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MATRIX INEQUALITIES INCLUDING GRAND
FURUTA INEQUALITY VIA KARCHER MEAN

MASATOSHI ITO

(Communicated by Masatoshi Fujii)

Abstract. In our previous paper, we have shown a generalization of Furuta inequality via Karcher
mean (Riemannian mean) by using Yamazaki’s results which are generalizations of Ando-Hiai
inequality and related ones. In this paper, we shall show a generalization of grand Furuta in-
equality as an extension of our previous result.

1. Introduction

For two positive definite matrices A and B, the weighted geometric mean is de-
fined by Aty B = A? (A 2 BAT )O‘A% for o € [0,1]. Recently, many authors discuss
natural extensions of the (weighted) geometric mean for three or more positive definite
matrices [2, 4,5, 15, 17, 18].

Let P, (C) be the set of m x m positive definite matrices on C and A" be the set
of probability vectors (the components satisfy >, w; =1 and w; >0 for i=1,...,n if
® = (wy,...,wy) € A"). For A,B € P,(C), Riemannian metric between A and B is
defined as 6,(A,B) = || logA:ZLBA:Zl |l2, where || X||> = (trX*X)% (details are in [3]).
We remark that &;(A, Aty B) = ad:(A,B) for o € [0, 1]. By using Riemannian metric,
weighted Karcher mean of Ay,...,A, € B,(C) and @ = (wy,...,wy,) € A" is defined
by

n
A(w;Ay,...,Ay) = arg min 2w,~522(A,-,X),
XePnu(C)i=1
where arg min f(X) means the point Xy which attains minimum value of the function
f(X) (see [4, 17, 18]). In particular, we call A(@;Ay,...,A,) Karcher mean if @0 =
(%, e %) . Karcher mean is also called Riemannian mean, the least squares mean, and
S0 on.

Weighted Karcher mean satisfies ten properties proposed in [2], which should be
required for a reasonable geometric mean of positive definite matrices, for example,
consistency with scalars, monotonicity, congruence invariance, and so on (details are in
[14] or other related papers). In the case of two matrices, A(w;A,B) = Afly B holds for
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o €[0,1] and ® = (1 — @, ). It was obtained in [17, 18] that weighted Karcher mean
coincides with the unique positive solution of the following Karcher equation:

Y wilog(X2A;'X7) =0.
i=1

Furuta inequality [9] (see also [6, 10, 16, 19]) is established as a generalization of
Lowner-Heinz theorem “A > B > 0 ensures A* > B for any o € [0,1].” Ando-Hiai
[1] obtained an equivalent inequality to the main result of log majorization, which is
called Ando-Hiai inequality. These inequalities can be expressed by using the weighted
geometric mean. We remark that these inequalities hold even in the case of bounded
linear operators on a complex Hilbert space. In what follows, we denote A > 0 if A
is a positive semidefinite matrix (or operator), and we denote A > 0 if A is a positive
definite matrix (or operator).

THEOREM 1.A. (Satellite form of Furuta inequality [9, 16])

A>ZB>20withA>0 implies A™"#1. BP<B<A forp>1andr>0.
p+r

THEOREM 1.B. (Ando-Hiai inequality [1]) For A,B >0,
AtaB<I for o €10,1] implies A"$qB"<I forr>1,
or equivalently

A>B>0 implies A", (A4, BP)<A forp>1andr>1.
P

We remark that we can interpret Theorem 1.A as a consequence of monotonicity
of an operator function shown in [7], thatis, A > B > 0 with A > 0 ensures that
flp,r) =A""t1, B (1.1)
p+r
is decreasing for p > 1 and r > 0.

Recently, Yamazaki [21] has obtained an excellent generalization of Theorem 1.B
and related results in [7, 11] via weighted Karcher mean of n-matrices. By using Ya-
mazaki’s results, we have shown a generalization of Theorem 1.A. We remark that || - ||
means l-norm, thatis, ||x||; = Y,;|xi| for x = (xy,...,x,).

THEOREM 1.C. ([14]) Let Ay,...,A, € Py(C) and ¢ > 0. Then A? > Al > 0 for
i=1,...,n—1 implies

A (@A77 ATE A < AL <A

forall p;>0 (i=1,...,n—1) and p, > q, where

~_ (1 1 n—1 _ B
o= (171+‘1’.“,I7n—l+51717)17’1> and llofly
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Theorem 1.C implies Theorem 1.A by putting n =2, py =r, pp=pand g=1.

