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n–EXPONENTIAL CONVEXITY OF SOME

DYNAMIC HARDY–TYPE FUNCTIONALS

KHURAM ALI KHAN, AMMARA NOSHEEN AND JOSIP PEČARIĆ

(Communicated by M. Krnić)

Abstract. Recently, some dynamic Hardy-type inequalities with certain kernels are studied in
[5] with the help of arbitrary time scales. We use the positive linear functionals obtained from
the results of [5] to give non trivial examples of n -exponentially convex functions.

1. Introduction and preliminary results

The theory of time scales can be studied in [1, 2, 3] and the well-known Hardy in-
equality as presented in [7] is investigated in [6, 11, 12, 13] under more general settings.
Some of Hardy-type inequalities are extended on time scales (see [15, 16, 20]).

We start with some notions of time scales. Any nonempty closed subset of R is
called a time scale T . A time scale T may or may not be connected, keeping in mind
the disconnection of time scales the forward and backward jump operators σ ,ρ : T→T

are defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

In general, σ(t) � t and ρ(t) � t . The mappings μ ,ν : T → [0,+∞) defined by

μ(t) = σ(t)− t

and
ν(t) = t −ρ(t)

are called, respectively, the forward and backward graininess functions. For further
properties including the concept of delta differentiation, we refer the reader to [3, 4].

Let n ∈ N be fixed. For each i ∈ {1,2, . . . ,n} , let Ti denote a time scale and let
σi , ρi and Δi denote the forward jump operator, the backward jump operator, and the
delta differentiation operator, respectively. Let us set

Ωn = {a = (a1,a2, . . . ,an) : ai ∈ Ti, 1 � i � n}.
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We call Ωn an n -dimensional time scale.
If a ∈ T , where T is an arbitrary time scale, then the set [a,∞) = {t ∈ T : a � t}

is Δ-measurable.
An extended real-valued function f : Ωn → R := [−∞,∞] is Δ-measurable if for

every α ∈ R , the set

f−1([−∞,α)) = {t = (t1,t2, . . . ,tn) ∈ Ωn : f (t) < α}
is Δ-measurable. Note that f is Δ-measurable iff for each open set G ⊂ R , the set
f−1(G) = {t ∈ Ωn : f (t) ∈ G} is Δ-measurable. Moreover, if f : Ωn → R is Δ-
measurable and g : I → R with I ⊂ R is a continuous function, then g ◦ f : Ωn → R is
Δ-measurable.

Let V = [a,b) be an n -dimensional time scale interval in Ωn and let f be a
bounded real-valued function on V . If f is Riemann Δ-integrable over V , then f
is Lebesgue Δ-integrable over V and

R
∫
V

f (t)Δt = L
∫
V

f (t)Δt,

where R and L indicate the Riemann and Lebesgue Δ-integrals, respectively. In par-
ticular, if [a,b) ⊂ T contains only isolated points, then∫ b

a
f (t)Δt = ∑

t∈[a,b)
(σ(t)− t) f (t),

where T is an arbitrary time scale.
Let (Ω,M ,μΔ) and (Λ,L ,λΔ) be two finite dimensional time scale measure

spaces. We consider the measure space (Ω×Λ,M ×L ,μΔ ×λΔ) , where M ×L is
σ -algebra product generated by the family {E×F : E ∈ M ,F ∈ L } and

(μΔ ×λΔ)(E ×F) = μΔ(E)λΔ(F).

Recently in [5] the following extension of Hardy-type inequality for arbitrary time
scales is constructed.

THEOREM 1.1. Assume

(Ω,M ,μΔ) and (Λ,L ,λΔ) are two time scale measure spaces, (1)

k : Ω×Λ → R+ is such that K(x) :=
∫

Λ
k(x,y)Δy < ∞, x ∈ Ω (2)

and

ξ : Ω → R+ is such that w(y) :=
∫

Ω

k(x,y)ξ (x)
K(x)

Δx < ∞, y ∈ Λ. (3)

If Φ ∈ C(I,R) is convex, where I ⊂ R is an interval, then∫
Ω

ξ (x)Φ((Ak f )(x))Δx �
∫

Λ
w(y)Φ( f (y))Δy
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holds for all λΔ -integrable f : Λ → R such that f (Λ) ⊂ I , where

(Ak f )(x) =
1

K(x)

∫
Λ

k(x,y) f (y)Δy.

In the following, the entries of a vector x ∈ R
n are called xi , where 1 � i � n .

