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n-EXPONENTIAL CONVEXITY OF SOME
DYNAMIC HARDY-TYPE FUNCTIONALS

KHURAM ALI KHAN, AMMARA NOSHEEN AND JOSIP PECARIC

(Communicated by M. Krni¢)

Abstract. Recently, some dynamic Hardy-type inequalities with certain kernels are studied in
[5] with the help of arbitrary time scales. We use the positive linear functionals obtained from
the results of [5] to give non trivial examples of n-exponentially convex functions.

1. Introduction and preliminary results

The theory of time scales can be studied in [1, 2, 3] and the well-known Hardy in-
equality as presented in [7] is investigated in [0, 1 1, 12, 13] under more general settings.
Some of Hardy-type inequalities are extended on time scales (see [15, 16, 20]).

We start with some notions of time scales. Any nonempty closed subset of R is
called a time scale T. A time scale T may or may not be connected, keeping in mind
the disconnection of time scales the forward and backward jump operators o,p: T — T
are defined by

o(t)=inf{se€T: s>t} and p(r)=sup{seT: s<t}.

In general, o(¢) >t and p(¢) <. The mappings p,v : T — [0, +eo) defined by

and
v(t)=1-p(1)
are called, respectively, the forward and backward graininess functions. For further
properties including the concept of delta differentiation, we refer the reader to [3, 4].
Let n € N be fixed. For each i € {1,2,...,n}, let T; denote a time scale and let
o;, p; and A; denote the forward jump operator, the backward jump operator, and the
delta differentiation operator, respectively. Let us set

Q" ={a=(ay,az,...,a,): a; € T;, 1 <i<n}.
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We call Q" an n-dimensional time scale.

If a € T, where T is an arbitrary time scale, then the set [a,00) = {r € T:a <1}
is A-measurable.

An extended real-valued function f: Q" — R := [—oo, 0] is A-measurable if for
every o € R, the set

F([=eo,a) ={t = (t1,12,...,1z) €Q": f(t) < &t}

is A-measurable. Note that f is A-measurable iff for each open set G C R, the set
fUG) ={t € Q": f(t) € G} is A-measurable. Moreover, if f: Q" — R is A-
measurable and g : / — R with I C R is a continuous function, then go f: Q" — R is
A-measurable.

Let V = [a,b) be an n-dimensional time scale interval in Q" and let f be a
bounded real-valued function on V. If f is Riemann A-integrable over V, then f
is Lebesgue A-integrable over V and

R /V FO)A =L /V FlO)A

where R and L indicate the Riemann and Lebesgue A-integrals, respectively. In par-
ticular, if [a,b) C T contains only isolated points, then

[ ron =3 (0w -nsw,
teab)

where T is an arbitrary time scale.

Let (Q,.#,ua) and (A,.Z,Aa) be two finite dimensional time scale measure
spaces. We consider the measure space (Q X A, # X £, la X Ap), Where A x £ is
o -algebra product generated by the family {E X F : E € .# ,F € £} and

(U X Aa)(E X F) = Ua(E)As(F).

Recently in [5] the following extension of Hardy-type inequality for arbitrary time
scales is constructed.

THEOREM 1.1. Assume
(Q, A ,up) and (N, L, Ap) are two time scale measure spaces, (1)
k:QxA— Ry is such that K (x /kxyAy<ooxEQ 2)

and

Ke)EW)

X0 < oo, yEA. 3)

E:Q — Ry is such that w(y) := /
Q

If ® € C(I,R) is convex, where I C R is an interval, then

| E@e(@anwar< [ we)o(r)ay
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holds for all Ax-integrable f: A — R such that f(A) C I, where

)0 = g7 ke
In the following, the entries of a vector x € R” are called x;, where 1 <i<n.
THEOREM 1.2. Let T be a time scale and assume
aib; €T,0< a; <b; <oo, 1 <i<n, Q=A:=x"[a;,bi)r, )
(2) and

u:Q — Ry is such that v(y) := A Gy(lxl))’n (( ))l;((zi)Ax < oo, yEA. (5)

If ® € C(I,R) is convex, where I C R is an interval, then

by by R by bn
/al - u(x)@((Akfxx))iGéf;___f;z;n)< / - v(y)@(f(y))*Aﬁj..iy”