In [12], Furuta has shown an extension of Theorems 1.A and 1.B, which is called
grand Furuta inequality (see also [8, 13, 20]). Here, we adopt an expresson in [8], that
is, we use the weighted geometric mean f, and the notation f, defined by A B =
e (A%IBA%I)'VA% for A,B > 0 and a real number s.

THEOREM 1.D. (Grand Furuta inequality [12]) IfA > B > 0 with A > 0, then for
eacht €(0,1] and p > 1,

F(rs)=A""4 1 (A"9sB)

(p—1)s+r

is decreasing for r >t and s > 1. Moreover,

i
(i) A™ ’*’ti I—tts (A"8;BP) < (A" BP) -0+ KB <A

(p—1)s+r

)

(il) ATV e (AT BP) AT, BP SB<A

pt_H»r p—t+r
hold for r >t and s > 1

Theorem 1.D leads Theorem 1.A by putting # =0 and s = 1, and also Theorem
1.D leads Theorem 1.B by putting t =1 and s =r.

In this paper, as an extension of Theorem 1.C, we shall show a generalization of
grand Furuta inequality via weighted Karcher mean of n-matrices.

2. Results

THEOREM 2.1. Let Ay,...,A, € Py(C) and ¢ > 0. Then Al > A} > 0 for i =
1,...,n—1 implies

i A (a);Al‘pl,...,A?’H,A’_1 hSAI’">
< ( 1 b AP Ton= z)w <Al <A‘1
(i) A (w;Al_pl,...,A;f'f’l,A’n_l h_YA{j">

<A (@A AT A < AL< A7

forallt€[0,q], s>1, p;=>0 (i=1,...,n—1) and p, > q, where

~ 1 1 n—1 D)
D=\|—,... W= 55—
(171+f1’ ) Pn-1tq’ (pn—t)5+t—q> ’ ol
—~ 1 1 n—1 [
wy = and wy =
(171+f1’ ? Pu_119° pn— ) Honl
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THEOREM 2.2. Let Ay,...,Ay € Py(C) and g > 0. If AT > A} >0 for i =
1,...,n—1, then for each t € [0,q] and p, > q,

F(piyee s Pae1,5) = A (m;A;’”%...,A;i’;“,A;_l AL

is decreasing for p; >0 (i=1,...,n—1) and s > 1, where

n—l ) and ® =

[0]
<m+q’ " P 1+q (Pa—t)s+t—q o]

COROLLARY 2.3. Let Ay,...,A, € Py(C) and g > 0. Iqu > Al >0 fori=
1,...,n—1, then

f(p17'” 7pnfl7pn) =A (w;A;pla' .. ,A;fi’il,A5">

is decreasing for p; >0 (i=1,...,n—1) and p, > q, where

~ 1 1 n—1 o
O=(——,...,—— and ® = ——.
<p1+q’ ’p,171+q’pn—q> |o]

Theorem 2.1 implies Theorem 1.C by putting # = 0 and s = 1. Theorems 2.1 and
2.2 imply Theorem 1.D by putting n =2, py =r—t, pp = p and g = 1. Corollary 2.3
implies (1.1) by putting n =2, p; =r, pp = p and g = 1. We remark that Corollary
2.3 is already pointed out in our previous paper [14].

We state three matrices case of Theorems 2.1 and 2.2 for readers’ sake.

COROLLARY 2.4. Let A,A»,B € P,,(C) and q > 0. Then A7 > B? >0 and
A% > B9 >0 implies

i A (w;A*’l*’,A*’Z*’,At hsBp>
< (A% b BP) -0 o <B‘1<Aq (0rA2),
(i) A (w;A;r1+’7A;’2+’,A’2 hsBp>
<A (a)o AT A;’2+’,BP) < BI < AY (or AY)

forallt€[0,q), p>q, r1 >t, >t and s > 1, where

o

~ 1 1 2 _

o= <r1—t+q’ ra—t+q’ (p—t)s+t—q>’ O=7

w=(—L—,—L_ -2) and o= .
rI—t+q’ -t tq’ 17 q [

COROLLARY 2.5. Let Aj,Ay,B € P,(C) and g > 0. IfA’ll > B?1>0 and Ag >
B9 >0, then for each t € |0,q] and p > q,