THEOREM 1.2. Let T be a time scale and assume

ai,bi ∈ T, 0 � ai < bi � ∞, 1 � i � n, Ω = Λ := ×n
i=1[ai,bi)T, (4)

(2) and

u : Ω → R+ is such that v(y) :=
∫

Ω

y1 · · ·ynk(x,y)u(x)
σ(x1) · · ·σ(xn)K(x)

Δx < ∞, y ∈ Λ. (5)

If Φ ∈ C(I,R) is convex, where I ⊂ R is an interval, then∫ b1

a1

· · ·
∫ bn

an

u(x)Φ((Âk f )(x))
Δx1 · · ·Δxn

σ(x1) · · ·σ(xn)
�
∫ b1

a1

· · ·
∫ bn

an

v(y)Φ( f (y))
Δy1 · · ·Δyn

y1 · · ·yn
(6)

holds for all λΔ -integrable f : Λ → R such that f (Λ) ⊂ I , where

(Âk f )(x) :=
1

K(x)

∫ b1

a1

· · ·
∫ bn

an

k(x,y) f (y)Δy1 · · ·Δyn.

COROLLARY 1.3. Assume (4), (2) and (5) with the kernel k such that

k(x1, . . . ,xn,y1, . . . ,yn) = 0 if ai � σ(xi) � yi � b, 1 � i � n.

If Φ∈C(I,R) is convex, where I ⊂R is an interval, then (6) holds for all λΔ -integrable
f : Λ → R such that f (Λ) ⊂ I , where

K(x) =
∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

k(x1, . . . ,xn,y1, . . . ,yn)Δy1 · · ·Δyn,

v(y) = y1 · · ·yn

∫ b1

y1

· · ·
∫ bn

yn

k(x1, . . . ,xn,y1, . . . ,yn)u(x1, . . . ,xn)
σ(x1) · · ·σ(xn)K(x1, . . . ,xn)

Δx1 · · ·Δxn

and

(Âk f )(x) =
1

K(x)

∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

k(x,y1, . . . ,yn) f (y1, . . . ,yn)Δy1 · · ·Δyn.

THEOREM 1.4. ([5]) Assume (4) and

ξ : Ω → R+ is such that w̃(y) :=
∫ b1

y1

· · ·
∫ bn

yn

ξ (x1, . . . ,xn)
n
∏
i=1

(σ(xi)−ai)
Δx1 · · ·Δxn < ∞, y ∈ Λ.
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If Φ ∈ C(I,R) is convex, where I ⊂ R is an interval, then

∫ b1

a1

· · ·
∫ bn

an

ξ (x1, . . . ,xn)Φ
(
(Ã f )(x1, . . . ,xn)

)
Δx1 · · ·Δxn

�
∫ b1

a1

· · ·
∫ bn

an

w̃(y1, . . . ,yn)Φ( f (y1, . . . ,yn))Δy1 · · ·Δyn (7)

holds for all λΔ -integrable f : Λ → R such that f (Λ) ⊂ I , where

(Ã f )(x) :=
1

n
∏
i=1

(σ(xi)−ai)

∫ σ(x1)

a1

· · ·
∫ σ(xn)

an

f (y1, . . . ,yn)Δy1 · · ·Δyn.

REMARK 1.5. Under the considerations of Theorem 1.1, we have

ϒ1(Φ) :=
∫

Λ
w(y)Φ( f (y))Δy−

∫
Ω

ξ (x)Φ(Ak f )(x))Δx � 0.

From Theorem 1.2, we have

ϒ2(Φ) :=
∫ b1

a1

· · ·
∫ bn

an

v(y)Φ( f (y))
Δy1 · · ·Δyn

y1 · · ·yn

−
∫ b1

a1

· · ·
∫ bn

an

u(x)Φ((Âk f )(x))
Δx1 · · ·Δxn

σ(x1) · · ·σ(xn)
� 0.

From Theorem 1.4, we have

ϒ3(Φ) :=
∫ b1

a1

· · ·
∫ bn

an

w̃(y1, . . . ,yn)Φ( f (y1, . . . ,yn))Δy1 · · ·Δyn

−
∫ b1

a1

· · ·
∫ bn

an

ξ (x1, . . . ,xn)Φ
(
(Ã f )(x1, . . . ,xn)

)
Δx1 · · ·Δxn � 0.

For simplicity, we use ϒ(Φ) instead of ϒi(Φ) ∀ i ∈ {1,2,3} .
Hence, for any convex function Φ ∈C(I,R) ,

ϒ(Φ) � 0.

2. n -exponential convexity

The notion of n-exponentially convex function and the following properties of ex-
ponentially convex function defined on an interval I ⊂ R , are given in [17].

