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n–EXPONENTIAL CONVEXITY OF WEIGHTED

HERMITE–HADAMARD’S INEQUALITY

SAAD IHSAN BUTT, ROZARIJA JAKŠIĆ, LJILJANKA KVESIĆ AND JOSIP PEČARIĆ

(Communicated by A. Vukelić)

Abstract. In this paper we construct n -exponentially convex functions and exponentially convex
functions using the functional defined as the difference of the weighted Hermite-Hadamard’s
inequality for monotone functions.

1. Introduction

Let f be a convex function on [a,b] . One of the most well-known inequalities in
mathematics for convex functions is the Hermite-Hadamard integral inequality given in
[7] (see also [9]):

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (1)

If the function f is concave, then (1) holds in the reversed direction. It gives an estimate
from below and above of the mean value of a convex function. These inequalities for
convex functions play an important role in nonlinear analysis. There is a large range of
interesting applications of Hermite-Hadamard’s inequality given in [7].

In [2] (see also [7]) Fejér established the following weighted generalization of (1).

THEOREM 1.1. If f : [a,b]→R is a convex function, then the following inequality
holds

f

(
a+b

2

)∫ b

a
w(x)dx �

∫ b

a
f (x)w(x)dx � f (a)+ f (b)

2

∫ b

a
w(x)dx, (2)

where w : [a,b]→R is a non-negative function which is integrable and symmetric about
a+b
2 .

G. Zabandan and A. Kilicman gave a different weighted version of the Hermite-
Hadamard’s inequality in [1]:
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THEOREM 1.2. Let f : [a,b] → R be a differentiable convex function and g :
[a,b]→ [0,∞] be a continuous function.

(i) If g is decreasing on [a,b] , then

1∫ b
a g(x)dx

∫ b

a
f (x)g(x)dx � f (a)+ f (b)

2
. (3)

(ii) If g is increasing on [a,b] , then

f
(a+b

2

)
� 1∫ b

a g(x)dx

∫ b

a
f (x)g(x)dx. (4)

Unfortunately, the inequalities (3) and (4) are not valid under the given assump-
tions. R. Jakšić, Lj. Kvesić and J. Pečarić found some errors in the results given by
G. Zabandan and A. Kilicman. In their paper [3] they gave particular examples of
functions that satisfy the conditions of Theorem 1.2, but for which the inequalities (3)
and (4) are not valid. Moreover, in the same paper they also gave the best possible
conditions under which the inequality (3) holds. The following result is given in [3].

THEOREM 1.3. Let f : [a,b] → R be a differentiable function and let g : [a,b]→
(0,∞) be an integrable function.

(i) If the function f ′
g is increasing, then inequality (3) holds.

(ii) If the function f ′
g is decreasing, then inequality (3) holds in reversed direction.

REMARK 1.4. The class of functions for which f ′(x)/x is increasing is of special
interest because it connects us with the superquadratic functions.

Suppose that a function φ : [0,∞) → R is continuously differentiable and φ(0) �
0. If φ ′(x)/x is increasing, then φ is superquadratic (see [11]).

COROLLARY 1.5. Let f : [a,b] ⊂ (0,∞) → R be a differentiable function.

(i) If the function f ′(x)
x is increasing, then the following inequality

2
b2−a2

∫ b

a
x f (x)dx � f (a)+ f (b)

2
(5)

holds.

Proof. If we put g(x) = x in Theorem 1.3, we directly get (5) . �
In the next section we will give some mean-value theorems and related results. In

Section 3 we will construct n-exponentially convex functions and exponentially convex
functions by using the functional defined as the difference of the right and the left side
of inequality (3) for different classes of functions. In the last section, we will give some
interesting examples and construct Stolarsky means.
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2. Mean value theorems

To prove mean value theorems of Lagrange and Cauchy type, we need to consider
functions φ1 and φ2 defined in the following lemma.

LEMMA 2.1. Let f : [a,b] → R be a twice differentiable function and let g :
[a,b]→ R

+ be a differentiable integrable function. Denote

Gf (x) =
f ′′(x)g(x)− f ′(x)g′(x)

g2(x)
. (6)

Let m,M ∈ R be such that

m � Gf (x) � M for all x ∈ [a,b]. (7)

Let φ1,φ2 : [a,b] → R be the functions defined by

φ1(x) = M
∫ x

a
tg(t)dt− f (x) (8)

and

φ2(x) = f (x)−m
∫ x

a
tg(t)dt. (9)

Then
φ ′
1
g and

φ ′
2
g are increasing functions.

