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A NOTE ON THE NEUMAN–SÁNDOR MEAN

HUI SUN, TIEHONG ZHAO, YUMING CHU AND BAOYU LIU

(Communicated by E. Neuman)

Abstract. In this article, we present several best possible lower bounds for the Neuman-Sándor
mean in terms of the geometric combinations of harmonic and quadratic means, geometric
and quadratic means, harmonic and contraharmonic means, and geometric and contraharmonic
means.

1. Introduction

For a,b > 0 with a �= b the Neuman-Sándor mean M(a,b) [1] is defined by

M(a,b) =
a−b

2sinh−1 (
a−b
a+b

) , (1.1)

where sinh−1(x) = log(x+
√

x2 +1) is the inverse hyperbolic sine function.
Recently, the Neuman-Sándor mean has been the subject of intensive research. In

particular, many remarkable inequalities for the Neuman-Sándor mean M(a,b) can be
found in the literature [1–14].

Let H(a,b) = 2ab/(a + b) , G(a,b) =
√

ab , L(a,b) = (b− a)/(logb− loga) ,
P(a,b) = (a− b)/(4arctan

√
a/b− π) , I(a,b) = 1/e(bb/aa)1/(b−a) , A(a,b) = (a +

b)/2, T (a,b) = (a − b)/[2arctan((a − b)/(a + b))] , Q(a,b) =
√

(a2 +b2)/2 and
C(a,b) = (a2 + b2)/(a + b) be the harmonic, geometric, logarithmic, first Seiffert,
identric, arithmetic, second Seiffert, quadratic and contraharmonic means of a and b ,
respectively. Then it is well-known that the inequalities

H(a,b) < G(a,b) < L(a,b) < P(a,b) < I(a,b)
< A(a,b) < M(a,b) < T (a,b) < Q(a,b) < C(a,b)

hold for a,b > 0 with a �= b .
Neuman and Sándor [1, 2] proved that the inequalities

π
4log(1+

√
2)

T (a,b) < M(a,b) <
A(a,b)

log(1+
√

2)
,
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√
2T 2(a,b)−Q2(a,b) < M(a,b) <

T 2(a,b)
Q(a,b)

,

H(T (a,b),A(a,b)) < M(a,b) < L(A(a,b),Q(a,b)), T (a,b) > H(M(a,b),Q(a,b)),

M(a,b) <
A2(a,b)
P(a,b)

, A2/3(a,b)Q1/3(a,b) < M(a,b) <
2A(a,b)+Q(a,b)

3
,

√
A(a,b)T (a,b) < M(a,b) <

√
A2(a,b)+T2(a,b),

G(x,y)
G(1− x,1− y)

<
L(x,y)

L(1− x,1− y)
<

P(x,y)
P(1− x,1− y)

<
A(x,y)

A(1− x,1− y)
<

M(x,y)
M(1− x,1− y)

<
T (x,y)

T (1− x,1− y)
,

1
A(1− x,1− y)

− 1
A(x,y)

<
1

M(1− x,1− y)
− 1

M(x,y)
<

1
T (1− x,1− y)

− 1
T (x,y)

,

A(x,y)A(1− x,1− y) < M(x,y)M(1− x,1− y) < T (x,y)T (1− x,1− y)

hold for all a,b > 0 and x,y ∈ (0,1/2] with a �= b and x �= y .
In [15], Neuman proved that the double inequalities

Qα(a,b)A1−α(a,b) < M(a,b) < Qβ (a,b)A1−β (a,b)

and
Cλ (a,b)A1−λ (a,b) < M(a,b) < Cμ(a,b)A1−μ(a,b)

hold for all a,b > 0 with a �= b if α � 1/3, β � 2
(
log(2+

√
2)− log3

)
/ log2 =

0.373 · · · , λ � 1/6 and μ �
(
log(2+

√
2)− log3

)
/ log2 = 0.186 · · · .