DEFINITION 1. A function g : I →R is called n-exponentially convex in the Jensen
sense if

n

∑
i, j=1

aia jg

(
xi + x j

2

)
� 0
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holds for every ai ∈ R and every xi ∈ I , i ∈ {1,2, . . . ,n}.
A function g : I → R is n-exponentially convex if it is n-exponentially convex in

the Jensen sense and continuous on I .

REMARK 2.1. From the definition it is clear that 1-exponentially convex func-
tions in the Jensen sense are in fact nonnegative functions. Also, n -exponentially con-
vex functions in the Jensen sense are m-exponentially convex in the Jensen sense for
every m ∈ N, m � n .

DEFINITION 2. A function g : I →R is exponentially convex in the Jensen sense,
if it is n -exponentially convex in the Jensen sense for all n ∈ N .

A function g : I → R is exponentially convex if it is exponentially convex in the
Jensen sense and continuous.

REMARK 2.2. It is easy to see that a positive function g : I → R is log-convex in
the Jensen sense if and only if it is 2-exponentially convex in the Jensen sense, that is

a2
1g(x)+2a1a2g

(
x+ y

2

)
+a2

2g(y) � 0

holds for every a1,a2 ∈ R and x,y ∈ I .
Similarly, if g is 2-exponentially convex, then g is log-convex. Conversely, if g

is log-convex and continuous, then g is 2-exponentially convex.

Divided differences are fertile to study functions having different degree of smooth-
ness.

DEFINITION 3. The second order divided difference of a function g : I → R at
mutually different points y0,y1,y2 ∈ I is defined recursively by

[yi;g] = g(yi), i ∈ {0,1,2}

[yi,yi+1;g] =
g(yi+1)−g(yi)

yi+1 − yi
, i ∈ {0,1}

[y0,y1,y2;g] =
[y1,y2;g]− [y0,y1;g]

y2 − y0
. (8)

REMARK 2.3. The value [y0,y1,y2;g] is independent of the order of the points
y0,y1 , and y2 . By taking limits this definition may be extended to include the cases
in which any two or all three points coincide as follows: ∀ y0 , y1 , y2 ∈ I such that
y2 �= y0

lim
y1→y0

[y0,y1,y2;g] = [y0,y0,y2;g] =
g(y2)−g(y0)−g

′
(y0)(y2 − y0)

(y2− y0)
2
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provided that g′ exists, and furthermore, taking the limits yi → y0, i ∈ {1,2} in (8), we
get

[y0,y0,y0;g] = lim
yi→y0

[y0,y1,y2;g] =
g
′′
(y0)
2

for i ∈ {1,2}

provided that g
′′

exists on I .

In [9], the authors describe the n -exponential convexity for the functionals ob-
tained from the inequalities of Hardy and Boas types.

In this paper we utilize the functional ϒ(Φ) given in Remark 1.5 to establish the
n -exponential convexity via theory of time scales. Therefore our work is a continuation
of results in [9].

THEOREM 2.4. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is
a family of continuous functions defined on an interval I ⊂ R , such that the function
t → [y0,y1,y2;φt ] (t ∈ J) is n-exponentially convex in the Jensen sense on J for every
three mutually different points y0,y1,y2 ∈ I . Consider ϒ(Φ) as given in Remark 1.5.
Then t → ϒ(φt ) (t ∈ J) is an n-exponentially convex function in the Jensen sense on
J .

Also the function t → ϒ(φt ) (for any t ∈ J ) is continuous, therefore it is n-
exponentially convex on J .

Proof. Let tk, tl ∈ J, tkl :=
tk + tl

2
and bk,bl ∈ R for k, l ∈ {1,2, . . . ,n}, and define

the function ω on I by

ω :=
n

∑
k,l=1

bkblφtkl .

Then ω is continuous on I being the linear combination of continuous functions. Also
by hypothesis the function t → [y0,y1,y2;φt ] (t ∈ J) is n -exponentially convex in the
Jensen sense, therefore we have

[y0,y1,y2;ω ] =
n

∑
k,l=1

bkbl[y0,y1,y2;φtkl ] � 0,

which implies that ω is a convex function on I . Therefore we have ϒ(ω) � 0, which
yields by the linearity of ϒ , that

n

∑
k,l=1

bkblϒ(φtkl ) � 0.

We conclude that the function t → ϒ(φt ) (t ∈ J) is an n -exponentially convex function
in the Jensen sense on J . �

As a consequence of the above theorem we can give the following corollaries.
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COROLLARY 2.5. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is
a family of continuous functions defined on an interval I ⊂ R , such that the function
t → [y0,y1,y2;φt ] (t ∈ J) is exponentially convex in the Jensen sense on J for every
three mutually different points y0,y1,y2 ∈ I . Consider ϒ(Φ) as given in Remark 1.5.
Then t → ϒ(φt ) (t ∈ J) is an exponentially convex function in the Jensen sense on J .

