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LYAPUNOV–TYPE INEQUALITY FOR QUASILINEAR

SYSTEMS WITH ANTI–PERIODIC BOUNDARY CONDITIONS

MUSTAFA FAHRI AKTAŞ, DEVRIM ÇAKMAK AND AYDIN TIRYAKI

(Communicated by Darko Žubrinić)

Abstract. In this paper, we establish a new Lyapunov-type inequality for quasilinear systems
with the anti-periodic boundary conditions. It improves some result of Wang [17]. As an appli-
cation, we also obtain lower bounds for the eigenvalues of corresponding systems.

1. Introduction

In this paper, we state and prove a new Lyapunov-type inequality for the following
system

− (φpk

(
u′k
))′ = fk(x)φαkk (uk)

n

∏
i=1
i�=k

|ui|αki , (1.1)

where n ∈ N, φγ (u) = |u|γ−2 u, γ > 1, fk ∈C ([a,b] ,R) for k = 1,2, ...,n and x ∈ R ,
(u1(x),u2(x), ...,un(x)) is a real nontrivial solution of system (1.1) such that the anti-
periodic boundary conditions

u(m)
k (a)+u(m)

k (b) = 0 (1.2)

for m = 0,1, k = 1,2, ...,n, a,b∈R with a < b , uk for k = 1,2, ...,n are not identically
zero on [a,b], 1 < pk < ∞ and αki for k, i = 1,2, ...,n are nonnegative constants.

As an application, we have also investigated in the lower bounds on the eigenvalues
of the following problem.

Let (λ1,λ2, ...,λn) be generalized eigenvalue of problem (1.1)-(1.2) and r(x) be a
function for x ∈ R . Then, problem (1.1)–(1.2) with fk(x) = λkr(x) for k = 1,2, ...,n
and x ∈ R reduces to the following problem

− (φpk

(
u′k
))′ = λkr(x)φαkk (uk)

n

∏
i=1
i�=k

|ui|αki , (1.3)

u(m)
k (a)+u(m)

k (b) = 0 (1.4)

for m = 0,1 and k = 1,2, ...,n .
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314 M. F. AKTAŞ, D. ÇAKMAK AND A. TIRYAKI

As usual, it is easier to find upper bounds for eigenvalues than lower bounds.
In fact, they can be obtained by using elementary inequalities. Finding the estimated
lower bounds is based on giving a suitable Lyapunov inequality for the corresponding
systems.

Before we proceed with the description of our main results, we discuss a few hints
concerning the literature on the results obtained for system (1.1) and its special case
with the Dirichlet boundary conditions [2, 5–8, 10–16]. Also, some Lyapunov-type
inequalities may be obtained for partial differential equations [3, 4, 9].

First, we give the following result given by Lyapunov [11] for system (1.1) with
n = 1 and α11 = p1 = 2, that is,

−u′′1 = f1 (x)u1, (1.5)

under the Dirichlet boundary condition

u1 (a) = 0 = u1 (b) . (1.6)

THEOREM A. If f1 ∈C ([a,b] , [0,∞)) and u1 is a nontrivial solution on [a,b] for
problem (1.5)–(1.6), then the so-called Lyapunov inequality

4
b−a

�
∫ b

a
f1 (s)ds (1.7)

holds.

We know that the constant 4 in the left-hand side of inequality (1.7) cannot be
replaced by a larger number (see [10, p. 345]).

Çakmak and Tiryaki [7] obtained the following inequality for system (1.1) with
αik = αkk for k, i = 1,2, ...,n under the Dirichlet boundary conditions.

THEOREM B. [7, Theorem 1] If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1(x),
u2(x), ...,un(x)) is a nontrivial solution on [a,b] for system (1.1) with αik = αkk for
k, i = 1,2, ...,n, the Dirichlet boundary conditions

uk (a) = 0 = uk (b) (1.8)

for k = 1,2, ...,n and
n

∑
k=1

αkk

pk
= 1, (1.9)

then the inequality

n

∏
k=1

[
(ck −a)1−pk +(b− ck)

1−pk
] αk

pk �
n

∏
k=1

(∫ b

a
f +
k (s)ds

) αk
pk

(1.10)

holds, where |uk(ck)| = max
a<x<b

|uk(x)| and f +
k (x) = max{0, fk(x)} is the nonnegative

part of fk(x) for k = 1,2, ...,n.