(6)

holds for all Ax-integrable f: A — R such that f(A) C I, where

by
(Acf)(x / / k(x, ) f(y)Ayy - - Ay,.
ay

COROLLARY 1.3. Assume (4), (2) and (5) with the kernel k such that
k(xla"'vxn7yl7'”7yn):0 lf atgg(xl)gytgbalglgn

If ® € C(I,R) is convex, where I C R is an interval, then (6) holds for all A -integrable
f:A— R suchthat f(A) C I, where

o(x1) o (xn)
K()C):/ / k(xl7...,xn,y1,...,yn)Ayl...Ayn,

ay dan
by bn (X1 Xy V1 s Y ) U(X T -y X))
v(y) = V1 Vn Axy---Ax,
) MY Moy o<
and
A l 0'()61) O-(xn)
A =—/ / K Y15y ) V153 yn)AVL -+ Ay,
(Arf)(x) K0 Jun y (6155 Yn) f (V155 Yn) Ay -+ Ay,

THEOREM 1.4. ([5]) Assume (4) and

by by
é:Q—>R+issuchthatW(y)::/ / Mml---mn<w,yeA.
. - T1(o(xi) —ai)
=1

1
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If ® € C(I,R) is convex, where I C R is an interval, then

by n
/ / (erseesx ((Af)(xl, ’n)>AX1~~~Axn
</:1_,./C:"W(yh...,yn)d)(f(yl,...,yn))Ayl..,Ayn %

holds for all Ax-integrable f: A — R such that f(A) C I, where

~ 1 o(xy) o (xn)
@) = —— [ / FOL - yn)Ay1 - By,

(o(x;) —a;) "™

=

1

REMARK 1.5. Under the considerations of Theorem 1.1, we have

Y1(@) = WO~ [ EXD () () Ax 0.

From Theorem 1.2, we have

R R
B /”1... /b"u<x>q><<Akf><x>>

a an o(xy) - 0(xy)

From Theorem 1.4, we have

Z/ubl.~'/b"W(yl""’yn>q)(f(3’1"“ayn))A}’1~--Ayn
1 ) ’
/ éxl’ Xn)® <(Af)(x1"'~vxn)>AX1---Axn20.

For simplicity, we use Y(®) instead of Y;(®) V i€ {1,2,3}.
Hence, for any convex function ® € C(I,R),

Y(®) >

e

2. n-exponential convexity

The notion of n-exponentially convex function and the following properties of ex-
ponentially convex function defined on an interval / C R, are given in [17].

DEFINITION 1. A function g: I — R is called n-exponentially convex in the Jensen

sense if .
2 a <x1+xj) >0

i,j=1
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holds for every a; € R and every x; €1, i € {1,2,...,n}.
A function g : 1 — R is n-exponentially convex if it is n-exponentially convex in
the Jensen sense and continuous on /.

REMARK 2.1. From the definition it is clear that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also, n-exponentially con-
vex functions in the Jensen sense are m-exponentially convex in the Jensen sense for
every me N, m < n.

DEFINITION 2. A function g : I — R is exponentially convex in the Jensen sense,
if it is n-exponentially convex in the Jensen sense for all n € N.

A function g : I — R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 2.2. Itis easy to see that a positive function g : I — R is log-convex in
the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense, that is

x4+
aig(x) +2aaxg (Ty) +a3g(y) =0

holds for every aj,a, € R and x,y € I.
Similarly, if g is 2-exponentially convex, then g is log-convex. Conversely, if g
is log-convex and continuous, then g is 2-exponentially convex.

Divided differences are fertile to study functions having different degree of smooth-
ness.

DEFINITION 3. The second order divided difference of a function g:7 — R at
mutually different points yg,y1,y> € I is defined recursively by

i:g) =g(vi), i€{0,1,2}

Visvit1:8] = slyir1) —80) —g(yi), i€{0,1}
Yit1 — Vi
V1,v2:8] = o, y158]
Y2—Yo

Vo, y1,¥2:8] = ®)

REMARK 2.3. The value [yo,y1,y2;¢] is independent of the order of the points
y0,Y1, and yo. By taking limits this definition may be extended to include the cases
in which any two or all three points coincide as follows: V yg, y;, y» € I such that

Y2 # Y0

i

8(»2) —8(o) — g (o) (y2 — o)
(y2—y0)?

lim [yo,y1,y2:8] = [Yo,Y0,Y2:&] =
Y1—=Yo
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provided that g’ exists, and furthermore, taking the limits y; — yo,i € {1,2} in (8), we
get

g (o)

b’07y07y0;g] = yh_I};O[yanlayZ;g] = T forie {172}

provided that g” exists on /.