As the function t → ϒ(φt ) (t ∈ J) is continuous, therefore exponentially convex
on J .

COROLLARY 2.6. Assume J ⊂ R is an interval, and assume Λ = {φt : t ∈ J} is
a family of continuous functions defined on an interval I ⊂ R , such that the function
t → [y0,y1,y2;φt ] (t ∈ J) is 2 -exponentially convex in the Jensen sense on J for every
three mutually different points y0,y1,y2 ∈ I . Consider ϒ(Φ) as given in Remark 1.5.
Then the following two statements hold:

(i) As the function t → ϒ(φt ) (t ∈ J) is continuous, therefore it is 2 -exponentially
convex on J , and thus log-convex, i.e.,

ϒ(r−p)(φq) � ϒ(r−q)(φp)ϒ(q−p)(φr) (9)

for p,q,r ∈ J such that p < q < r .

(ii) If the function t → ϒ(φt ) (t ∈ J) is positive, then for every s,t,u,v ∈ J , such that
s � u and t � v, we have

us,t(ϒ,Λ) � uu,v(ϒ,Λ), (10)

where

us,t(ϒ,Λ) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
ϒ(φs)
ϒ(φt)

) 1
s−t

; s �= t,

exp

(
d
dsϒ(φs)
ϒ(φs)

)
; s = t

(11)

for φs,φt ∈ Λ . Also we consider that the function t → ϒ(φt) is differentiable
when t = s.

Proof.

(i) See Remark 2.2 and Theorem 2.4.

(ii) From the definition of a convex function ψ on J , we have the following inequal-
ity (see [18, page 2])

ψ (s)−ψ (t)
s− t

� ψ (u)−ψ (v)
u− v

, (12)
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∀s, t,u,v ∈ J such that s � u , t � v , s �= t , u �= v .
By (i), s→ ϒ(φs) , s ∈ J is log-convex, and hence using ψ(s) = logϒ(φs) , s ∈ J
in (12), we have

logϒ(φs) − logϒ(φt )
s− t

� logϒ(φu)− logϒ(φv)
u− v

(13)

for s � u, t � v, s �= t, u �= v , which is equivalent to (10). For s = t or u = v , (10)
follows from (13) by taking limit. �

REMARK 2.7. Note that the results from Theorem 2.4, Corollary 2.5, Corollary
2.6 are valid when two of the points y0,y1,y2 ∈ I coincide, say y1 = y0 , for a family of
differentiable functions φt such that the function t → [y0,y1,y2;φt ] is n -exponentially
convex in the Jensen sense (exponentially convex in the Jensen sense, log-convex in
the Jensen sense), and moreover, they are also valid when all three points coincide for
a family of twice differentiable functions with the same property. The proofs can be
obtained by recalling Remark 2.3 and suitable characterization of convexity.

The following result is given in [8].

THEOREM 2.8. Assume J ⊂ R is an interval, and assume Λ = {φt | t ∈ J} is
a family of twice differentiable functions defined on an interval I ⊂ R such that the
function t 	→ φ ′′

t (x) (t ∈ J) is exponentially convex for every fixed x ∈ I . Then the
function t 	→ [y0,y1,y2;φt ] (t ∈ J) is exponentially convex in the Jensen sense for any
three points y0,y1,y2 ∈ I .

3. Applications to Cauchy means

In this section, first we give the mean value theorems corresponding to the Hardy-
type functional ϒ(Φ) given in Remark 1.5.

THEOREM 3.1. Let [a,b]⊂R and consider the linear functional ϒ(Φ) as defined
in Remark 1.5 for Φ = g ∈ (C2[a,b],R) , then there exists ξ ∈ [a,b] such that

ϒ(g) =
1
2
g′′ (ξ )ϒ

(
x2) .

Proof. The idea of proof is same as given in [8]. �

THEOREM 3.2. Let [a,b]⊂R and consider the linear functional ϒ(Φ) as defined
in Remark 1.5 for g,h ∈C2[a,b] . Then there exists ξ ∈ [a,b] such that

ϒ(g)
ϒ(h)

=
g′′ (ξ )
h′′ (ξ )

, (14)

provided that ϒ(h) �= 0 .
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Proof. The idea of proof is same as given in [8]. �

Suppose that
g′′

h′′
has inverse function. Then (14) gives

ξ =
(

g′′

h′′

)−1(ϒ(g)
ϒ(h)

)
. (15)

Now, we generate new Cauchy means with the help of some classes of functions from
[17].

