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Abstract. By the properties of Schur-convex function, Schur geometrically convex function and
Schur harmonically convex function, Schur-convexity, Schur geometric and Schur harmonic con-
vexities of the dual form for a class of symmetric functions are simply proved. As an application,
several inequalities are obtained, some of which extend the known ones.

1. Introduction

Throughout the article, R denotes the set of real numbers, x = (x1,x2," -, %)
denotes n-tuple (n-dimensional real vectors), the set of vectors can be written as

R":{X:()Cl,-.-’xn):.XiER,i:17...’n}’

P={x=(x1, X)) >0i=1,---,n}.
In particular, the notations R and R, denote R! and R! , respectively.
For convenience, we introduce some definitions as follows.
DEFINITION 1. [9, 14] Let x = (x1,---,x,) and y = (y1,---,yn) € R".
(i) x>y means x; >y; forall i=1,2,---,n.

(if) Let QCR", ¢: Q — R is said to be increasing if x >y implies ¢(x) > ¢(y).
¢ is said to be decreasing if and only if —¢ is increasing.

DEFINITION 2. [9, 14] Let x = (x1,---,x,) and y = (y1,---,yn) € R".

(i) x is said to be majorized by y (in symbols x < y) if Zlexm < Zé‘:lym for k =
1,2,---,n—1and Y x; =X, y;, where X[ 2 2 X[ and Y 2 2V
are rearrangements of x and y in a descending order.
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(if) Let QCR", ¢: Q — R is said to be a Schur-convex function on Q if x <y on
Q implies ¢ (x) < @ (y). @ is said to be a Schur-concave function on Q if and
only if —¢ is Schur-convex function on Q.

DEFINITION 3. [9, 14] Let x = (x1,---,x,) and y = (y1,---,yn) € R".

(i) QCR"issaidtobeaconvexsetif x,yeQ,0< a<1 implies ax+(1—o)y=
(ox1+ (L—0a)yy, -0, + (1 —a)y,) € Q.

(if) Let Q C R" be a convex set. A function ¢: Q — R is said to be a convex
function on Q if

¢ (ax+(1-a)y) < oo(x)+(1-a)o(y)

for all x,y € Q, and all o € [0,1]. ¢ is said to be a concave function on Q if
and only if —¢ is a convex function on Q.

(iif) Let Q C R". A function ¢: Q — R is said to be a log-convex function on Q if
the function log ¢ is convex.

THEOREM A. (Schur-Convex Function Decision Theorem) [9, p. 84] Ler Q C
R”™ be symmetric and have a nonempty interior convex set. QU is the interior of Q.
¢ : Q — R is continuous on Q and differentiable in Q°. Then ¢ is the Schur —
convex (Schur — concave) function if and only if @ is symmetric on Q and

J0 9
(x1 —x2) (a—;‘j—a—z) >0(<0) (1

holds for any x € QO

The Schur-convexity described the ordering of majorization, the order-preserving
functions were first comprehensively studied by Issai Schur in 1923. It has important
applications in combinatorial analysis, analytic inequalities, matrix theory, numerical
analysis, and so on. See [9], [1 1], [4], [12], [24].

DEFINITION 4. [23] Let x = (x,---,x,) € R} and y = (y1,---,yx) € RL.
(i) Q C R is called a geometrically convex set if (x‘f‘yll3 ,---,xﬁ‘yg ) € Q for all
x,y € Q and a,f € [0,1] such that ¢+ f3 = 1.

(i) Let Q C R%.. The function ¢: Q — R, is said to be a Schur geometrically
convex function on Q if (logxy,---,logx,) < (logyi,---,logy,) on Q implies
o0 (x) < @(y) . The function ¢ is said to be a Schur geometrically concave
function on Q if and only if —¢ is a Schur geometrically convex function.
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THEOREM B. (Schur Geometrically Convex Function Decision Theorem) [23]
Let Q C R, be a symmetric and geometrically convex set with a nonempty interior
QO Let ¢ : Q — R, be continuous on Q and differentiable in Q°. If ¢ is symmetric
on Q and
do  Jd¢

logx; —lo — —x=—1]2>20 (<0 2

(logx; —logxz) (xl F X28x2> (<0) (2)
holds for any x = (x1,---,%,) € Q°, then ¢ is a Schur geometrically convex (Schur
geometrically concave) function.

The Schur geometrically convex function was proposed by Zhang [23] in 2004,
and was investigated by Chu et al. [6], Guan [7], Jiang [8], Sun et al. [13], Xia et al.
[18], and so forth. We also note that some authors use the term “Schur multiplicative
convexity”.