Proof. It is sufficient to show that the first derivatives of φ ′
1
g and φ ′

2
g are positive

functions. We have(
φ ′

1(x)
g(x)

)′
=
(

Mx− f ′(x)
g(x)

)′
= M−Gf (x) � 0,

and (
φ ′

2(x)
g(x)

)′
=
(

f ′(x)
g(x)

−mx

)′
= Gf (x)−m � 0.

This shows us that φ ′
1
g ,

φ ′
2
g are increasing functions. �

THEOREM 2.2. Let f : [a,b] → R be a twice differentiable function, g : [a,b] →
R

+ a differentiable integrable function and let Gf ∈ C[a,b] be as defined in Lemma
2.1. Then there exists ξ ∈ [a,b] such that

f (a)+ f (b)
2

− 1∫ b
a g(x)dx

∫ b

a
f (x)g(x)dx = αGf (ξ ), (10)

where

α =

(∫ b
a tg(t)dt

2
−
∫ b
a g(x)

∫ x
a tg(t)dtdx∫ b

a g(x)dx

)
.
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Proof. Since Gf is continuous on a compact set, it attains its maximum and min-
imum value on it. Let us consider

m = min{Gf (x)}
and

M = max{Gf (x)}.
In Lemma 2.1 we have shown that φ ′

1
g ,

φ ′
2
g , where φ1 and φ2 are defined by (8) and (9),

are increasing functions, so we can apply Theorem 1.3 to these functions and obtain the
following inequalities:

f (a)+ f (b)
2

− 1∫ b
a g(x)dx

∫ b

a
f (x)g(x)dx � αM

f (a)+ f (b)
2

− 1∫ b
a g(x)dx

∫ b

a
f (x)g(x)dx � αm.

Combining both inequalities, we get

αm � f (a)+ f (b)
2

− 1∫ b
a g(x)dx

∫ b

a
f (x)g(x)dx � αM.

If α = 0 then f (a)+ f (b)
2 − 1∫ b

a g(x)dx

∫ b
a f (x)g(x)dx = 0 and (10) holds for all ξ ∈ [a,b] .

Otherwise

m �
f (a)+ f (b)

2 − 1∫ b
a g(x)dx

∫ b
a f (x)g(x)dx

α
� M.

Since Gf is continuous on [a,b] , there exists ξ ∈ [a,b] such that (10) holds and the
proof is completed. �

COROLLARY 2.3. Let f : [a,b] ⊂ (0,∞) → R be a twice differentiable function
and let Gf ∈C[a,b] be as defined in Lemma 2.1. Then there exists ξ ∈ [a,b] such that

f (a)+ f (b)
2

− 2
b2−a2

∫ b

a
x f (x)dx = αGf (ξ ), (11)

where α = b4+b3a−4a2b2+ba3+a4

30(b+a) and Gf (ξ ) = f ′′(ξ )
ξ − f ′(ξ )

ξ 2 .

Proof. If we put g(x) = x in Theorem 2.2, we get (11). �

THEOREM 2.4. Let f1, f2 : [a,b]→R be twice differentiable functions, g : [a,b]→
R

+ a differentiable integrable functions and Gf1 ,Gf2 ∈ C[a,b] as defined in Lemma
2.1. Then there exists ξ ∈ [a,b] such that the following equality is valid:

f1(a)+ f1(b)
2 − 1∫ b

a g(x)dx

∫ b
a f1(x)g(x)dx

f2(a)+ f2(b)
2 − 1∫ b

a g(x)dx

∫ b
a f2(x)g(x)dx

=
Gf1(ξ )
Gf2(ξ )

(12)

provided that the denominators are nonzero.
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Proof. Let us define k ∈C2[a,b] with

k = c1 f2 − c2 f1,

where c1 and c2 are defined with

c1 =
f1(a)+ f1(b)

2
− 1∫ b

a g(x)dx

∫ b

a
f1(x)g(x)dx,

c2 =
f2(a)+ f2(b)

2
− 1∫ b

a g(x)dx

∫ b

a
f2(x)g(x)dx.