In [5, 7, 16], the authors proved that the double inequalities

α1I(a,b) < M(a,b) < β1I(a,b),

α2Q(a,b)+ (1−α2)H(a,b) < M(a,b) < β2Q(a,b)+ (1−β2)H(a,b),

α3Q(a,b)+ (1−α3)G(a,b) < M(a,b) < β3Q(a,b)+ (1−β3)G(a,b),

α4C(a,b)+ (1−α4)H(a,b) < M(a,b) < β4C(a,b)+ (1−β4)H(a,b),

Iα5(a,b)Q1−α5(a,b) < M(a,b) < Iβ5(a,b)Q1−β5(a,b),

Iα6(a,b)C1−α6(a,b) < M(a,b) < Iβ6(a,b)C1−β6(a,b)

hold for all a,b > 0 with a �= b if and only if α1 � 1, β1 � e/[2log(1 +
√

2)] =
1.5419 · · ·, α2 � 7/9 = 0.777 · · · , β2 � 1/[

√
2log(1+

√
2)] = 0.802 · · · , α3 � 2/3 =

0.666 · · · , β3 � 1/[
√

2log(1 +
√

2)] = 0.802 · · · , α4 � 1/[2log(1 +
√

2)] = 0.567 · · · ,
β4 � 7/12 = 0.583 · · · , α5 � 1/2, β5 � log[

√
2log(1+

√
2)]/(1− log

√
2) = 0.337 · · · ,

α6 � 5/7 = 0.714 · · · and β6 � log[2log(1+
√

2)] = 0.566 · · · .
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Very recently, inequalities for quotients involving the Neuman-Sándormean M(a,b)
were given in [17].

The main purpose of this paper is to find the least values α1 , α2 , α3 and α4 such
that the inequalities

M(a,b) > Hα1(a,b)Q1−α1(a,b),

M(a,b) > Gα2(a,b)Q1−α2(a,b),

M(a,b) > Hα3(a,b)C1−α3(a,b)

and
M(a,b) > Gα4(a,b)C1−α4(a,b)

hold for all a,b > 0 with a �= b .

2. Lemmas

In order to establish our main results we need four lemmas, which we present in
this section.

LEMMA 2.1. (See [18, Theorem 1.25]). For −∞ < a < b < ∞ , let f ,g : [a,b]→R

be continuous on [a,b] , and be differentiable on (a,b) , let g′(x) �= 0 on (a,b) . If
f ′(x)/g′(x) is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2.2. (See [19, Lemma 1.1]). Suppose that the power series f (x) =
∞
∑

n=0
anxn and g(x) =

∞
∑

n=0
bnxn have the radius of convergence r > 0 and bn > 0 for all

n ∈ {0,1,2, · · ·} . Let h(x) = f (x)/g(x) , then
(1) If the sequence {an/bn}∞

n=0 is (strictly) increasing (decreasing), then h(x) is
also (strictly) increasing (decreasing) on (0,r);

(2) If the sequence {an/bn} is (strictly) increasing (decreasing) for 0 < n � n0

and (strictly) decreasing (increasing) for n > n0 , then there exists x0 ∈ (0,r) such that
h(x) is (strictly) increasing (decreasing) on (0,x0) and (strictly) decreasing (increas-
ing) on (x0,r) .

LEMMA 2.3. Let

φ(t) =
[3− cosh(2t)][sinh(2t)−2t]

2t sinh2(t)[5+ cosh(2t)]
, (2.1)

then φ(t) is strictly decreasing in (0, log(1+
√

2)) , where sinh(t) = (et − e−t)/2 and
cosh(t) = (et + e−t)/2 are respectively the hyperbolic sine and cosine functions.
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Proof. Let us denote by φ1(t) and φ2(t) respectively the numerator and denomi-
nator of (2.1), then simple computations lead to

φ1(t) = 3sinh(2t)−6t +2t cosh(2t)− 1
2

sinh(4t), (2.2)