Recently, Yang et al. [15] obtained the following inequality under the Dirichlet
boundary conditions.
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THEOREM C. [15, Theorem1] Assume that there exist nontrivial solutions (e1,e2,
...,en) of the following linear homogeneous system

ek

(
1− αkk

pk

)
−

n

∑
i=1
i�=k

αik

pk
ei = 0, (1.11)

where ek � 0 for k = 1,2, ...,n and
n
∑

k=1
e2
k > 0 . If rk , fk ∈ C ([a,b] ,R) , rk(x) > 0 ,

k = 1,2, ...,n, x ∈ R , and (u1 (x) ,u2 (x) , ... , un (x)) is a nontrivial solution on [a,b]
for the following system

− (rk(x)φpk

(
u′k
))′ = fk(x)φαkk (uk)

n

∏
i=1
i�=k

|ui|αki (1.12)

with the Dirichlet boundary conditions (1.8), then the inequality

1 <
n

∏
k=1

[
2−pk

(∫ b

a
r1/(1−pk)
k (s)ds

)pk−1 ∫ b

a
f +
k (s)ds

]ek

(1.13)

holds, where f+
k (x) = max{0, fk(x)} for k = 1,2, ...n.

Yang et al. [16] also obtained Theorem C with n = 3 under the Dirichlet boundary
conditions.

More recently, by using the anti-periodic boundary conditions instead of the Dirich-
let boundary conditions, Wang [17] obtained a new Lyapunov-type inequality for (n+1)-
th order half-linear differential equation as follows.

THEOREM D. [17, Theorem 2.1] If f1 ∈ C ([a,b] ,R) and u1 (x) is a nontrivial
solution on [a,b] for (n+1)-th order half-linear differential equation

− (φp1(u
(n)
1 ))′ = f1(x)φp1 (u1) (1.14)

with the anti-periodic boundary conditions

u(m)
1 (a)+u(m)

1 (b) = 0 (1.15)

for m = 0,1,2, ...,n, then the inequality

2

(
2

b−a

)n(p1−1)

<

∫ b

a
| f1(s)|ds (1.16)

holds.

Note that if we take αkk = pk for k = 1,2, ...,n , and for i �= k , αki = 0 for i =
1, 2, ...,n , then we obtain a single equation from system (1.1). For example, when
n = 1 in the problem (1.1)–(1.2) or (1.14)–(1.15), we have the following problem⎧⎨

⎩
−(φp1(u

′
1))

′ = f1(x)φp1 (u1) ,
u1 (a)+u1 (b) = 0,
u′1 (a)+u′1 (b) = 0.

(1.17)

If we take n = 1 in the problem (1.14)–(1.15), then we obtain the following result
from Theorem D.
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THEOREM E. [17, Corollary 2.6] If f1 ∈ C ([a,b] ,R) and u1 (x) is a nontrivial
solution on [a,b] for problem (1.17), then the inequality

2p1

(b−a)p1−1 <

∫ b

a
| f1(s)|ds (1.18)

holds.

In this paper, our motivation comes from the recent papers of Çakmak and Tiryaki
[7], Yang et al. [15] and Wang [17]. We state and prove a new Lyapunov-type inequality
for problem (1.1)–(1.2).

Since our attention is restricted to the Lyapunov-type inequality for the quasilinear
systems of differential equations, we shall assume the existence of the nontrivial solu-
tion of system (1.1). For readers who contributed to the existence of the solution of this
type system, we refer to the paper by Afrouzi and Heidarkhani [1].

2. Main Results

We state a lemma which we will use in the proof of our main result. The proof of
the following lemma proceeds along the lines of that of Lemma 3.1 in Wang [17] and
hence is omitted.

LEMMA 2.1. If (u1 (x) ,u2 (x) , ...,un (x)) is a nontrivial solution of system (1.1)
satisfying the anti-periodic boundary conditions (1.2) with m = 0,1 and k = 1,2, ...,n,
then we have

|ui (x)|αki � 2−αki (b−a)
(pi−1)αki

pi

(∫ b

a

∣∣u′i (s)∣∣pi ds

)αki
pi

(2.1)

for k, i = 1,2, ...,n.

Now, we give the main result of this paper.