Now if we apply Theorem 2.2 to the function k we get

0 =
(
c1Gf2(ξ )− c2Gf1(ξ )

)
α. (13)

Since α �= 0, otherwise by our assumptions we would have a contradiction with

f2(a)+ f2(b)
2

− 1∫ b
a g(x)dx

∫ b

a
f2(x)g(x)dx �= 0,

so α �= 0 and from (13) we directly get (12). �

COROLLARY 2.5. Let f1, f2 : [a,b]⊂ (0,∞)→R twice differentiable and Gf1 ,Gf2
∈C[a,b] as defined in Corollary 2.3. Then there exists ξ ∈ [a,b] such that the following
equality is valid:

f1(a)+ f1(b)
2 − 2

b2−a2

∫ b
a x f1(x)dx

f2(a)+ f2(b)
2 − 2

b2−a2

∫ b
a x f2(x))dx

=
ξ f ′′1 (ξ )− f ′1(ξ )
ξ f ′′2 (ξ )− f ′2(ξ )

(14)

provided that the denominators are nonzero.

Proof. If we put g(x) = x in Theorem 2.4, we directly get (14). �

3. n -exponential convexity and exponential convexity

We start this section by giving some definitions and notions which are frequently
used in the results. Throughout this section I will denote an interval in R . The follow-
ing results for n -exponentially convex functions have been cited from [6].

DEFINITION 1. A function f : I → R is n -exponentially convex in the Jensen
sense on I if

n

∑
i, j=1

ξiξ j f

(
xi + x j

2

)
� 0

holds for all choices of ξi ∈ R and every xi ∈ I , i = 1, ...,n .
A function f : I −→ R is n -exponentially convex if it is n -exponentially convex

in the Jensen sense and continuous on I .
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REMARK 3.1. It is clear from the definition that 1-exponentially convex functions
in the Jensen sense are in fact nonnegative functions. Also, n -exponentially convex
functions in the Jensen sense are k -exponentially convex in the Jensen sense for every
k ∈ N, k � n .

By using some linear algebra and definition of positive semi-definite matrices, we
get the following proposition.

PROPOSITION 3.2. If f is an n-exponentially convex function in the Jensen sense
then the matrix [

f

(
xi + x j

2

)]k

i, j=1

is a positive semi-definite matrix for all k ∈ N, k � n. In particular,

det

[
f

(
xi + x j

2

)]k

i, j=1
� 0

for all k ∈ N, k � n.

DEFINITION 2. A function f : I → R is exponentially convex in the Jensen sense
on I if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function f : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous on I .

LEMMA 3.3. It is known (and easy to show) that f : I → R
+ is log -convex in the

Jensen sense if and only if

l2 f (t)+2lm f

(
t + r

2

)
+m2 f (r) � 0

holds for each l,m ∈ R and r,t ∈ I .

It follows that a positive function is log-convex in the Jensen sense if and only if
it is 2-exponentially convex in the Jensen sense. Also, using basic convexity theory it
follows that a positive function is log-convex if and only if it is 2-exponentially convex.

The following lemma is equivalent to the definition of convex function [7, page 2].

LEMMA 3.4. A function f : I → R is convex if and only if the inequality

(x3− x2) f (x1)+ (x1− x3) f (x2)+ (x2− x1) f (x3) � 0

holds for all x1,x2,x3 ∈ I such that x1 < x2 < x3 .

LEMMA 3.5. If Φ is a convex function on an interval I and if x1 � y1, x2 �
y2, x1 �= x2, y1 �= y2 , then the following inequality is valid

Φ(x2)−Φ(x1)
x2− x1

� Φ(y2)−Φ(y1)
y2− y1

. (15)

If the function Φ is concave then the inequality reverses.
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Divided differences are found to be very handy and interesting when we have to
operate with diverse functions having various degrees of smoothness. Let f : I → R be
a function. Then for distinct points ui ∈ I , i = 0,1, the divided difference of first order
is defined as follows:

[ui; f ] = f (ui) (i = 0,1) ,

[u0,u1; f ] =
f (u1)− f (u0)

u1−u0
.

The values of the divided difference are independent of the order of the points u0,u1

and may be extended to include the case when the points are equal, that is

[u0,u0; f ] = lim
u1→u0

[u0,u1; f ] = f ′(u0),

provided that f ′ exists.

REMARK 3.6. One can note that if [u0,u1; f ] � 0 holds for all u0,u1 ∈ I , then f
is increasing on I .

Under the assumptions of Theorem 1.3, we consider the following functional

ϒ( f ) =
f (a)+ f (b)

2
− 1∫ b

a g(x)dx

∫ b

a
f (x)g(x)dx. (16)

REMARK 3.7. Under the assumptions of Theorem 1.3, if f ′/g is an increasing
function on [a,b] then ϒ( f ) � 0.

