x‖1 = ∑i |xi| for x = (x1, . . . ,xn) .

THEOREM 1.C. ([14]) Let A1, . . . ,An ∈ Pm(C) and q > 0 . Then Aq
i � Aq

n > 0 for
i = 1, . . . ,n−1 implies

Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n

)
� Aq

n � Aq
i

for all pi � 0 (i = 1, . . . ,n−1) and pn > q, where

ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
pn−q

)
and ω = ω̂

‖ω̂‖1
.
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Theorem 1.C implies Theorem 1.A by putting n = 2, p1 = r , p2 = p and q = 1.
In [12], Furuta has shown an extension of Theorems 1.A and 1.B, which is called

grand Furuta inequality (see also [8, 13, 20]). Here, we adopt an expresson in [8], that
is, we use the weighted geometric mean �α and the notation �s defined by A �s B =
A

1
2 (A

−1
2 BA

−1
2 )sA

1
2 for A,B > 0 and a real number s .

THEOREM 1.D. (Grand Furuta inequality [12]) If A � B � 0 with A > 0 , then for
each t ∈ [0,1] and p � 1 ,

F(r,s) = A−r+t � 1−t+r
(p−t)s+r

(At �s Bp)

is decreasing for r � t and s � 1 . Moreover,

(i) A−r+t � 1−t+r
(p−t)s+r

(At �s Bp) � (At �s Bp)
1

(p−t)s+t � B � A,

(ii) A−r+t � 1−t+r
(p−t)s+r

(At �s Bp) � A−r+t � 1−t+r
p−t+r

Bp � B � A

hold for r � t and s � 1 .

Theorem 1.D leads Theorem 1.A by putting t = 0 and s = 1, and also Theorem
1.D leads Theorem 1.B by putting t = 1 and s = r .

In this paper, as an extension of Theorem 1.C, we shall show a generalization of
grand Furuta inequality via weighted Karcher mean of n -matrices.

2. Results

THEOREM 2.1. Let A1, . . . ,An ∈ Pm(C) and q > 0 . Then Aq
i � Aq

n > 0 for i =
1, . . . ,n−1 implies

(i) Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,At
n−1 �s Apn

n

)

� (At
n−1 �s Apn

n )
q

(pn−t)s+t � Aq
n � Aq

i ,

(ii) Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,At
n−1 �s Apn

n

)

� Λ
(

ω0;A
−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n

)
� Aq

n � Aq
i

for all t ∈ [0,q] , s � 1 , pi � 0 (i = 1, . . . ,n−1) and pn > q, where

ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
(pn−t)s+t−q

)
, ω = ω̂

‖ω̂‖1
,

ω̂0 =
(

1
p1+q , . . . , 1

pn−1+q , n−1
pn−q

)
and ω0 = ω̂0

‖ω̂0‖1
.
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THEOREM 2.2. Let A1, . . . ,An ∈ Pm(C) and q > 0 . If Aq
i � Aq

n > 0 for i =
1, . . . ,n−1 , then for each t ∈ [0,q] and pn > q,

F(p1, . . . , pn−1,s) = Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,At
n−1 �s Apn

n

)
is decreasing for pi � 0 (i = 1, . . . ,n−1) and s � 1 , where

ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
(pn−t)s+t−q

)
and ω = ω̂

‖ω̂‖1
.

COROLLARY 2.3. Let A1, . . . ,An ∈ Pm(C) and q > 0 . If Aq
i � Aq

n > 0 for i =
1, . . . ,n−1 , then

f (p1, . . . , pn−1, pn) = Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n

)
is decreasing for pi � 0 (i = 1, . . . ,n−1) and pn > q, where

ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
pn−q

)
and ω = ω̂

‖ω̂‖1
.

Theorem 2.1 implies Theorem 1.C by putting t = 0 and s = 1. Theorems 2.1 and
2.2 imply Theorem 1.D by putting n = 2, p1 = r− t , p2 = p and q = 1. Corollary 2.3
implies (1.1) by putting n = 2, p1 = r , p2 = p and q = 1. We remark that Corollary
2.3 is already pointed out in our previous paper [14].

We state three matrices case of Theorems 2.1 and 2.2 for readers’ sake.

COROLLARY 2.4. Let A1,A2,B ∈ Pm(C) and q > 0 . Then Aq
1 � Bq > 0 and

Aq
2 � Bq > 0 implies

(i) Λ
(

ω ;A−r1+t
1 ,A−r2+t

2 ,At
2 �s Bp

)

� (At
2 �s Bp)

q
(p−t)s+t � Bq � Aq

1 (or Aq
2),

(ii) Λ
(

ω ;A−r1+t
1 ,A−r2+t

2 ,At
2 �s Bp

)

� Λ
(

ω0;A
−r1+t
1 ,A−r2+t

2 ,Bp
)

� Bq � Aq
1 (or Aq

2)

for all t ∈ [0,q] , p > q, r1 � t , r2 � t and s � 1 , where

ω̂ =
(

1
r1−t+q , 1

r2−t+q , 2
(p−t)s+t−q

)
, ω = ω̂

‖ω̂‖1
,

ω̂0 =
(

1
r1−t+q , 1

r2−t+q , 2
p−q

)
and ω0 = ω̂0

‖ω̂0‖1
.

COROLLARY 2.5. Let A1,A2,B ∈ Pm(C) and q > 0 . If Aq
1 � Bq > 0 and Aq

2 �
Bq > 0 , then for each t ∈ [0,q] and p > q,

F(r1,r2,s) = Λ
(

ω ;A−r1+t
1 ,A−r2+t

2 ,At
2 �s Bp

)
is decreasing for r1 � t , r2 � t and s � 1 , where

ω̂ =
(

1
r1−t+q , 1

r2−t+q , 2
(p−t)s+t−q

)
and ω = ω̂

‖ω̂‖1
.
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3. Proofs

We use the following two results in order to prove Theorems 2.1 and 2.2.