In [9], the authors describe the n-exponential convexity for the functionals ob-
tained from the inequalities of Hardy and Boas types.

In this paper we utilize the functional Y'(®) given in Remark 1.5 to establish the
n-exponential convexity via theory of time scales. Therefore our work is a continuation
of results in [9].

THEOREM 2.4. Assume J C R is an interval, and assume A = {¢; |t € J} is
a family of continuous functions defined on an interval I C R, such that the function
t — [Yo,y1,¥2;¢¢] (t €J) is n-exponentially convex in the Jensen sense on J for every
three mutually different points yo,y1,y2 € I. Consider Y(®) as given in Remark 1.5.
Then t — Y(¢;) (r €J) is an n-exponentially convex function in the Jensen sense on
J.

Also the function t — Y(¢) (for any t € J) is continuous, therefore it is n-
exponentially convex on J.

t+t
Proof. Letty,t; €J, ty := kT

the function @ on I by

and by, b; € R for k,l € {1,2,...,n}, and define

= 2 bkbl¢tk[~
k=1

Then o is continuous on / being the linear combination of continuous functions. Also
by hypothesis the function ¢ — [yo,y1,y2;¢¢] (t €J) is n-exponentially convex in the
Jensen sense, therefore we have

n
Yosyi.y2s @] = Y bibi[yo,y1,y2:91,] =0,
Ki=1

which implies that @ is a convex function on I. Therefore we have Y(®) > 0, which
yields by the linearity of Y, that

2 bkblr((blkz) 2 0.
k=1

We conclude that the function  — Y(¢;) (¢ €J) is an n-exponentially convex function
in the Jensen sense on J. [

As a consequence of the above theorem we can give the following corollaries.
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COROLLARY 2.5. Assume J C R is an interval, and assume A= {¢, |t € J} is
a family of continuous functions defined on an interval 1 C R, such that the function
t — [Yo,y1,y2: 0] (¢t €J) is exponentially convex in the Jensen sense on J for every
three mutually different points yo,y1,v2 € I. Consider Y(®) as given in Remark 1.5.
Thent — Y(¢,) (t €J) is an exponentially convex function in the Jensen sense on J.

As the function t — Y(¢,) (t € J) is continuous, therefore exponentially convex
onJ.

COROLLARY 2.6. Assume J C R is an interval, and assume A= {¢; :t € J} is
a family of continuous functions defined on an interval I C R, such that the function
t — [Yo,y1,¥2;¢¢] (t €J) is 2-exponentially convex in the Jensen sense on J for every
three mutually different points yo,y1,y2 € I. Consider Y(®) as given in Remark 1.5.
Then the following two statements hold:

(i) As the function t — Y(¢) (t € J) is continuous, therefore it is 2-exponentially
convex on J, and thus log-convex, i.e.,

YU (9,) < YU (9,) Y1) (9) )
for p,q,r €J suchthat p < g <r.

(ii) If the function t — Y (¢;) (¢t € J) is positive, then for every s,t,u,v € J, such that
s<u andt <v, we have

ugr (Y, A) <uyo(Y,A), (10)

where
1
=

Y(9s)
Y(¢r

X Y =1
P <¢s> T

for o5, ¢ € A. Also we consider that the function t — Y(¢y) is differentiable
when t = s.

ug, (Y,A) = (11)

&lg‘ \./

Proof.
(i) See Remark 2.2 and Theorem 2.4.

