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Abstract. By the properties of Schur-convex function, Schur geometrically convex function and
Schur harmonically convex function, Schur-convexity, Schur geometric and Schur harmonic con-
vexities of the dual form for a class of symmetric functions are simply proved. As an application,
several inequalities are obtained, some of which extend the known ones.

1. Introduction

Throughout the article, R denotes the set of real numbers, x = (x1,x2, · · · ,xn)
denotes n -tuple (n -dimensional real vectors), the set of vectors can be written as

R
n = {x = (x1, · · · ,xn) : xi ∈ R, i = 1, · · · ,n} ,

R
n
+ = {x = (x1, · · · ,xn) : xi > 0, i = 1, · · · ,n}.

In particular, the notations R and R+ denote R
1 and R

1
+ , respectively.

For convenience, we introduce some definitions as follows.

DEFINITION 1. [9, 14] Let x = (x1, · · · ,xn) and y = (y1, · · · ,yn) ∈ R
n .

(i) x � y means xi � yi for all i = 1,2, · · · ,n .

(ii) Let Ω ⊂ R
n , ϕ : Ω → R is said to be increasing if x � y implies ϕ(x) � ϕ(y) .

ϕ is said to be decreasing if and only if −ϕ is increasing.

DEFINITION 2. [9, 14] Let x = (x1, · · · ,xn) and y = (y1, · · · ,yn) ∈ R
n .

(i) x is said to be majorized by y (in symbols x ≺ y ) if ∑k
i=1 x[i] � ∑k

i=1 y[i] for k =
1,2, · · · ,n−1 and ∑n

i=1 xi = ∑n
i=1 yi , where x[1] � · · · � x[n] and y[1] � · · · � y[n]

are rearrangements of x and y in a descending order.
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(ii) Let Ω ⊂ R
n , ϕ : Ω → R is said to be a Schur-convex function on Ω if x ≺ y on

Ω implies ϕ (x) � ϕ (y) . ϕ is said to be a Schur-concave function on Ω if and
only if −ϕ is Schur-convex function on Ω .

DEFINITION 3. [9, 14] Let x = (x1, · · · ,xn) and y = (y1, · · · ,yn) ∈ R
n .

(i) Ω⊂R
n is said to be a convex set if x,y∈ Ω , 0 � α � 1 implies αx+(1−α)y =

(αx1 +(1−α)y1, · · · ,αxn +(1−α)yn) ∈ Ω .

(ii) Let Ω ⊂ R
n be a convex set. A function ϕ : Ω → R is said to be a convex

function on Ω if

ϕ (αx+(1−α)y) � αϕ(x)+ (1−α)ϕ(y)

for all x,y ∈ Ω , and all α ∈ [0,1] . ϕ is said to be a concave function on Ω if
and only if −ϕ is a convex function on Ω .

(iii) Let Ω ⊂ R
n . A function ϕ : Ω → R is said to be a log-convex function on Ω if

the function logϕ is convex.

THEOREM A. (Schur-Convex Function Decision Theorem) [9, p. 84] Let Ω ⊂
R

n be symmetric and have a nonempty interior convex set. Ω0 is the interior of Ω .
ϕ : Ω → R is continuous on Ω and differentiable in Ω0 . Then ϕ is the Schur−
convex (Schur− concave) f unction if and only if ϕ is symmetric on Ω and

(x1− x2)
(

∂ϕ
∂x1

− ∂ϕ
∂x2

)
� 0(� 0) (1)

holds for any x ∈ Ω0 .

The Schur-convexity described the ordering of majorization, the order-preserving
functions were first comprehensively studied by Issai Schur in 1923. It has important
applications in combinatorial analysis, analytic inequalities, matrix theory, numerical
analysis, and so on. See [9], [11], [4], [12], [24].

DEFINITION 4. [23] Let x = (x1, · · · ,xn) ∈ R
n
+ and y = (y1, · · · ,yn) ∈ R

n
+ .