EXAMPLE 3.3. Assume I = R and consider the class of continuous convex func-
tions

Λ1 := {φt : R → [0,∞) | t ∈ R},
where

φt(x) :=

⎧⎪⎨⎪⎩
1
t2

etx; t �= 0,

1
2
x2; t = 0.

Then t 	→ φ ′′
t (x) (t ∈ R) is exponentially convex for every fixed x ∈ R (see [10]), thus

by Theorem 2.8, the function t 	→ [y0,y1,y2;φt ] , t ∈ R is exponentially convex in the
Jensen sense for every three mutually different points y0,y1,y2 ∈ R .

By applying Corollary 2.5 with Λ = Λ1 , we get the exponential convexity of
t 	→ ϒ(φt ) (t ∈ R) in the Jensen sense. This mapping is also differentiable, therefore
exponentially convex, and the expression in (11) has the form

us,t(ϒ,Λ1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϒ(φs)
ϒ(φt )

) 1
s−t

; s �= t,

exp

(
ϒ(id φs)
ϒ(φs)

− 2
s

)
; s = t �= 0,

exp

(
ϒ(id φ0)
3ϒ(φ0)

)
; s = t = 0,

where “ id ” means the identity function on R .
From (10) we have the monotonicity of the functions us,t(ϒ,Λ1) in both parame-

ters.
Suppose ϒ(φt ) > 0 (t ∈ R) , and let

Ms,t(ϒ,Λ1) := logus,t(ϒ,Λ1); s,t ∈ R.

Then from (15) we have
a � Ms,t(ϒ,Λ1) � b,

and thus Ms,t(ϒ,Λ1) (s,t ∈ R) are means. The monotonicity of these means is fol-
lowed by (10).
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EXAMPLE 3.4. Assume I = (0,∞) and consider the class of continuous convex
functions

Λ2 = {ψt : (0,∞) → R | t ∈ R},
where

ψt(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xt

t(t−1)
; t �= 0,1,

− logx; t = 0,

x logx; t = 1.

Then t 	→ ψ ′′
t (x) = xt−2 = e(t−2) logx (t ∈ R) is exponentially convex for every

fixed x ∈ (0,∞) .
By similar arguments as given in Example 3.3 we get the exponential convexity of

t 	→ ϒ(ψt ) (t ∈ R) in the Jensen sense. This mapping is differentiable too, therefore
exponentially convex. From (11) we have the following Cauchy means

Ms,t =
(

t(t−1)
s(s−1)

∫
Λ w(y)( f (y))sΔy− ∫Ω ξ (x)(R(x))sΔx∫
Λ w(y)( f (y))tΔy− ∫Ω ξ (x)(R(x))tΔx

) 1
s−t

; s �= t �= 0,1,

Ms,s = exp

(
1−2s

s(s−1)
+
∫

Λ w(y)( f (y))s log( f (y))Δy−∫Ω ξ (x)(R(x))s log(R(x))Δx∫
Λ w(y)( f (y))sΔy−∫Ω ξ (x)(R(x))sΔx

)
;

s �= 0,1,

Ms,0 =
( −1

s(s−1)

∫
Λ w(y)( f (y))sΔy− ∫Ω ξ (x)(R(x))sΔx∫

Λ w(y) log( f (y))Δy− ∫Ω ξ (x) log(R(x))Δx

) 1
s

; s �= 0,1,

Ms,1 =
(

1
s(s−1)

∫
Λ w(y)( f (y))sΔy− ∫Ω ξ (x)(R(x))sΔx∫

Λ w(y) f (y) log( f (y))Δy− ∫Ω ξ (x)R(x) log(R(x))Δx

) 1
s−1

; s �= 0,1,

M0,1 = −
∫

Λ w(y) f (y) log( f (y))Δy− ∫Ω ξ (x)R(x) log(R(x))Δx∫
Λ w(y) log( f (y))Δy− ∫Ω ξ (x) log(R(x))Δx

,

M1,1 = exp

(
−1+

1
2

∫
Λ w(y) f (y)(log( f (y)))2Δy− ∫Ω ξ (x)R(x)(log(R(x)))2Δx∫

Λ w(y) f (y) log( f (y))Δy− ∫Ω ξ (x)R(x) log(R(x))Δx

)
,

M0,0 = exp

(
1+

1
2

∫
Λ w(y)(log( f (y)))2Δy− ∫Ω ξ (x)(log(R(x)))2Δx∫

Λ w(y) log( f (y))Δy− ∫Ω ξ (x) log(R(x))Δx

)
.

where

R(x) .= (Ak f )(x) =
1

K(x)

∫
Λ

k(x,y) f (y)Δy

and w(y) :=
∫

Ω

k(x,y)ξ (x)
K(x)

Δx .