(i) From the definition of a convex function y on J, we have the following inequal-
ity (see [18, page 2])

) —v@) v —v)

< ) 12
s—t u—v (12)
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Vs,t,u,v€J suchthat s <u, t <v, s#t, u#v.
By (i), s — Y(¢s), s € J is log-convex, and hence using y(s) =1logY(¢s), s € J
in (12), we have

logY'(¢s) —logY(¢y) < logY'(¢,) —logY'(¢y) (13)
s—1 u—v

for s <u,t <v,s#t,u+#v, whichis equivalent to (10). For s =¢ or u = v, (10)
follows from (13) by taking limit. [J

REMARK 2.7. Note that the results from Theorem 2.4, Corollary 2.5, Corollary
2.6 are valid when two of the points yg,y;,y2 € I coincide, say y; = yg, for a family of
differentiable functions ¢ such that the function # — [yo,y1,y2;¢] is n-exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in
the Jensen sense), and moreover, they are also valid when all three points coincide for
a family of twice differentiable functions with the same property. The proofs can be
obtained by recalling Remark 2.3 and suitable characterization of convexity.

The following result is given in [8].

THEOREM 2.8. Assume J C R is an interval, and assume A = {¢ |1t € J} is
a family of twice differentiable functions defined on an interval 1 C R such that the
function t — ¢/"(x) (¢t € J) is exponentially convex for every fixed x € 1. Then the
Sunction t — [yo,y1,y2;] (t €J) is exponentially convex in the Jensen sense for any
three points yo,y1,y2 € 1.

3. Applications to Cauchy means

In this section, first we give the mean value theorems corresponding to the Hardy-
type functional Y'(®) given in Remark 1.5.

THEOREM 3.1. Let [a,b] C R and consider the linear functional Y(®) as defined
in Remark 1.5 for ® = g € (C?[a,b],R), then there exists & € [a,b] such that

l//

Y(g)=58"(6)Y (x?).

Proof. The idea of proof is same as given in [8]. [

THEOREM 3.2. Let [a,b] C R and consider the linear functional Y (®) as defined
in Remark 1.5 for g,h € C*[a,b|. Then there exists & € [a,b] such that

S = (14)

provided that Y (h) # 0.
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Proof. The idea of proof is same as given in [8]. [J

1
— has inverse function. Then (14) gives

(5 G)

Now, we generate new Cauchy means with the help of some classes of functions from
[17].

Suppose that =— ?

EXAMPLE 3.3. Assume I =R and consider the class of continuous convex func-
tions
Ap:={¢::R—[0,0) |1 € R},

where |
ﬁetx, l7é07
0 =1
E)Cz; t=0

Then 7 +— ¢/ (x) (1 € R) is exponentially convex for every fixed x € R (see [10]), thus
by Theorem 2.8, the function ¢ — [yo,y1,y2; ], t € R is exponentially convex in the
Jensen sense for every three mutually different points yg,y1,y2 € R.

By applying Corollary 2.5 with A = A, we get the exponential convexity of
t — Y(¢¢) (r € R) in the Jensen sense. This mapping is also differentiable, therefore
exponentially convex, and the expression in (11) has the form

1

(Figg) 5o

(1A = ( (id ¢, _%) S=1 40,
S

id ¢o o
<3Y’¢o) =r=0

where “id” means the identity function on R.

From (10) we have the monotonicity of the functions u, (Y,A1) in both parame-
ters.

Suppose Y(¢) >0 (r € R), and let

M, (Y, A1) :=loguy, (Y,A); st €R.

Then from (15) we have
a < ms,t(YaAl) < b7

and thus 9, (Y,A;) (s,r € R) are means. The monotonicity of these means is fol-
lowed by (10).
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EXAMPLE 3.4. Assume I = (0,e) and consider the class of continuous convex

functions
Ay ={y; : (0,0) >R |1 € R},

where y
; 1#0,1,
. t(t—1) 7
Y (x) = —logx; 1 =0,
xlogx; t =1.

Then 7 — y/(x) = X2 = ¢?~21°2% (; € R) is exponentially convex for every
fixed x € (0,00).

By similar arguments as given in Example 3.3 we get the exponential convexity of
t— Y(y;) (r € R) in the Jensen sense. This mapping is differentiable too, therefore
exponentially convex. From (11) we have the following Cauchy means

(16D [ OO A~ pEE(RWPAN F
My = <s<s— D) Jyw0) (F()) Ay — fgé(x>(R(x))’Ax) ps#1 7201,