φ2(t) =
t
2

[8cosh(2t)+ cosh(4t)−9] . (2.3)

Using the power series sinh(t) = ∑∞
n=0 t2n+1/(2n+1)! and cosh(t) = ∑∞

n=0 t2n/(2n)! ,
we can express (2.2) and (2.3) as follows

φ1(t) =
∞

∑
n=1

22n+1(2n+4−22n)
(2n+1)!

t2n+1 = t3
∞

∑
n=0

22n+4(n+3−22n+1)
(2n+3)!

t2n, (2.4)

φ2(t) =
∞

∑
n=1

22n(4+22n−1)
(2n)!

t2n+1 = t3
∞

∑
n=0

22n+4(1+22n−1)
(2n+2)!

t2n. (2.5)

It follows from (2.4) and (2.5) that

φ(t) =

∞
∑

n=0
ant2n

∞
∑

n=0
bnt2n

(2.6)

with an = 22n+4(n+3−22n+1)/(2n+3)! and bn = 22n+4(1+22n−1)/(2n+2)! .
Let cn = an/bn , then simple computations lead to

cn =
(n+3)−22n+1

(2n+3)(1+22n−1)
,

c0 =
2
9

> c1 = − 4
15

> c2 = −3
7

< c3 = −122
297

, (2.7)

cn+1− cn =
24n+3− (6n2 +57n+76)22n−1−3

(2n+3)(2n+5)(1+22n−1)(1+22n+1)

=
[2(4n−38)+6(4n−n2)+ (128×4n−2−57n)]22n−1−3

(2n+3)(2n+5)(1+22n−1)(1+22n+1)
> 0 (2.8)

for all n > 2.
Inequalities (2.7) and (2.8) implies that the sequence {an/bn} is strictly decreasing

in 0 < n � 2 and strictly increasing for n > 2, then from (2.6) and Lemma 2.2(2) we
know that there exists t0 > 0 such that φ(t) is strictly decreasing on (0,t0) and strictly
increasing in (t0,∞) .

For convenience, let us denote t∗ = log(1+
√

2) = 0.881 · · · , then we have

sinh(t∗) = 1, sinh(2t∗) = 2
√

2, sinh(3t∗) = 7, (2.9)
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cosh(t∗) =
√

2, cosh(2t∗) = 3, cosh(3t∗) = 5
√

2. (2.10)

Differentiating (2.1) yields

φ ′(t) =
φ1

′(t)φ2(t)−φ1(t)φ2
′(t)

φ2
2(t)

, (2.11)

where
φ ′

1(t) = 8sinh(t)[t cosh(t)−2sinh3(t)], (2.12)

φ ′
2(t) = sinh(t)[20t cosh(t)+4t cosh(3t)+9sinh(t)+ sinh(3t)]. (2.13)

From (2.2) and (2.3) together with (2.9)–(2.13) we get

φ ′(t∗) = −
√

2− t∗√
2t∗

< 0. (2.14)

It follows from the piecewise monotonicity of φ(t) and (2.14) that t0 > t∗ . This
completes the proof of Lemma 2.3. �

LEMMA 2.4. Let

ϕ(x) =
4
9

log(1+ x2)− log
x

sinh−1(x)
+

5
18

log(1− x2). (2.15)

Then ϕ(x) < 0 for all x ∈ (0,1) .