In order to obtain our main results regarding the exponential convexity, we need
to define different families of functions.

Let [a,b],J ⊆ R be intervals and let g be a positive integrable function on [a,b] .
For distinct points u0,u1 ∈ [a,b] , we define:

E1 = { ft : [a,b] → R | t ∈ J and t �→ [u0,u1;Ft ] is n -exponentially convex in the

Jensen sense on J , where Ft(u) = f ′t (u)
g(u) };

E2 = { ft : [a,b] → R | t ∈ J and t �→ [u0,u1;Ft ] is exponentially convex in the

Jensen sense on J , where Ft(u) = f ′t (u)
g(u) };

E3 = { ft : [a,b] → R | t ∈ J and t �→ [u0,u1;Ft ] is 2-exponentially convex in the

Jensen sense on J , where Ft(u) = f ′t (u)
g(u) }.

THEOREM 3.8. Let ϒ( f ) be the linear functional defined in (16) and ft ∈ E1 .
Then t �→ ϒ( ft ) is an n-exponentially convex function in the Jensen sense on J . If the
function t �→ ϒ( ft ) is continuous on J , then it is n-exponentially convex on J .

Proof. Let us consider families of functions E1 . For ξi ∈R and ti ∈ J , i = 1, ...,n ,
we define the function

h(u) =
n

∑
i, j=1

ξiξ j f ti+t j
2

(u). (17)
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We have

[u0,u1;H] =
n

∑
i, j=1

ξiξ j

[
u0,u1;Fti+t j

2

]
,

where H(u) = h′(u)
g(u) and Ft(u) = f ′t (u)

g(u) .

Since t �→ [u0,u1;Ft ] is n -exponentially convex in the Jensen sense on J , the right
hand side of the above expression is nonnegative, which by Remark 3.6 implies that
h′(u)
g(u) is an increasing function on [a,b] .

Thus by Remark 3.7, we have

ϒ(h) � 0,

thus
n

∑
i, j=1

ξiξ jϒ
(

f ti+t j
2

)
� 0.

Hence, we conclude that the function t �→ϒ( ft ) is n -exponentially convex in the Jensen
sense on J .

If the function t �→ϒ( ft ) is also continuous on J then t �→ϒ( ft ) is n -exponentially
convex by definition. �

The following corollary is an immediate consequence of the above theorem.

COROLLARY 3.9. Let ϒ( f ) be the linear functional defined in (16) and ft ∈ E2 .
Then t �→ ϒ( ft ) is an exponentially convex function in the Jensen sense on J . If the
function t �→ ϒ( ft ) is continuous on J then it is exponentially convex on J .

Proof. For any n ∈ N we apply the same steps as in the previous theorem. �

COROLLARY 3.10. Let ϒ( f ) be the linear functional defined in (16) and ft ∈
E3 . Then the following statements hold:

(i) If the function t �→ ϒ( ft ) is continuous on J then it is 2-exponentially convex
on J . If the function t �→ ϒ( ft ) is additionally strictly positive, then it is also
log-convex on J , and for r,s,t ∈ J such that r < s < t , we have

(ϒ( fs))t−r � (ϒ( fr))t−s(ϒ( ft ))s−r. (18)

(ii) If the function t �→ ϒ( ft ) is strictly positive and differentiable on J then for every
t,r,u,v ∈ J such that t � u, r � v, we have

B(t,r;ϒ) � B(u,v;ϒ),

where

B(t,r;ϒ) =

⎧⎪⎪⎨
⎪⎪⎩
(

ϒ( ft)
ϒ( fr)

) 1
t−r

, t �= r,

exp

(
d
dt (ϒ( ft))

ϒ( ft)

)
, t = r.

(19)
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Proof. (i) The first part is an immediate consequence of Theorem 3.8 and in the
second part log-convexity on J is a consequence of Lemma 3.3. Since t �→ ϒ( ft ) is
strictly positive, so for r,s,t ∈ J such that r < s < t with f (t) = logϒ( ft ) in Lemma
3.4 gives

(t − s) logϒ( fr)+ (r− t) logϒ( fs)+ (s− r) logϒ( ft ) � 0.