(122 o)) 08(F0)) A~ fo E (R log (R(x)) Ax
Mo =exp <s<s—1>+ Taw) (F0) Ay— Jor E(0)(R(x))"Ax )
s#0,1,
(oL D)0 A - SRR A\
M“O‘(s<s—1>wa<y>1og<f<y>>Ay—fgax)log( (x))Ax) ps# 0,
N v ) (FO)) Ay — Ja & () (R(x))'Ax =
M"’l‘<s<s—1>wa<y> () 102(7()Ay — Ja & (OR(x) log (R (x))Ax) »s70.1,
v — a0 0) 0808y  fa& (RE)log (RE) Av
= Tow0)Tog(F()Ay — JoE(v)log (R Ax
P L fw()f0)(log(F()))*Ay — Jo & ()R(x) log (R <>>>2Ax
7 2T o)) og(f0)AY — Jo & (R() log (R( ’

) Ax
1 [yw()(og(f(0))*Ay — [o§(x) log ) )))*Ax
2 Jaw()log(f(n)Ay — fo & (x)log (R

Moo = exp (1 + =

where

R(x) = (Acf)(x) =

and w(y )::/Qk(x y()f)( )Ax
(s,

1
0] /Ak(X,y)f(y)Ay

The means My, (s, € R) are continuous, symmetric and monotone in both pa-

rameters (using (10)).
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For the class A,, we have

S ([ [ gwmeras): pro
Yi(¢p) =4 — [yw(y)log f(»)Ay + Jo & (x)log (R(x)) Ax; p =0, (16)

[ w0 0gf)ay — [ EIRE)log (REx) Ax: p 1.
A Q

For (16), (9) gives the following improvement result; for p =0 < g < 1 =r, we have

ﬁ (/Aw(}’)fq(y)Ay—/Q’g’(x)(R(x))qAx>

N

(- [ woroesoia+ | é(x)log(R(x))Ax>l_q -
X( /A wy)f(y)log f(v)Ay — /Q E(x)R(x)log (R(x)) Ax)q,

If g<0<1or0<1<gq,then we have reverse inequality in (17).
Observe that (17) is a refinement of inequality given in [5, Corollary 3.3].
Similar results can be written for i € {2,3}.

Particularly, for i =3, n =1, we can write

b b
ﬁ (/W(y)f”(y)Ay—/cS(x) (I?(x)>pr) ; p#£0,1,

b b

Y3(0p) = — [w)log f(ay+ [Ewlog (Rx))ax p=0, (18)

a

b

b
[ 010108 10y — [ E@R()tog (R(x)) A p=1.

where
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For 0 < g < 1, using (18) in (9) we have the following inequality

b b
— ( [F0rma- [ (ﬁ<x>)qAx)
b ' b ' I=q
< (— [0 og f(ay+ / £(w)1og (R(x)) Ax) (19)

a

b q
(/ T () log £ (1) Ay - /é (x)1og (R <>>)Ax).

a
If g<0<1or0<1<gq,then we have reverse inequality in (19).
4. Applications to time scales consists of isolated points
Now, we consider some particular cases corresponding to examples from [5].
Let us take Q = A = [a,0)1 = [0,00) T, a > 0. Further assume that time scale

T consists of isolated points.
In this case (18) takes the form

o) (g) T 0~ 3 5<x><§<x>>"u<x>>; p#0.1,

Y3(9,) = —1og< m (f(y))ﬂ”“b’))Hog ({n <ﬁ<x>>§<x’“(")>; p=0,

[avb)']l’

log< m (f(y))“”f@“@’) —log< n <ﬁ<x>>§<’“’”">“<’“’); p=1,
[u

[a,b) b)p
(20)
where
= 1
R
) (G(x)_ay%hﬂy)u(y))
and w(y ( Z E(x )
XE[y,00)T —da
Also,for0<g< 1, (19) takes the form
_ RN
ala- ><[a§ FONION'0) - ., ERE) u(X))
I (RSN (o) oo\ e
< | 10g | 2= log | 2 ]
I (f(y))"OH0) (R(a))EORWHG)
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1
For T=hN={hn:ne N} with h >0, a=h,and &(x) = @, (20) takes the form

Ta(9y) = —m(ﬁuww>ﬂ%@iﬂmﬁ);wﬂ

q(g—1) \ ;5 o
o 1 I—q oo Fnh q
I (R(nh)) ™ I (f(nh)) 5" @2)
< | log nz.iil log nZI—M )
h))n = Wil
T (f(nh) 11 (Rum) ™

where

R(nh) = % 2 f(kh).
k=1

For T =N? = {n?:n € N} with a =1 and

2(0(x)— 1)
(0(x) =x)*(2v/x+3)’