THEOREM 2.1. Assume that there exist nontrivial solutions (e1,e2, ...,en) of the
following linear homogeneous system

ek

(
1− αkk

pk

)
−

n

∑
i=1
i�=k

αik

pk
ei = 0, (2.2)

where ek � 0 for k = 1,2, ...,n. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1(x),u2(x),
...,un(x)) is a nontrivial solution on [a,b] for problem (1.1)–(1.2), then the inequality

1 <
n

∏
k=1

⎡
⎢⎣2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

∫ b

a
f +
k (s)ds

⎤
⎥⎦

ek

(2.3)

holds, where f+
k (x) = max{0, fk(x)} for k = 1,2, ...,n.
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Proof. Let u(m)
k (a)+u(m)

k (b) = 0 for m = 0,1, k = 1,2, ...,n where n ∈ N, a,b ∈
R with a < b and uk for k = 1,2, ...,n are not identically zero on [a,b] . Multiplying
the k -th equation of system (1.1) by uk , integrating from a to b and by using the
anti-periodic boundary conditions (1.2), we get∫ b

a

∣∣u′k(s)∣∣pk ds =
∫ b

a
fk(s)

n

∏
i=1

|ui (s)|αki ds (2.4)

for k = 1,2, ...,n . By using the inequalities (2.1) in Lemma 2.1, we obtain∫ b

a

∣∣u′k(s)∣∣pk ds =
∫ b

a
fk(s)

n

∏
i=1

|ui (s)|αki ds �
∫ b

a
f +
k (s)

n

∏
i=1

|ui (s)|αki ds

< max
a�x�b

n

∏
i=1

|ui (x)|αki

∫ b

a
f +
k (s)ds

� 2
−

n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

n

∏
i=1

(∫ b

a

∣∣u′i (s)∣∣pi ds

) αki
pi
∫ b

a
f +
k (s)ds

(2.5)

and hence

(∫ b

a

∣∣u′k(s)∣∣pk ds

)1− αkk
pk

< 2
−

n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

n

∏
i=1
i�=k

(∫ b

a

∣∣u′i (s)∣∣pi ds

) αki
pi

×
∫ b

a
f +
k (s)ds (2.6)

for k = 1,2, ...,n . Raising the both sides of the inequality (2.6) to the power ek for each
k = 1,2, ...,n , respectively, and multiplying the resulting inequalities side by side, we
obtain

n

∏
k=1

(∫ b

a

∣∣u′k (s)
∣∣pk ds

)(1− αkk
pk

)
ek

<
n

∏
k=1

⎡
⎢⎣2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

n

∏
i=1
i�=k

(∫ b

a

∣∣u′i (s)∣∣pi ds

) αki
pi
∫ b

a
f +
k (s)ds

⎤
⎥⎦

ek

(2.7)

and hence

n

∏
k=1

(∫ b

a

∣∣u′k (s)
∣∣pk ds

)(1− αkk
pk

)
ek

<
n

∏
k=1

(∫ b

a

∣∣u′k (s)
∣∣pk ds

) n
∑

i=1
i�=k

αik
pk

ei
n

∏
k=1

⎡
⎢⎣2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

∫ b

a
f +
k (s)ds

⎤
⎥⎦

ek

. (2.8)
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It is easy to see that by using similar technique to the proof of Theorem 2.1 given by
Wang [17], we obtain the following inequalities

∫ b

a

∣∣u′k (s)
∣∣pk ds > 0 (2.9)

for k = 1,2, ...,n . Thus, we have

n

∏
k=1

(∫ b

a

∣∣u′k (s)
∣∣pk ds

)θk

<
n

∏
k=1

⎡
⎢⎣2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

∫ b

a
f +
k (s)ds

⎤
⎥⎦

ek

, (2.10)

where θk =
(

1− αkk

pk

)
ek −

n
∑
i=1
i�=k

αik

pk
ei for k = 1,2, ...,n . By assumption, system (2.2)

has nontrivial solutions (e1,e2, ...,en) such that θk = 0 for k = 1,2, ...,n , where ek � 0
for k = 1,2, ...,n and at least one e j > 0 for j = {1,2, ...,n} . Choosing one of the
solutions (e1,e2, ...,en) , we obtain the inequality (2.3) from (2.10). This completes the
proof of Theorem 2.1. �

The proof of the following result proceeds along the lines of that of Corollary 1 in
Yang et al. [15] and hence is omitted.

COROLLARY 2.1. Assume that

n
∑
i=1

αik = pk (2.11)

for k = 1,2, ...,n. If fk ∈C ([a,b] ,R) for k = 1,2, ...,n and (u1 (x) ,u2 (x) , ...,un (x)) is
a nontrivial solution on [a,b] for problem (1.1)–(1.2), then the inequality

1 <
n

∏
k=1

⎡
⎢⎣2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

∫ b

a
f +
k (s)ds

⎤
⎥⎦ (2.12)

holds, where f+
k (x) = max{0, fk(x)} for k = 1,2, ...,n.