Proof. From (2.15) one has

ϕ(0+) = 0, (2.16)

ϕ ′(x) =
φ(x)

x(1− x4)
√

1+ x2 sinh−1(x)
, (2.17)

where

φ(x) = x− x5−
[
1− 1

3
x2 +

4
9
x4

]√
1+ x2 sinh−1(x), (2.18)

φ(0) = 0, (2.19)

φ ′(x) = − x f (x)
9
√

1+ x2
, (2.20)

where
f (x) = x(49x2−3)

√
1+ x2 +(3+7x2 +20x4)sinh−1(x), (2.21)

f (0) = 0. (2.22)

Differentiating (2.21) yields

f ′(x) =
2x[74x+108x3+(7+40x2)

√
1+ x2 sinh−1(x)]√

1+ x2
> 0 (2.23)

for x ∈ (0,1) .
Therefore, φ(x) < 0 for all x ∈ (0,1) follows easily from (2.19) and (2.20) to-

gether with (2.22) and (2.23). �
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3. Lower bounds for the Neuman-Sándor mean

In this section we will deal with problems of finding sharp lower bounds for the
Neuman-Sándor Mean M(a,b) in terms of the geometric combinations of harmonic
mean H(a,b) and quadratic mean Q(a,b) , geometric mean G(a,b) and quadratic
mean Q(a,b) , harmonic mean H(a,b) and contraharmonic mean C(a,b) , and geo-
metric mean G(a,b) and contraharmonic mean C(a,b) .

Since H(a,b) , G(a,b) , M(a,b) , Q(a,b) and C(a,b) are symmetric and homo-
geneous of degree 1. Without loss of generality, we assume that a > b . For the
later use we denote x = (a− b)/(a + b) ∈ (0,1) and t = sinh−1(x) ∈ (0,t∗) with
t∗ = log(1+

√
2) = 0.881 · · · .

THEOREM 3.1. The inequality

M(a,b) > Hα(a,b)Q1−α(a,b) (3.1)

holds true for all a,b > 0 with a �= b if and only if α � 2/9 .

Proof. First we take the logarithm of each member of (3.1) and next rearrange
terms to obtain

log[Q(a,b)]− log[M(a,b)]
log[Q(a,b)]− log[H(a,b)]

< α. (3.2)

Note that

M(a,b)
A(a,b)

=
x

sinh−1(x)
,

H(a,b)
A(a,b)

= 1− x2,
Q(a,b)
A(a,b)

=
√

1+ x2. (3.3)

Use of (3.3) followed by a substitution x = sinh(t) (0 < t < t∗) , inequality (3.2) be-
comes

f (t) < α, (3.4)

where

f (t) =
log[cosh(t)]− log[sinh(t)/t]

log[cosh(t)]− log[1− sinh2(t)]
:=

f1(t)
f2(t)

. (3.5)

In order to use Lemma 2.1, we consider the following

f ′1(t)
f ′2(t)

=
[3− cosh(2t)][sinh(2t)−2t]

2t sinh2(t)[5+ cosh(2t)]
:= φ(t), (3.6)

where φ(t) is defined as in Lemma 2.3.
It follows from Lemmas 2.1 and 2.3 together with (3.6) that

f (t) =
f1(t)
f2(t)

=
f1(t)− f1(0+)
f2(t)− f2(0)

is strictly decreasing on (0,t∗) . Note that

lim
t→0+

f (t) =
2
9
. (3.7)
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Making use of (3.7) and the monotonicity of φ(t) we conclude that in order for
the inequality (3.1) to be valid it is necessary and sufficient that α � 2/9. �

THEOREM 3.2. The inequality

M(a,b) > Gα(a,b)Q1−α(a,b) (3.8)

holds true for all a,b > 0 with a �= b if and only if α � 1/3 .

Proof. We will follows lines introduced in the proof of Theorem 3.1. We take the
logarithm of each member of (3.8) and next rearrange terms to get

log[Q(a,b)]− log[M(a,b)]
log[Q(a,b)]− log[G(a,b)]

< α. (3.9)

Use of (3.3) and G(a,b)/A(a,b) =
√

1− x2 followed by a substitution x = sinh(t)
(0 < t < t∗) , inequality (3.9) is equivalent to

g(t) < α, (3.10)

where

g(t) =
log[cosh(t)]− log[sinh(t)/t]

log[cosh(t)]− log[1− sinh2(t)]/2
:=

g1(t)
g2(t)

. (3.11)