) =

(20) takes the form

- - 2n(n+2 1 p
p(pl—l) (nél ()= % m <R(n2)> ) A0

n=1

- o _on(nt2)
Y3(¢p) = —log ( I1 f(n2)) +log < T (R(n?)) (2n+1)(2n+3)) p=0,

o 2 o 2n(n+2) 3 n2
log (H f(nz)f(n )> —log (H (R(nz))(z"“)(z””)R( )> ; p=1.
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For 0 < g < 1, (21) takes the form

1 & s 2n(n+2) ~ 50\
alqg—1) (E § 2n+1)(2n+3) (R(” )> )
- n(n l—q oo
Ml (Rr2) =5 fi o)\
< frog | H— log | —"— 5 :
I1 f(n?) Il (ﬁ(ﬁ))W”" )
n=1 n—1
(23)
where
3 (2k+1)f (k)
= oy k=1
R(n?) YRR

For T=AN={A":neN} with A > 1, a=2 and

YS((Pp) _ —log (ﬁf()ﬁ)) +10g (ﬁ (R'()Ln))ln(k"_l)> . p=0,
n=1

n=1

log (ﬁ <f<z">>f<“>> ~log (ﬁ <k’<x">>l"“"‘”ﬁ“”) —

For 0 < g < 1, (21) takes the form

n=1 n=1

1 ad n . —n/qn o749
m(Z(ﬂ?L DT =2 AT A= 1)(R(A )))

o __ —ngn_ 1—q had n a
I (R(amy* "0 T (")) ™"
< flog | =— log | — njl A—n(An—1)R(A) ’
T 7" T (R(A™)
where
(A—1) T AT F(2%)
R = =

A1
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REMARK 4.1. (a)If g <0< 1 or 0 <1 < g, then we have reverse inequalities in
(22), (23) and (24).

(b) The inequalities (22), (23) and (24) are refinements of (5.9), first inequality
given in Example 5.11, and (5.11) of [5] respectively.

EXAMPLE 4.2. Assume I = (0,e) and consider the class of continuous convex
functions
Az = {nl : (07°°) - (0’00) ‘t € (0’°°>}7

where
t—X
102 s £ 1
e (x) := x‘; !
—; t=1.
2

t—n/(x) (t € (0,00)) is exponentially convex for every fixed x € (0,), being
the restriction of the Laplace transform of a nonnegative function (see [10] or [19] page
210).

We can get the exponential convexity of £ — Y(y;) (1 € RT) as in Example 3.3.
For the class A3, (11) has the form

(Fd) s,

2 Y(idny
arlYsha) = P <_ slogs B sg(;ll))) ps=t# L,

o o)

The monotonicity of u,(Y,A3) (s, € (0,00)) comes from (10).
Suppose Y'(1;) >0 (¢ € (0,00)), and define

M, (Y, Az) := —L(s,1)logus, (Y,A3), s, € (0,00),
where L(s,7) is the well known logarithmic mean

s—1 y
T SFL
L(s,t) := ¢ logs—log?
t, s=1.

From (15) we have
a<My,(Y,A3) <b, s,1€(0,00),

and therefore we get means.

EXAMPLE 4.3. Assume I = (0,°) and consider the class of continuous convex
functions

Ag = {1 :(0,00) = (0,00) |7 € (0,00)},
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where

e Vi

%(x) = ;

1 (x) = eV, 1 € (0,00) is exponentially convex for every fixed x € (0,c0),
being the restriction of the Laplace transform of a non-negative function (see [10] or
[19] page 214).

As before # — Y(y;) (t € RT) is exponentially convex and differentiable. For the
class A4, (11) becomes

L

() " 7

where ‘id’ means the identity function on (0,e0). The monotonicity of u,(Y,A4)
(5,1 € (0,00)) is followed by (10).
Suppose Y'(1;) >0 (¢ € (0,0)) and define

us,[ (Y7 A4) =

M, (Y, Ag) = —(V/s+ Vi) logug(Y,A4), 5,1 € (0,00).

Then (15) yields that
a< SD’ts,t (T7A4) < b7

thus we have new means.
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