The means Ms,t (s,t ∈ R) are continuous, symmetric and monotone in both pa-
rameters (using (10)).
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For the class Λ2 , we have

ϒ1(φp) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
p(p−1)

(∫
Λ

w(y) f p(y)Δy−
∫

Ω
ξ (x)(R(x))pΔx

)
; p �= 0,1,

−∫Λ w(y) log f (y)Δy+
∫

Ω ξ (x) log(R(x))Δx; p = 0,∫
Λ

w(y) f (y) log f (y)Δy−
∫

Ω
ξ (x)R(x) log(R(x))Δx; p = 1.

(16)

For (16), (9) gives the following improvement result; for p = 0 < q < 1 = r , we have

1
q(q−1)

(∫
Λ

w(y) f q(y)Δy−
∫

Ω
ξ (x)(R(x))qΔx

)

�
(
−
∫

Λ
w(y) log f (y)Δy+

∫
Ω

ξ (x) log(R(x))Δx

)1−q

×
(∫

Λ
w(y) f (y) log f (y)Δy−

∫
Ω

ξ (x)R(x) log(R(x))Δx

)q

.

(17)

If q < 0 < 1 or 0 < 1 < q , then we have reverse inequality in (17).

Observe that (17) is a refinement of inequality given in [5, Corollary 3.3].

Similar results can be written for i ∈ {2,3} .

Particularly, for i = 3, n = 1, we can write

ϒ3(φp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p(p−1)

⎛⎝ b∫
a

w̃(y) f p(y)Δy−
b∫

a

ξ (x)
(
R̃(x)

)p
Δx

⎞⎠ ; p �= 0,1,

−
b∫

a

w̃(y) log f (y)Δy+
b∫

a

ξ (x) log
(
R̃(x)

)
Δx; p = 0,

b∫
a

w̃(y) f (y) log f (y)Δy−
b∫

a

ξ (x)R̃(x) log
(
R̃(x)

)
Δx; p = 1.

(18)

where

R̃(x) .= (Ãk f )(x) =
1

σ(x)−a

∫ σ(x)

a
f (y)Δy

and w̃(y) =
∫ ∞

y

ξ (x)Δx
σ(x)−a

.
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For 0 < q < 1, using (18) in (9) we have the following inequality

1
q(q−1)

⎛⎝ b∫
a

w̃(y) f q(y)Δy−
b∫

a

ξ (x)
(
R̃(x)

)q
Δx

⎞⎠
�

⎛⎝−
b∫

a

w̃(y) log f (y)Δy+
b∫

a

ξ (x) log
(
R̃(x)

)
Δx

⎞⎠1−q

×
⎛⎝ b∫

a

w̃(y) f (y) log f (y)Δy−
b∫

a

ξ (x)R̃(x) log
(
R̃(x))

)
Δx

⎞⎠q

.

(19)

If q < 0 < 1 or 0 < 1 < q , then we have reverse inequality in (19).

4. Applications to time scales consists of isolated points

Now, we consider some particular cases corresponding to examples from [5].
Let us take Ω = Λ = [a,∞)T

.= [0,∞)∩T , a � 0. Further assume that time scale
T consists of isolated points.

In this case (18) takes the form

ϒ3(φp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p(p−1)

(
∑

[a,b)T
w̃(y)( f (y))pμ(y)− ∑

[a,b)T
ξ (x)(R̃(x))

p
μ(x)

)
; p �= 0,1,

− log

(
∏

[a,b)
T

( f (y))w̃(y)μ(y)

)
+ log

(
∏

[a,b)
T

(R̃(x))
ξ (x)μ(x)

)
; p = 0,

log

(
∏

[a,b)
T

( f (y))w̃(y) f (y)μ(y)

)
− log

(
∏

[a,b)
T

(R̃(x))
ξ (x)R̃(x)μ(x)

)
; p = 1,

(20)
where

R̃(x) =

(
1

σ(x)−a ∑
y∈[a,x]T

f (y)μ(y)

)

and w̃(y) =

(
∑

x∈[y,∞)T

ξ (x)
μ(x)

σ(x)−a

)
.