Equation (3.11) leads to

g′1(t)
g′2(t)

=
[3− cosh(2t)][sinh(2t)−2t]

8t sinh2(t)
=

∞
∑

n=1
[22n+1(2n+4−22n)/(2n+1)!]t2n+1

∞
∑

n=1
[22n+2/(2n)!]t2n+1

=

∞
∑

n=0
[22n+4(n+3−22n+1)/(2n+3)!]t2n

∞
∑

n=0
[22n+4/(2n+2)!]t2n

:=

∞
∑

n=0
a′nt2n

∞
∑

n=0
b′nt2n

, (3.12)

a′n+1

b′n+1
− a′n

b′n
= −3+(6n+7)22n+1

(2n+3)(2n+5)
< 0 (3.13)

for all n ∈ {0,1,2, · · ·} .
It follows from Lemmas 2.1(1) and (3.12) together with (3.13) that g′1(t)/g′2(t) is

strictly decreasing on (0,t∗) .
From Lemma 2.1 and (3.11) together with g1(0+) = g2(0) = 0 and the mono-

tonicity of g′1(t)/g′2(t) we clearly see that g(t) is strictly decreasing on (0,t∗) .
Therefore, Theorem 3.2 follows from the monotonicity of g(t) and (3.10) together

with the fact that

lim
t→0+

g(t) =
1
3
. �
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THEOREM 3.3. The following simultaneous inequality

M(a,b) > Hα(a,b)C1−α(a,b) (3.14)

holds true for all a,b > 0 with a �= b if and only if α � 5/12 .

Proof. We take the logarithm of each member of (3.14) and next rearrange terms
to get

log[C(a,b)]− log[M(a,b)]
log[C(a,b)]− log[H(a,b)]

< α. (3.15)

Use of (3.3) and C(a,b)/A(a,b) = 1+ x2 followed by a substitution x = sinh(t) (0 <
t < t∗) , inequality (3.15) becomes

h(t) < α, (3.16)

where

h(t) =
log[cosh(t)]− log[sinh(t)/t]/2

log[cosh(t)]− log[1− sinh2(t)]/2
:=

h1(t)
h2(t)

. (3.17)

Equation (3.17) gives

h′1(t)
h′2(t)

=
[3− cosh(2t)][sinh(2t)+ t cosh(2t)−3t]

16t sinh2(t)

=

∞
∑

n=0

[
22n+3

(
(3−22n)(2n+3)+3−22n+2

)
/(2n+3)!

]
t2n

∞
∑

n=0
[22n+5/(2n+2)!]t2n

:=

∞
∑

n=0
c′nt2n

∞
∑

n=0
d′

nt2n
,

(3.18)

c′n+1

d′
n+1

− c′n
d′

n
= −3×22n−2− 3

2(2n+3)(2n+5)
− (6n+7)22n

(2n+3)(2n+5)
< 0 (3.19)

for all n ∈ {0,1,2, · · ·} .
It follows from Lemmas 2.2(1) and (3.18) together with (3.19) that h′1(t)/h′2(t) is

strictly decreasing on (0,t∗) .
From Lemma 2.1 and (3.17) together with h1(0+) = h2(0) = 0 and the mono-

tonicity of h′1(t)/h′2(t) we clearly see that h(t) is strictly decreasing on (0,t∗) .
Therefore, Theorem 3.3 follows from the monotonicity of h(t) and (3.16) together

with the fact that

lim
t→0+

h(t) =
5
12

. �

THEOREM 3.4. The following inequality

M(a,b) > Gα(a,b)C1−α(a,b) (3.20)

is valid for all a,b > 0 with a �= b if and only if α � 5/9 .
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Proof. Making use of (3.3) and C(a,b)/A(a,b) = 1+ x2 together with G(a,b)/
A(a,b) =

√
1− x2 we get

log[C(a,b)]− log[M(a,b)]
log[C(a,b)]− log[G(a,b)]