(i) Ω ⊂ R
n
+ is called a geometrically convex set if (xα

1 yβ
1 , · · · ,xα

n yβ
n ) ∈ Ω for all

x,y ∈ Ω and α,β ∈ [0,1] such that α + β = 1.

(ii) Let Ω ⊂ R
n
+ . The function ϕ : Ω → R+ is said to be a Schur geometrically

convex function on Ω if (logx1, · · · , logxn) ≺ (logy1, · · · , logyn) on Ω implies
ϕ (x) � ϕ (y) . The function ϕ is said to be a Schur geometrically concave
function on Ω if and only if −ϕ is a Schur geometrically convex function.
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THEOREM B. (Schur Geometrically Convex Function Decision Theorem) [23]
Let Ω ⊂ R

n
+ be a symmetric and geometrically convex set with a nonempty interior

Ω0 . Let ϕ : Ω → R+ be continuous on Ω and differentiable in Ω0 . If ϕ is symmetric
on Ω and

(logx1 − logx2)
(

x1
∂ϕ
∂x1

− x2
∂ϕ
∂x2

)
� 0 (� 0) (2)

holds for any x = (x1, · · · ,xn) ∈ Ω0 , then ϕ is a Schur geometrically convex (Schur
geometrically concave) function.

The Schur geometrically convex function was proposed by Zhang [23] in 2004,
and was investigated by Chu et al. [6], Guan [7], Jiang [8], Sun et al. [13], Xia et al.
[18], and so forth. We also note that some authors use the term “Schur multiplicative
convexity”.

In 2009, Chu ([2], [3], [1], [20]) introduced the notion of Schur harmonically
convex function. Some interesting inequalities were obtained, see e.g. [5], [17], [19],
[21], [22].

DEFINITION 5. [2] Let Ω ⊂ R
n
+ .

(i) A set Ω is said to be harmonically convex if xy
λx+(1−λ )y ∈ Ω for every x,y ∈ Ω

and λ ∈ [0,1] , where xy = ∑n
i=1 xiyi and 1

x =
(

1
x1

, · · · , 1
xn

)
.

(ii) A function ϕ : Ω → R+ is said to be Schur harmonically convex on Ω if 1
x ≺ 1

y
implies ϕ(x) � ϕ(y) . A function ϕ is said to be a Schur harmonically concave
function on Ω if and only if −ϕ is a Schur harmonically convex function.

THEOREM C. (Schur Harmonically Convex Function Decision Theorem) [2] Let
Ω ⊂R

n
+ be a symmetric and harmonically convex set with inner points and let ϕ : Ω →

R+ be a continuously symmetric function which is differentiable on Ω0 . Then ϕ is
Schur harmonically convex (Schur harmonically concave) on Ω if and only if

(x1 − x2)
(

x2
1

∂ϕ(x)
∂x1

− x2
2

∂ϕ(x)
∂x2

)
� 0 (� 0), x ∈ Ω0. (3)

Let interval I ⊂ R and let f : I → R+ be a log-convex function. Define the sym-
metric function Fk by

Fk(x) = ∑
1�i1<···<ik�n

∏k
j=1 f (xi j ), k = 1, · · · ,n. (4)

In 2010, for 1,2 and n−1, Rovenţa [10] proved that Fk(x) is a Schur-convex func-
tion on In , but without discuss the case of 2 < k < n−1. In 2011, Shu-hong Wang et
al. [15] studied completely Schur-convexity, Schur geometric and Schur harmonic con-
vexities of Fk(x) on In , using the above decision theorems, i.e. Theorem A, Theorem
B and Theorem C respectively proved the following three theorems.
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THEOREM D. Let I ⊂R is a symmetric convex set with nonempty interior and let
f : I →R be continuous on I and differentiable in the interior of I . If f is a log-convex
function, then for any k = 1,2, · · · ,n, Fk(x) is a Schur-convex function on In

THEOREM E. Let I ⊂ R+ is a symmetric convex set with nonempty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I . If f is an
increasing log-convex function, then for any k = 1,2, · · · ,n, Fk(x) is a Schur geometri-
cally convex function on In .