Also, for 0 < q < 1, (19) takes the form

1
q(q−1)

(
∑

[a,b)
T

w̃(y)( f (y))qμ(y)− ∑
[a,b)

T

ξ (x)(R̃(x))
qμ(x)

)

�

⎛⎜⎜⎝log

⎛⎜⎜⎝
∏

[a,b)
T

(R(x))ξ (x)μ(x)

∏
[a,b)

T

( f (y))w̃(y)μ(y)

⎞⎟⎟⎠
⎞⎟⎟⎠

1−q
⎛⎜⎜⎜⎝log

⎛⎜⎜⎜⎝
∏

[a,b)
T

( f (y))w̃(y) f (y)μ(y)

∏
[a,b)

T

(R̃(x))
ξ (x)R̃(x)μ(x)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

q

.

(21)
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For T = hN = {hn : n ∈ N} with h > 0, a = h , and ξ (x) =
1

σ(x)
, (20) takes the form

ϒ3(φp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
q(q−1)

(
∞

∑
n=1

( f (nh))p

n
−

∞

∑
n=1

1
n+1

(
R̃(nh)

)p
)

; p �= 0,1,

− log

(
∞

∏
n=1

( f (nh))
1
n

)
+ log

(
∞

∏
n=1

(R̃(nh))
1

n+1

)
; p = 0,

log

(
∞

∏
n=1

( f (nh))
( f (nh))

n

)
− log

(
∞

∏
n=1

(R̃(nh))
R̃(nh)
n+1

)
; p = 1.

For 0 < q < 1, (21) takes the form

1
q(q−1)

(
∞

∑
n=1

( f (nh))q

n
−

∞

∑
n=1

1
n+1

(
R̃(nh)

)q
)

�

⎛⎜⎜⎝log

⎛⎜⎜⎝
∞
∏
n=1

(R̃(nh))
1

n+1

∞
∏
n=1

( f (nh))
1
n

⎞⎟⎟⎠
⎞⎟⎟⎠

1−q
⎛⎜⎜⎜⎝log

⎛⎜⎜⎜⎝
∞
∏

n=1
( f (nh))

( f (nh))
n

∞
∏

n=1
(R̃(nh))

R̃(nh)
n+1

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠

q

,

(22)

where

R̃(nh) =
1
n

n

∑
k=1

f (kh).

For T = N
2 = {n2 : n ∈ N} with a = 1 and

ξ (x) =
2(σ(x)−1)

(σ(x)− x)2(2
√

x+3)
,

(20) takes the form

ϒ3(φp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p(p−1)

(
∞
∑

n=1
( f (n2))p −

∞
∑

n=1

2n(n+2)
(2n+1)(2n+3)

(
R̃(n2)

)p
)

; p �= 0,1,

− log

(
∞
∏
n=1

f (n2)
)

+ log

(
∞
∏
n=1

(R̃(n2))
2n(n+2)

(2n+1)(2n+3)

)
; p = 0,

log

(
∞

∏
n=1

f (n2)
f (n2)

)
− log

(
∞

∏
n=1

(R̃(n2))
2n(n+2)

(2n+1)(2n+3) R̃(n2)
)

; p = 1.
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For 0 < q < 1, (21) takes the form

1
q(q−1)

(
∞

∑
n=1

( f (n2))q −
∞

∑
n=1

2n(n+2)
(2n+1)(2n+3)

(
R̃(n2)

)q
)

�

⎛⎜⎜⎝log

⎛⎜⎜⎝
∞
∏

n=1
(R̃(n2))

2n(n+2)
(2n+1)(2n+3)

∞
∏
n=1

f (n2)

⎞⎟⎟⎠
⎞⎟⎟⎠

1−q⎛⎜⎜⎝log

⎛⎜⎜⎝
∞
∏
n=1

f (n2) f (n2)

∞
∏
n=1

(R̃(n2))
2n(n+2)

(2n+1)(2n+3) R̃(n2)

⎞⎟⎟⎠
⎞⎟⎟⎠

q

,

(23)
where

R̃(n2) =

n
∑

k=1
(2k+1) f (k2)

n(n+2)
.

For T = λ N = {λ n : n ∈ N} with λ > 1, a = λ and

ξ (x) =
σ(x)−a

σ(x)(σ(x)− x)
,

(20) takes the form

ϒ3(φp) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p(p−1)

(
∞
∑

n=1
( f (λ n))p −

∞
∑

n=1
λ−n(λ n−1)(R̃(λ n))

p
)

; p �= 0,1,

− log

(
∞

∏
n=1

f (λ n)

)
+ log

(
∞

∏
n=1

(R̃(λ n))
λ−n(λ n−1)

)
; p = 0,

log

(
∞

∏
n=1

( f (λ n)) f (λ n)

)
− log

(
∞

∏
n=1

(R̃(λ n))
λ−n(λ n−1)R̃(λ n)

)
; p = 1.