THEOREM 3.A. ([8]) Let A � B � 0 with A > 0 . Then

(At �s Bp)
1

(p−t)s+t � B � A

holds for t ∈ [0,1] , p � 1 and s � 1 .

THEOREM 3.B. ([14]) Let A1, . . . ,An ∈ Pm(C) and ω = (w1, . . . ,wn) ∈ Δn . For
each i = 1, . . . ,n and q ∈ R , if

Λ
(
ω ;Ap1

1 , . . . ,Api
i , . . . ,Apn

n

)
� Aq

i for p1, . . . , pn ∈ R with pi > q,

then

Λ
(

ω ′;Ap1
1 , . . . ,Api−1

i−1 ,A
p′i
i ,Api+1

i+1 , . . . ,Apn
n

)
� Λ

(
ω ;Ap1

1 , . . . ,Api−1
i−1 ,Api

i ,Api+1
i+1 , . . . ,Apn

n

)
� Aq

i

for p′i � pi , where ω̂ ′ =
(
w1, . . . ,wi−1,

pi−q
p′i−qwi,wi+1, . . . ,wn

)
and ω ′ = ω̂ ′

‖ω̂ ′‖1
.

Proof of Theorem 2.1. (i) Put B = (At
n−1 �s Apn

n )
1

(pn−t)s+t and assume that Aq
i �

Aq
n > 0 for q > 0 and i = 1, . . . ,n−1. Then by Theorem 3.A,

(A
q· t

q
n−1 �s A

q· pn
q

n )
1

( pn
q − t

q )s+ t
q � Aq

n,

that is,

Bq = (At
n−1 �s Apn

n )
q

(pn−t)s+t � Aq
n � Aq

i (3.1)

holds for t ∈ [0,q] , pn > q and s � 1.
By Theorem 1.C, (3.1) implies

Λ
(

ω ′;A−p1
1 , . . . ,A−pn−1

n−1 ,Bα
)

� Bq � Aq
n � Aq

i

for all pi � 0 ( i = 1, . . . ,n−1) and α > q , where ω̂ ′ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
α−q

)
and

ω = ω̂
‖ω̂‖1

. By putting α = (pn− t)s+ t (> q) ,

Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,At
n−1 �s Apn

n

)
� (At

n−1 �s Apn
n )

q
(pn−t)s+t � Aq

n � Aq
i

for all t ∈ [0,q] , s � 1, pi � 0 (i = 1, . . . ,n−1) and pn > q , where

ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
(pn−t)s+t−q

)
and ω = ω̂

‖ω̂‖1
.
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(ii) By Theorem 1.C and Löwner-Heinz theorem, Aq
i � Aq

n > 0 for q > 0 and
i = 1, . . . ,n−1 implies

Λ
(

ω0;A
−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n

)
� Aq

n = At
n � q−t

pn−t
Apn

n � At
n−1 � q−t

pn−t
Apn

n (3.2)

for all t ∈ [0,q] , pi � 0 ( i = 1, . . . ,n−1) and pn > q , where

ω̂0 =
(

1
p1+q , . . . , 1

pn−1+q , n−1
pn−q

)
and ω = ω̂

‖ω̂‖1
.

(3.2) holds if and only if

X ≡ Λ
(

ω0;A
−t
2

n−1A
−p1
1 A

−t
2

n−1, . . . ,A
−pn−1−t
n−1 ,A

−t
2

n−1A
pn
n A

−t
2

n−1

)

� A
−t
2

n−1A
q
nA

−t
2

n−1

� (A
−t
2

n−1A
pn
n A

−t
2

n−1)
q−t
pn−t .

(3.3)

By applying Theorem 3.B to (3.3), we can obtain

Λ
(

ω ;A
−t
2

n−1A
−p1
1 A

−t
2

n−1, . . . ,A
−pn−1−t
n−1 ,(A

−t
2

n−1A
pn
n A

−t
2

n−1)
s
)

� X (3.4)

for s � 1, where

ω̂ =
(

1
p1+q , . . . , 1

pn−1+q , n−1
(pn−t)s+t−q

)
and ω = ω̂

‖ω̂‖1
.

Therefore (3.3) and (3.4) ensures

Λ
(

ω ;A−p1
1 , . . . ,A−pn−1

n−1 ,At
n−1 �s Apn

n

)
� Λ

(
ω0;A

−p1
1 , . . . ,A−pn−1

n−1 ,Apn
n

)
� Aq

n � Aq
i

for all t ∈ [0,q] , s � 1, pi � 0 (i = 1, . . . ,n−1) and pn > q . �

Proof of Theorem 2.2. (i) or (ii) in Theorem 2.1 ensures

Λ
(

ω ;A
−t
2

n−1A
−p1
1 A

−t
2

n−1, . . . ,A
−pn−1−t
n−1 ,(A

−t
2

n−1A
pn
n A

−t
2

n−1)
s
)

� (A
−t
2

n−1A
pn
n A

−t
2

n−1)
q−t
pn−t (3.5)

by the same way to (3.3), so that we can show monotonicity for s � 1 by applying
Theorem 3.B to (3.5).

We can show monotonicity for pi � 0 (i = 1, . . . ,n−1) by applying Theorem 3.B
to (i) or (ii) in Theorem 2.1. �

Proof of Corollary 2.3. Put t = 0 and replace pns by pn in Theorem 2.2. �

Proof of Corollaries 2.4, 2.5. Put n = 3, p1 = r1 − t , p2 = r2 − t , p3 = p in
Theorems 2.1, 2.2, respectively. �
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