B

1’

I8)

F(ri,r,s) = A (w;Al‘”*f AT ALY BP)
is decreasing for ry >t, ry >t and s > 1, where

~ 1 1 2 — 0
o= <r171+q’ r—t+q’ (P*f)“‘*’*‘l) and & = ooy
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3. Proofs
We use the following two results in order to prove Theorems 2.1 and 2.2.
THEOREM 3.A. ([8]) Let A> B >0 with A> 0. Then
(A", BP) 7T < B< A
holds for t € [0,1], p > 1 and s > 1.

THEOREM 3.B. ([14]) Let Ay,...,A, € P,(C) and ® = (wy,...,w,) € A". For
eachi=1,...,n and g € R, if

A (@AY, AV AR <A for py,... pn € R with pi > g,

then
!
/. AP1 Di—1 APi pAPi+1
A (@ADL AP AT AT A
AP Picl 4Pi APit1
<A (@ADL AP AP APEL AP
q
<A
/ -5 i— I o
for pl > pi, where @' = (wl,...,wi,l,%whwiﬂ,...,wn) and @' = e
1

1
Proof of Theorem 2.1. (i) Put B = (A" _, 1, A;") @057 and assume that A? >
A} >0 forg>0andi=1,...,n— 1. Then by Theorem 3.A,

1
Ar goan ) Ud )+ < ag,
that is,

PR A
BY = (A, s Af") 0 S AT < AT (3.1)

holds for ¢ € [0,q], p, >q and s > 1.
By Theorem 1.C, (3.1) implies

A0 AT BY) < BT <AL <A

. P 1 1 -1
forall p; >0 (i=1,...,n—1)and o > g, where @ = <M""’pn4+q’gz—q> and

o= Tc%ﬁ By putting o = (p, —1)s+1(>q),

_ — . q
A (co;A1 PULLATE AL hSA5"> < (AL, By AP T < A9 < AY

forall1 €[0,q], s>1,p; >0 (i=1,...,n—1) and p, > g, where

~S_(_1 1 n—1 0]
o= <m+q""’1?n71+q’ (pn*t)Hf*q) and o o]
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(ii) By Theorem 1.C and Léwner-Heinz theorem, A > Af > 0 for ¢ > 0 and
i=1,...,n—1 implies

A7 AT AR AL = A AR S A E e A (B2)
pn—t

pn—t

forall 1 €[0,q], pi >0 (i=1,...,n—1)and p, > g, where

o

= 1 1 n—1
(“0 = _ ... n =
<p1+q’ ? Pn—1+4q’ pn_q> and ©

(3.2) holds if and only if

e)

all
B I A Paci—t 4T apaa
X=A(opAl ATPAL AT AT AT )
<AZ AT (3.3)
=t —t —t
< (Anz—lAgnAnz—l)#'
By applying Theorem 3.B to (3.3), we can obtain
A@AL AP AL AT AL ARAL ) <X (3.4)

for s > 1, where

8

e)

~ 1 1 n—1
O=—,... and 0w =
<p1+q’ ) pn1+q? (pn—t)5+t—q>

[

Therefore (3.3) and (3.4) ensures
A @A A AL AR ) <A (AT AT AR < Ag < A
forall1€[0,q], s>1,p; >0 (i=1,....n—1) and p, >q. O

Proof of Theorem 2.2. (i) or (ii) in Theorem 2.1 ensures

=t = _ _ =t = =t =t gt
A@ALAPAL L AT AL ARALY) S AT ARAT )T (35)

by the same way to (3.3), so that we can show monotonicity for s > 1 by applying
Theorem 3.B to (3.5).

We can show monotonicity for p; >0 (i=1,...,n— 1) by applying Theorem 3.B
to (i) or (ii) in Theorem 2.1. [

Proof of Corollary 2.3. Put t =0 and replace p,s by p, in Theorem 2.2. []

Proof of Corollaries 2.4, 2.5. Put n=3, py =r—t, pp =rn —t, p3=p in
Theorems 2.1, 2.2, respectively. [
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