=
log(1+ x2)− log[x/sinh−1(x)]

log(1+ x2)− log
√

1− x2
. (3.21)

Elaborated computations lead to

lim
x→0+

log(1+ x2)− log[x/sinh−1(x)]
log(1+ x2)− log

√
1− x2

=
5
9
. (3.22)

Taking the logarithm of (3.20), we consider the difference between the convex
combination of logG(a,b) , logC(a,b) and logM(a,b) as follows

5
9

logG(a,b)+
4
9

logC(a,b)− logM(a,b)

=
5
9

log
√

1− x2 +
4
9

log(1+ x2)− log
x

sinh−1(x)
= ϕ(x), (3.23)

where ϕ(x) is defined as in Lemma 2.4.
Therefore, M(a,b) > G5/9(a,b)C4/9(a,b) for all a,b > 0 with a �= b follows from

(3.23) and Lemma 2.4. This in conjunction with the following statement gives the
asserted result.

If α < 5/9, then equations (3.21) and (3.22) lead to the conclusion that there exists
0 < δ1 < 1 such that M(a,b) < Gα(a,b)C1−α(a,b) for all a,b > 0 with (a−b)/(a+
b) ∈ (0,δ1) . �

REMARK 3.1. From the inequalities M(a,b) < 1
3Q(a,b)+ 2

3A(a,b) in [14] and
A(a,b) < Q(a,b) < C(a,b) , it is not difficult to prove that the inequalities M(a,b) <
Hλ1(a,b)Q1−λ1(a,b) , M(a,b)< Gλ2(a,b)Q1−λ2(a,b) , M(a,b)< Hλ3(a,b)C1−λ3(a,b)
and M(a,b) < Gλ4(a,b)C1−λ4(a,b) hold for all a,b > 0 with a �= b if and only if
λ1 � 0, λ2 � 0, λ3 � 0 and λ4 � 0.

REMARK 3.2. All the lower bounds H2/9(a,b)Q7/9(a,b) , G1/3(a,b)Q2/3(a,b) ,
H5/12(a,b)C7/12(a,b) and G5/9(a,b)C4/9(a,b) for M(a,b) in Theorems 3.1-3.4 are
weaker than the lower bound Q1/3(a,b)A2/3(a,b) given by Neuman in [14]. In fact,
elementary computations show that

[
Q1/3(a,b)A2/3(a,b)

]9 −
[
H2/9(a,b)Q7/9(a,b)

]9

= Q3(a,b)
[
A3(a,b)+H(a,b)Q2(a,b)

][
A3(a,b)−H(a,b)Q2(a,b)

]

=

[
A3(a,b)+H(a,b)Q2(a,b)

]
Q3(a,b)

8(a+b)
(a−b)4,

[
Q1/3(a,b)A2/3(a,b)

]3 −
[
G1/3(a,b)Q2/3(a,b)

]3

= Q(a,b)
[
A2(a,b)−G(a,b)Q(a,b)

]
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=
Q(a,b)

A2(a,b)+G(a,b)Q(a,b)
[
A4(a,b)−G2(a,b)Q2(a,b)

]

=
Q(a,b)

16 [A2(a,b)+G(a,b)Q(a,b)]
(a−b)4,

[
Q1/3(a,b)A2/3(a,b)

]12−
[
H5/12(a,b)C7/12(a,b)

]12

= C2(a,b)
[
A10(a,b)−H5(a,b)C5(a,b)

]
,

A2(a,b)−H(a,b)C(a,b) =
(a−b)4

4(a+b)2 ,

[
Q1/3(a,b)A2/3(a,b)

]9 −
[
G5/9(a,b)C4/9(a,b)

]9

=
Q3(a,b)
A4(a,b)

[
A10(a,b)−G5(a,b)Q5(a,b)

]

and

A4(a,b)−G2(a,b)Q2(a,b) =
1
16

(a−b)4.
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