THEOREM F. Let I ⊂ R+ is a symmetric convex set with nonempty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I . If f is an
increasing log-convex function, then for any k = 1,2, · · · ,n, Fk(x) is a Schur harmoni-
cally convex function on In .

In this paper, we study the dual form of Fk(x) :

F∗
k (x) = ∏

1�i1<···<ik�n
∑k

j=1 f (xi j ), k = 1, · · · ,n. (5)

By some properties of the Schur-convex function, Schur geometrically convex
function and Schur harmonically convex function, we obtained the following results:

THEOREM 1. Let I ⊂ R is a symmetric convex set with nonempty interior and let
f : I →R be continuous on I and differentiable in the interior of I . If f is a log-convex
function, then for any k = 1,2, · · · ,n, F∗

k (x) is a Schur-convex function on In

THEOREM 2. Let I ⊂ R+ is a symmetric convex set with nonempty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I . If f is an
increasing log-convex function, then for any k = 1,2, · · · ,n, F∗

k (x) is a Schur geomet-
rically convex function on In .

THEOREM 3. Let I ⊂ R+ is a symmetric convex set with nonempty interior and
let f : I → R+ be continuous on I and differentiable in the interior of I . If f is an
increasing log-convex function, then for any k = 1,2, · · · ,n, F∗

k (x) is a Schur harmon-
ically convex function on In .

2. Lemmas

To prove the above three theorems, we need the following lemmas.

LEMMA 1. [9, p. 97], [14] If ϕ is symmetric and convex (concave) on a sym-
metric convex set Ω , then ϕ is Schur-convex (Schur-concave) on Ω .

LEMMA 2. [14, p. 64] Let Ω ⊂ R
n , ϕ : Ω → R+ . Then logϕ is Schur-convex

(Schur-concave) if and only if ϕ is Schur-convex (Schur-concave) .
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LEMMA 3. [9, p. 642], [14] Let Ω ⊂ R
n be an open convex set, ϕ : Ω → R . For

x,y ∈ Ω , define one variable function g(t) = ϕ (tx+(1− t)y) on the interval (0,1) .
Then ϕ is convex (concave) on Ω if and only if g is convex (concave) on [0,1] for all
x,y ∈ Ω .

LEMMA 4. Let x = (x1, · · · ,xm) and y = (y1, · · · ,ym) ∈ R
m . If f is a log-convex

function, then the functions p(t) = logg(t) is convex on [0,1] , where

g(t) =
m

∑
j=1

f (tx j +(1− t)y j).

Proof.

p′(t) =
g′(t)
g(t)

,

where

g′(t) =
m

∑
j=1

(x j − y j) f ′(tx j +(1− t)y j).

p′′(t) =
g′′(t)g(t)− (g′(t))2

g2(t)
,

where

g′′(t) =
m

∑
j=1

(x j − y j)2 f ′′(tx j +(1− t)y j).

By the Cauchy inequality, we have

g′′(t)g(t)− (g′(t))2

=

(
m

∑
j=1

(x j − y j)2 f ′′(tx j +(1− t)y j)

)(
m

∑
j=1

f (tx j +(1− t)y j)

)

−
(

m

∑
j=1

(x j − y j) f ′(tx j +(1− t)y j)

)2

�
(

m

∑
j=1

|x j − y j|
√

f ′′(tx j +(1− t)y j) ·
√

f (tx j +(1− t)y j)

)2

−
(

m

∑
j=1

(x j − y j) f ′(tx j +(1− t)y j)

)2

From the log-convexity of f it follows that (log f (u))′′ = f ′′(u) f (u)−( f ′(u))2

f 2(u) � 0, hence√
f ′′(tx j +(1− t)y j) ·

√
f (tx j +(1− t)y j) � f ′(tx j +(1− t)y j),

and then g′′(t)g(t)− (g′(t))2 � 0, i.e. p′′(t) � 0, that is, p(t) = logg(t) is convex on
[0,1] .