This is equivalent to inequality (18).
(ii) By (i) the function t �→ ϒ( ft ) is log-convex on J , that is, the function t �→

logϒ( ft ) is convex on J . Thus, by using Lemma 3.5 with t � u , r � v , t �= r , u �= v ,
we get

logϒ( ft )− logϒ( fr)
t− r

� logϒ( fu))− logϒ( fv)
u− v

, (20)

concluding
B(t,r;ϒ) � B(u,v;ϒ).

Now, if t = r � u , we apply limr−→t , concluding

B(t,t;ϒ)) � B(u,v;ϒ).

Other possible cases are treated similarly. �

REMARK 3.11. The results given in Theorem 3.8, Corollary 3.9 and Corollary
3.10 are still valid when the points u0,u1 ∈ I coincide, say u1 = u0 , for a family of dif-
ferentiable function ft such that the function t �→ [u0,u1;Ft ] is n -exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense).

4. Stolarsky Means

In this section we will utilize various families of functions in order to construct
different examples of log-convex and exponentially convex functions and some related
results.

EXAMPLE 4.1. Let t ∈ R and ft : (0,∞) → R be a function defined with

ft (u) =

{
1
t

∫ u
a ptg(p)dp, t �= 0,∫ u

a log pg(p)dp, t = 0.
(21)

Since
(

f ′t (u)
g(u)

)′
= ut−1 , the mapping t �→ f ′t (u)

g(u) is exponentially convex (see [5]).

Analogously as in the proof of Theorem 3.8 we conclude that t �→ [u,u;Ft ] is
exponentially convex, so it is also exponentially convex in the Jensen sense, where

Ft = f ′t
g .
Also by Corollary 3.9 we have that t �→ϒ( ft ) is exponentially convex in the Jensen

sense. It is easy to verify that this mapping is continuous so it is exponentially convex.
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For this family of functions, B(t,r;ϒ) (defined in (19)), is equal to

B(t,r;ϒ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r(
∫ b
a g(u)du

∫ b
a ptg(p)dp−2

∫ b
a g(u)

∫ u
a ptg(p)dpdu)

t(
∫ b
a g(u)du

∫ b
a prg(p)dp−2

∫ b
a g(u)

∫ u
a prg(p)dpdu)

) 1
t−r

, t �= r, t,r �= 0,

(
(
∫ b
a g(u)du

∫ b
a ptg(p)dp−2

∫ b
a g(u)

∫ u
a ptg(p)dpdu)

t(
∫ b
a g(u)du

∫ b
a log pg(p)dp−2

∫b
a g(u)

∫ u
a log pg(p)dpdu)

) 1
t

, t �= r = 0,

exp

(
−1
t +

∫ b
a g(u)du

∫ b
a log pptg(p)dp−2

∫ b
a g(u)

∫ u
a log pptg(p)dpdu∫ b

a g(u)du
∫ b
a ptg(p)dp−2

∫ b
a g(u)

∫ u
a ptg(p)dpdu

)
, t = r, t,r �= 0,

exp

(∫ b
a g(u)du

∫ b
a (log p)2g(p)dp−2

∫ b
a g(u)

∫ u
a (log p)2g(p)dpdu

2(
∫ b
a g(u)du

∫ b
a log pg(p)dp−2

∫b
a g(u)

∫ u
a log pg(p)dpdu)

)
, t = r = 0,

Now if we put g(x) = x , then for t �= r , t,r �= 0,−2,−4 we have

B(t,r;ϒ) =
(

r(r+2)(r+4)
t(t+2)(t+4)

(t+4)(b2−a2)(bt+2+at+2)−4(bt+4−at+4)
(r+4)(b2−a2)(br+2+ar+2)−4(br+4−ar+4)

) 1
t−r

(22)

and for t = r and t �= 0,−2,−4,

B(t,t;ϒ)= exp

(
−1
t + (b2−a2)(t+4)2A−4(t+2)(t+4)(bt+4 logb−at+4 loga)+8(t+3)(bt+4−at+4)+B

(t+2)(t+4)((t+4)(b2−a2)(bt+2+at+2)−4(bt+4−at+4))

)
,

where
A =

(
(t +2)(bt+2 logb−at+2 loga)− (bt+2−at+2)

)
and

B = 2(t +4)2(t +2)(b2−a2)at+2 loga−2(t +4)2(b2−a2)at+2.

However, to get the continuous extension of (22) in order to cover all choices of r and
t , we consider the following.