REMARK 2.1. We don’t know if the right-hand side of inequality (2.12) can be
replaced by a smaller one arbitrarily close to 1. This is an open problem for the readers.

REMARK 2.2. If we compare Theorems A-C with Theorem 2.1 (or Corollary
2.1), it is easy to see that the main difference between these results are the boundary
conditions on the solution (u1 (x) ,u2 (x) , ...,un (x)) . Therefore, they are different from
each other.

REMARK 2.3. Since
f +(x) � | f (x)| , (2.13)
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the integrals of
b∫
a

f +
k (s)ds for k = 1,2, ...,n in the above results can also be replaced by

b∫
a
| fk(s)|ds for k = 1,2, ...,n , respectively.

REMARK 2.4. If we take n = 1 in the problem (1.1)–(1.2), then we have the
following inequality

2p1

(b−a)p1−1 <

∫ b

a
f +
1 (s)ds (2.14)

from the inequality (2.12) in Corollary 2.1. It is easy to see from the inequality (2.13)
that the inequality (2.14) is better than (1.18) in the sense that (1.18) follows from
(2.14), but not conversely. Therefore, Corollary 2.1 with n = 1 improves Theorem E
given by Wang [17].

Now, we present an application of the Lyapunov-type inequality obtained for sys-
tem (1.1).

We obtain the following result which gives lower bounds for the n -th component
of any generalized eigenvalue (λ1,λ2, ...,λn) of system (1.3). The proof of the follow-
ing theorem is based on above generalization of the Lyapunov-type inequality, as in that
of Theorem 9 of Çakmak and Tiryaki [7] and hence is omitted.

THEOREM 2.2. Assume that there exist nontrivial solutions (e1,e2, ...,en) of sys-
tem (2.2) and a function h1(λ1,λ2, ...,λn−1) such that

h1(λ1,λ2, ...,λn−1) < |λn| (2.15)

for any generalized eigenvalue (λ1,λ2, ...,λn) of problem (1.3)–(1.4), where

h1(λ1,λ2, ...,λn−1)

=

⎧⎪⎨
⎪⎩
[

n−1
∏
k=1

|λk|ek

]⎡⎢⎣ n
∏
k=1

⎛
⎜⎝2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

∫ b

a
|r (s)|ds

⎞
⎟⎠

ek
⎤
⎥⎦
⎫⎪⎬
⎪⎭

− 1
en

. (2.16)

REMARK 2.5. Since h1 is a continuous function, then h1(λ1,λ2, ...,λn−1) →+∞
as any eigenvalue of λk → 0 for k = 1,2, ...,n−1. Therefore, there exists a ball centered
in the origin such that the generalized spectrum is contained in its exterior. Also, by
rearranging terms in (2.15) we obtain

n

∏
k=1

⎡
⎢⎣2

−
n
∑
i=1

αki
(b−a)

n
∑
i=1

(pi−1)αki
pi

∫ b

a
|r (s)|ds

⎤
⎥⎦
−ek

<
n
∏
k=1

|λk|ek . (2.17)

It is clear that when the interval collapses, left-hand side of (2.17) goes to infinity.
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(1907), 203–407.
[12] P. L. NAPOLI, J. P. PINASCO, Estimates for eigenvalues of quasilinear elliptic systems, J. Differential

Equations 227 (2006), 102–115.
[13] X. H. TANG, X. HE, Lower bounds for generalized eigenvalues of the quasilinear systems, J. Math.

Anal. Appl. 385 (2012), 72–85.
[14] A. TIRYAKI, D. ÇAKMAK, M. F. AKTAŞ, Lyapunov-type inequalities for a certain class of nonlinear

systems, Comput. Math. Appl., 64 (2012), 1804–1811.
[15] X. YANG, Y. KIM, K. LO, Lyapunov-type inequality for n-dimensional quasilinear systems, Math.

Inequal. Appl. 16 (2013), 929–934.
[16] X. YANG, Y. KIM, K. LO, Lyapunov-type inequality for quasilinear systems, Appl. Math. Comput.

219 (2012), 1670–1673.
[17] Y. WANG, Lyapunov-type inequalities for certain higher order differential equations with anti-

periodic boundary conditions, Appl. Math. Letters 25 (2012), 2375–2380.

(Received May 3, 2013) Mustafa Fahri Aktaş
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