The proof of Lemma 4 is completed. �
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LEMMA 5. Let

f (t) =
xt −1

t
.

If x > 1 , then f (t) is a log-convex function on R+ .

Proof. By computing, we have

(log f (t))′′ = −xt(logx)2

(xt −1)2 +
1
t2

.

We need only prove (log f (t))′′ � 0. It equivalent to

t2xt(logx)2 � (xt −1)2. (6)

In both sides the inequality (6), dividing by xt and extracting the square root, then the
inequality (6) equivalent to

g(t) := x
t
2 − x−

t
2 − t logx � 0.

When x > 1, g′(t) = 1
2 logx

(
x

t
2 + x−

t
2 −2

)
= 1

2 log(x)
(
x

t
2 −1

)2
x−

t
2 � 0, hence g(t)

is increasing on R+ , and then g(t) � g(0) = 0, that is (log f (t))′′ � 0.
The proof of Lemma 5 is completed. �

3. Proof of Main Results

Proof of Theorem 1. For any 1 � i1 < · · · < ik � n , by Lemma 3 and Lemma
4, it follows that log∑k

j=1 f (xi j ) is convex on Ik . Obviously, log∑k
j=1 f (xi j ) is also

convex on In , and then logF∗
k (x) = ∑1�i1<···<ik�n log∑k

j=1 f (xi j ) is convex on In . Fur-
thermore, it is clear that logF∗

k (x) is symmetric on In , by Lemma 1, it follows that
logF∗

k (x) is Schur-convex on In , and then from Lemma 2 we conclude that F∗
k (x) is

also Schur-convex on In .
The proof of Theorem 1 is completed. �

Proof of Theorem 2. For x ∈ In ⊂ R
n
+ and x1 �= x2 , we have

Δ = (logx1 − logx2)
(

x1
∂F∗

k

∂x1
− x2

∂F∗
k

∂x2

)

= (logx1 − logx2)
(

x1
∂F∗

k

∂x1
− x1

∂F∗
k

∂x2
+ x1

∂F∗
k

∂x2
− x2

∂F∗
k

∂x2

)

= x1
logx1− logx2

x1− x2
(x1− x2)

(
∂F∗

k

∂x1
− ∂F∗

k

∂x2

)
+

∂F∗
k

∂x2
(x1 − x2) (logx1 − logx2) .

Since F∗
k (x) is Schur-convex on In , by Theorem A, we have

(x1− x2)
(

∂F∗
k

∂x1
− ∂F∗

k

∂x2

)
� 0.
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Notice that f and logt is increasing, we have

∂F∗
k

∂x2
� 0,

logx1− logx2

x1− x2
� 0

and
(x1− x2)(logx1− logx2) � 0,

so that Δ � 0, by Theorem B, it follows that F∗
k (x) is Schur geometric convex on

In . �

Proof of Theorem 3. The proof of Theorem 3 similar to Theorem 2, the detailed
proof is left to the reader. �

REMARK 1. If using the decision theorems, i.e. Theorem A, Theorem B and
Theorem C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am
afraid not above proofs are simple, interested readers may wish to try.

4. Applications

THEOREM 4. The symmetric function

Qk(x) = ∏
1�i1<···<ik�n

∑k
j=1

1+ xi j

1− xi j
, k = 1, · · · ,n. (7)

is Schur-convex function, Schur geometrically and Schur harmonically convex function
on (0,1)n . And for x ∈ (0,1)n , we have

∏
1�i1<···<ik�n

∑k
j=1

1+ xi j

1− xi j
�
(

k(n+ s)
n− s

)(n
k)

, k = 1, · · · ,n. (8)

where s = ∑n
i=1 xi and

(n
k

)
= n!

k!(n−k)! .