For t �= 0,−2,−4,

B(t,0;ϒ) =
(

8
t(t+2)(t+4)

(t+4)(b2−a2)(bt+2+at+2)−4(bt+4−at+4)
b4−a4−4a2b2(lnb−lna)

) 1
t
,

B(t,−2;ϒ) =
(

−2
t(t+2)(t+4)

(t+4)(b2−a2)(bt+2+at+2)−4(bt+4−at+4)
(b2+a2)(loga−logb)+(b2−a2)

) 1
t+2

,

B(t,−4;ϒ) =
(

8a2b2

t(t+2)(t+4)
(t+4)(b2−a2)(bt+2+at+2)−4(bt+4−at+4)

b4−a4−4a2b2(logb−loga)

) 1
t+4

.

B(0,0;ϒ) = exp

(
b4(4 lnb−3)−a4(4 lna−3)+8a2b2((lna)2−lna+lnb−(lnb)2)

4(b4−a4−4a2b2(logb−loga))

)
.

B(−2,−2;ϒ) = exp
(

a2[logb(1+logb)+loga(1−loga)]+b2[logb(−1+logb)−loga(1+loga)]
(b2−a2)[−2−2(logb+loga)]+4b2 logb−4a2 loga

)
.

B(−4,−4;ϒ) = exp
(

b4[3+4 loga]−a4[3+4 logb]+8a2b2[− logb(1+logb)+loga(1+loga)]
4[(b4−a4)+4a2b2(loga−logb)]

)
.
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Also note that if the function t �→ ϒ( ft ) is positive and differentiable on R then for
every t,r,u,v ∈ R such that t � u, r � v , we have

B(t,r;ϒ) � B(u,v;ϒ). (23)

If we apply Corollary 2.5 on functions f1 = ft and f2 = fr , where t �= r , we get
that there exists some ξ ∈ [a,b] such that

ft(a)+ ft(b)
2 − 2

b2−a2

∫ b
a x ft (x)dx

fr(a)+ fr(b)
2 − 2

b2−a2

∫ b
a x fr(x)dx

= ξ t−r.

Since the function ξ �→ ξ t−r is invertible for t �= r , we then have

a �

⎛
⎝ ft(a)+ ft(b)

2 − 2
b2−a2

∫ b
a x ft (x)dx

fr(a)+ fr(b)
2 − 2

b2−a2

∫ b
a x fr(x)dx

⎞
⎠

1
t−r

� b,

that is
a � B(t,r;ϒ) � b,

which together with the fact that B(t,r;ϒ) is continuous and monotonous with respect
to both of its arguments t and r , shows that B(t,r;ϒ) are means of a and b for all
t,r ∈ R .

EXAMPLE 4.2. Let t ∈ R and ft : (0,∞) → R be a function defined as

ft(u) =
−1√

t

∫ u

a
e−p

√
t g(p)dp. (24)

Since ( f ′t (u)
g(u) )′ = e−u

√
t , the mapping t �→ f ′t (u)

g(u) is exponentially convex (see [5]).

Analogously as in the proof of Theorem 3.8 we conclude that t �→ [u,u;Ft ] is

exponentially convex, so it is exponentially convex in the Jensen sense, where Ft = f ′t
g .

Also by Corollary 3.9 we have that t �→ϒ( ft ) is exponentially convex in the Jensen
sense. It is easy to verify that this mapping is continuous so it is exponentially convex.

For this family of functions, B(t,r;ϒ) from (19) is equal to

B(t,r;ϒ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(√
r
(∫ b

a g(u)du
∫ b
a e−p

√
t g(p)dp−2

∫ b
a g(u)

∫ u
a e−p

√
t g(p)dpdu

)
√

t(
∫ b
a g(u)du

∫ b
a e−p

√
rg(p)dp−2

∫ b
a g(u)

∫ u
a e−p

√
rg(p)dpdu)

) 1
t−r

, t �= r,

exp

(
−1
2t −

∫ b
a g(u)du

∫ b
a pe−p

√
t g(p)dp−2

∫ b
a g(u)

∫ u
a pe−p

√
t g(p)dpdu

2
√

t(
∫ b
a g(u)du

∫ b
a e−p

√
t g(p)dp−2

∫ b
a g(u)

∫ u
a e−p

√
t g(p)dpdu)

)
, t = r,

EXAMPLE 4.3. Let t ∈ R and ft : (0,∞) → R be a function defined as

ft(u) =

{
1
t

∫ u
a eptg(p)dp, t �= 0,∫ u

a pg(p)dp, t = 0.
(25)
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Since
(

f ′t (u)
g(u)

)′
= eut , the mapping t �→ f ′t (u)

g(u) is exponentially convex (see [5]).