For 0 < q < 1, (21) takes the form

1
q(q−1)

(
∞

∑
n=1

( f (λ n))q −
∞

∑
n=1

λ−n(λ n−1)(R̃(λ n))
q

)

�

⎛⎜⎜⎝log

⎛⎜⎜⎝
∞
∏

n=1
(R̃(λ n))

λ−n(λ n−1)

∞
∏
n=1

f (λ n)

⎞⎟⎟⎠
⎞⎟⎟⎠

1−q⎛⎜⎜⎝log

⎛⎜⎜⎝
∞
∏
n=1

( f (λ n)) f (λ n)

∞
∏
n=1

(R̃(λ n))
λ−n(λ n−1)R̃(λ n)

⎞⎟⎟⎠
⎞⎟⎟⎠

q

,

(24)
where

R̃(λ n) =
(λ −1)

n
∑

k=1
λ k−1 f (λ k)

λ n−1
.
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REMARK 4.1. (a) If q < 0 < 1 or 0 < 1 < q , then we have reverse inequalities in
(22), (23) and (24).

(b) The inequalities (22), (23) and (24) are refinements of (5.9), first inequality
given in Example 5.11, and (5.11) of [5] respectively.

EXAMPLE 4.2. Assume I = (0,∞) and consider the class of continuous convex
functions

Λ3 = {ηt : (0,∞) → (0,∞) | t ∈ (0,∞)},
where

ηt(x) :=

⎧⎪⎪⎨⎪⎪⎩
t−x

log2t
; t �= 1,

x2

2
; t = 1.

t 	→ η ′′
t (x) (t ∈ (0,∞)) is exponentially convex for every fixed x ∈ (0,∞) , being

the restriction of the Laplace transform of a nonnegative function (see [10] or [19] page
210).

We can get the exponential convexity of t 	→ ϒ(ψt ) (t ∈ R
+) as in Example 3.3.

For the class Λ3 , (11) has the form

us,t(ϒ,Λ3) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ϒ(ηs)
ϒ(ηt )

) 1
s−t

; s �= t,

exp

(
− 2

slogs
− ϒ(idηs)

sϒ(ηs)

)
; s = t �= 1,

exp

(
−ϒ(idη1)

3ϒ(η1)

)
; s = t = 1.

The monotonicity of us,t(ϒ,Λ3) (s,t ∈ (0,∞)) comes from (10).
Suppose ϒ(ηt ) > 0 (t ∈ (0,∞)) , and define

Ms,t(ϒ,Λ3) := −L(s,t) logus,t(ϒ,Λ3), s,t ∈ (0,∞),

where L(s, t) is the well known logarithmic mean

L(s,t) :=

⎧⎨⎩
s− t

logs− logt
; s �= t,

t; s = t.

From (15) we have
a � Ms,t(ϒ,Λ3) � b, s,t ∈ (0,∞),

and therefore we get means.

EXAMPLE 4.3. Assume I = (0,∞) and consider the class of continuous convex
functions

Λ4 = {γt : (0,∞) → (0,∞) | t ∈ (0,∞)},
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where

γt(x) :=
e−x

√
t

t
.

t 	→ γ ′′t (x) = e−x
√

t , t ∈ (0,∞) is exponentially convex for every fixed x ∈ (0,∞) ,
being the restriction of the Laplace transform of a non-negative function (see [10] or
[19] page 214).

As before t 	→ ϒ(ψt ) (t ∈ R
+) is exponentially convex and differentiable. For the

class Λ4 , (11) becomes

us,t(ϒ,Λ4) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ϒ(γs)
ϒ(γt )

) 1
s−t

; s �= t,

exp

(
−1

t
− ϒ(idγt)

2
√

tϒ(γt )

)
; s = t,

where ‘ id ’ means the identity function on (0,∞) . The monotonicity of us,t(ϒ,Λ4)
(s,t ∈ (0,∞)) is followed by (10).

Suppose ϒ(ηt ) > 0 (t ∈ (0,∞)) and define

Ms,t(ϒ,Λ4) := −(
√

s+
√

t) logus,t(ϒ,Λ4), s,t ∈ (0,∞).

Then (15) yields that
a � Ms,t(ϒ,Λ4) � b,

thus we have new means.
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[12] S. KAIJSER, L. E. PERSSON AND A. ÖBERG, On Carleman and Knopp’s inequalities, J. Approx.
Theory, 117 (1): 140–151, (2002).
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