Proof. Let f (x) = 1+x
1−x ,x ∈ (0,1) . By computing, we have f ′(x) = 2

(1−x)2 > 0 and

(log f (x))′′ = 4x
(1+x)2(1−x)2 � 0, that is, f is an increasing log-convex function. By The-

orem 1, Theorem 2 and Theorem 3, it follows that Qk(x) is respectively Schur-convex
function, Schur geometrically and Schur harmonically convex function on (0,1)n .

Since y =
(

s
n , s

n , · · · , s
n

) ≺ x = (x1,x2, · · · ,xn) , from Schur-convexity of Qk(x) , it
follows that Qk(y) � Qk(x) , i.e. inequality (8) holds.

The proof of Theorem 4 is completed. �
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REMARK 2. Specially, taking k = 1, s = 1, from the inequality (8) we can get
the known Klamkin inequality:

n

∏
i=1

1+ xi

1− xi
�
(

n+1
n−1

)n

. (9)

By analogous proof with Theorem 4, we can obtain the following theorem.

THEOREM 5. The symmetric function

Rk(x) = ∏
1�i1<···<ik�n

∑k
j=1

xi j

1− xi j
, k = 1, · · · ,n. (10)

is Schur-convex function, Schur geometrically and Schur harmonically convex function
on [ 1

2 ,1)n . And for x ∈ [ 1
2 ,1)n , we have

∏
1�i1<···<ik�n

∑k
j=1

xi j

1− xi j
�
(

ks
n− s

)(n
k)

, k = 1, · · · ,n. (11)

where s = ∑n
i=1 xi and

(n
k

)
= n!

k!(n−k)! .

THEOREM 6. The symmetric function

Dk(x) = ∏
1�i1<···<ik�n

∑k
j=1 x

xi j
i j

, k = 1, · · · ,n. (12)

is Schur-convex on R
n
+ and Schur geometric and Schur harmonic convex on [e−1,∞)n .

And for x ∈ R
n
+ , we have

∏
1�i1<···<ik�n

∑k
j=1 x

xi j
i j

�
(
k[A(x)]A(x)

)(n
k)

, k = 1, · · · ,n. (13)

where A(x) = 1
n ∑n

i=1 xi and
(n
k

)
= n!

k!(n−k)! .

Proof. It is not difficult to verify that xx is log-convex function on (0,∞) and
increasing on [e−1,∞) . By Theorem 1, Theorem 2 and Theorem 3, it follows that Dk(x)
is Schur-convex on R

n
+ , is Schur geometric and Schur harmonic convex on [e−1,∞)n .

Since y = (A(x),A(x), · · · ,A(x)) ≺ x = (x1,x2, · · · ,xn) , from Schur-convexity of
Dk(x) , it follows that Dk(y) � Dk(x) , i.e. inequality (13) holds.

The proof of Theorem 6 is completed. �
From Lemma 5 and Theorem 1, we can obtain the following Theorem 7.

THEOREM 7. Let x > 1 .

Pk(t) = ∏
1�i1<···<ik�n

∑k
j=1

x
ti j −1
ti j

, k = 1, · · · ,n. (14)
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is Schur-convex on R
n
+ .

And for p,q ∈ R
n
+ and p ≺ q , we have

∏
1�i1<···<ik�n

∑k
j=1

xpi j −1
pi j

� ∏
1�i1<···<ik�n

∑k
j=1

xqi j −1
qi j

, k = 1, · · · ,n. (15)

REMARK 3.

(i) Taking n = 2,k = 1 and p = (m,m) , q = (m+ r,m− r) , from the inequality (15)
we can get the known inequality:

(xm−r −1)(xm+r −1) �
(

1− r2

m2

)
(xm −1)2, (16)

where r ∈ N,m � 2,r < m.

(ii) Taking k = 1, from the inequality (15) we can get the inequality (3) in [16].

n

∏
j=1

q j (xp j −1) �
n

∏
j=1

p j (xq j −1) . (17)

(iii) Taking k = n , from the inequality (15) we can get the inequality:

∑n
i=1

xpi −1
pi

� ∑n
i=1

xqi −1
qi

. (18)
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