Analogously as in the proof of Theorem 3.8 we conclude that t �→ [u,u;Ft ] is

exponentially convex, so it is exponentially convex in the Jensen sense, where Ft = f ′t
g .

Also by Corollary 3.9 we have that t �→ϒ( ft ) is exponentially convex in the Jensen
sense. It is easy to verify that this mapping is continuous so it is exponentially convex.

For this family of functions, B(t,r;ϒ) from (19) is equal to

B(t,r;ϒ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
r(
∫ b
a g(u)du

∫ b
a eptg(p)dp−2

∫ b
a g(u)

∫ u
a eptg(p)dpdu)

t(
∫ b
a g(u)du

∫ b
a eprg(p)dp−2

∫ b
a g(u)

∫ u
a eprg(p)dpdu)

) 1
t−r

, t �= r, t,r �= 0,

(
(
∫ b
a g(u)du

∫ b
a eptg(p)dp−2

∫ b
a g(u)

∫ u
a ept g(p)dpdu)

t(
∫ b
a g(u)du

∫ b
a pg(p)dp−2

∫b
a g(u)

∫ u
a pg(p)dpdu)

) 1
t

, t �= r = 0,

exp

(
−1
t +

∫ b
a g(u)du

∫ b
a peptg(p)dp−2

∫ b
a g(u)

∫ u
a peptg(p)dpdu∫ b

a g(u)du
∫ b
a ptg(p)dp−2

∫ b
a g(u)

∫ u
a ptg(p)dpdu

)
, t = r, t,r �= 0,

exp

( ∫ b
a g(u)du

∫ b
a p2g(p)dp−2

∫ b
a g(u)

∫ u
a p2g(p)dpdu

2(
∫ b
a g(u)du

∫ b
a pg(p)dp−2

∫b
a g(u)

∫ u
a pg(p)dpdu)

)
, t = r = 0,

EXAMPLE 4.4. Let t ∈ (0,∞) and ft : (0,∞) → R be a function defined as

ft (u) =
{ −1

logt

∫ u
a t−pg(p)dp, t �= 1,∫ u

a pg(p)dp, t = 1.
(26)

Since
(

f ′t (u)
g(u)

)′
= t−u , the mapping t �→ f ′t (u)

g(u) is exponentially convex (see [5]).

Analogously as in the proof of Theorem 3.8 we conclude that t �→ [u,u;Ft ] is

exponentially convex, so it is exponentially convex in the Jensen sense, where Ft = f ′t
g .

Also by Corollary 3.9 we have that t �→ϒ( ft ) is exponentially convex in the Jensen
sense. It is easy to verify that this mapping is continuous so it is exponentially convex.

For this family of functions, B(t,r;ϒ) from (19) is equal to

B(t,r;ϒ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
logr(

∫ b
a g(u)du

∫ b
a t−pg(p)dp−2

∫ b
a g(u)

∫ u
a t−pg(p)dpdu)

logt(
∫ b
a g(u)du

∫ b
a r−pg(p)dp−2

∫ b
a g(u)

∫ u
a r−pg(p)dpdu)

) 1
t−r

, t �= r, t,r �= 1,

(
(
∫ b
a g(u)du

∫ b
a t−pg(p)dp−2

∫ b
a g(u)

∫ u
a t−pg(p)dpdu)

− logt(
∫ b
a g(u)du

∫ b
a pg(p)dp−2

∫b
a g(u)

∫ u
a pg(p)dpdu)

) 1
t−1

, t �= r = 1,

exp

(
−1

t log t−
∫ b
a g(u)du

∫ b
a pt−pg(p)dp−2

∫ b
a g(u)

∫ u
a pt−pg(p)dpdu

t(
∫ b
a g(u)du

∫ b
a t−pg(p)dp−2

∫ b
a g(u)

∫ u
a t−pg(p)dpdu)

)
, t = r, t,r �= 1,

exp

( ∫ b
a g(u)du

∫ b
a p2g(p)dp−2

∫ b
a g(u)

∫ u
a p2g(p)dpdu

−2(
∫ b
a g(u)du

∫ b
a pg(p)dp−2

∫ b
a g(u)

∫ u
a pg(p)dpdu)

)
, t = r = 1,
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