In 2009, Chu ([2], [3], [1], [20]) introduced the notion of Schur harmonically
convex function. Some interesting inequalities were obtained, see e.g. [5], [17], [19],
[21], [22].

DEFINITION 5. [2] Let Q C R”.

i) A set Q is said to be harmonically convex if —>—— € Q for every x,y € Q
y ry

Ax+(1-2)y
and A €[0,1], where xy = ¥ x;y; and 1 = (xil,,xin)

(ii) A function ¢ : Q — R, is said to be Schur harmonically convex on Q if 1 < %

implies ¢(x) < @(y). A function ¢ is said to be a Schur harmonically concave
function on Q if and only if —¢ is a Schur harmonically convex function.

THEOREM C. (Schur Harmonically Convex Function Decision Theorem) [2] Let
Q C R be a symmetric and harmonically convex set with inner points and let ¢ : Q —
Ry be a continuously symmetric function which is differentiable on Q°. Then @ is
Schur harmonically convex (Schur harmonically concave) on Q if and only if

d d
(xl—x2)<x% ;P)fl">—x§ ;P?) >0 (<0), xeQ (3)

Let interval / C R and let f: I — R, be a log-convex function. Define the sym-
metric function F; by

Fk(x): Z Hl;zlf(xij)v k:l7"'7}’l. (4)

1§i1<~-~<ik<n

In 2010, for 1,2 and n— 1, Roventa [ 10] proved that Fy(x) is a Schur-convex func-
tion on [", but without discuss the case of 2 < k <n—1. In 2011, Shu-hong Wang et
al. [15] studied completely Schur-convexity, Schur geometric and Schur harmonic con-
vexities of Fy(x) on I", using the above decision theorems, i.e. Theorem A, Theorem
B and Theorem C respectively proved the following three theorems.
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THEOREM D. Let I C R is a symmetric convex set with nonempty interior and let
f I — R be continuous on I and differentiable in the interior of 1. If f is a log-convex
Sunction, then for any k=1,2,--- n, Fi(X) is a Schur-convex function on I"

THEOREM E. Let I C R, is a symmetric convex set with nonempty interior and
let f:1— Ry be continuous on I and differentiable in the interior of 1. If f is an
increasing log-convex function, then for any k =1,2,---,n, Fi(X) is a Schur geometri-
cally convex function on I".

THEOREM F. Let I C Ry is a symmetric convex set with nonempty interior and
let f:1— Ry be continuous on I and differentiable in the interior of 1. If f is an
increasing log-convex function, then for any k =1,2,---,n, Fi(X) is a Schur harmoni-
cally convex function on I".

In this paper, we study the dual form of Fi(x):

Fk*(x): H Zl;zlf(xij)7 k:1,~~~,l’l. (5)

1<ii < <ix<n

By some properties of the Schur-convex function, Schur geometrically convex
function and Schur harmonically convex function, we obtained the following results:

THEOREM 1. Let I C R is a symmetric convex set with nonempty interior and let
f 1 — R be continuous on I and differentiable in the interior of 1. If f is a log-convex
function, then for any k =1,2,--- ,n, F(X) is a Schur-convex function on I"

THEOREM 2. Let I C Ry is a symmetric convex set with nonempty interior and
let f:1— Ry be continuous on I and differentiable in the interior of I. If f is an
increasing log-convex function, then for any k =1,2,---,n, F(X) is a Schur geomet-
rically convex function on I".

THEOREM 3. Let I C Ry is a symmetric convex set with nonempty interior and
let f:1— Ry be continuous on I and differentiable in the interior of 1. If f is an
increasing log-convex function, then for any k=1,2,---,n, F*(X) is a Schur harmon-
ically convex function on I".

2. Lemmas
To prove the above three theorems, we need the following lemmas.

LEMMA 1. [9, p. 97], [14] If @ is symmetric and convex (concave) on a sym-
metric convex set L, then @ is Schur-convex (Schur-concave) on Q.

LEMMA 2. [14, p. 64] Let Q CR", ¢: Q — Ry. Then log¢ is Schur-convex
(Schur-concave) if and only if @ is Schur-convex (Schur-concave).
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LEMMA 3. [9, p. 642], [14] Let Q C R" be an open convex set, ¢ : Q — R. For
X,y € Q, define one variable function g(t) = @ (tx+ (1 —1)y) on the interval (0,1).
Then @ is convex (concave) on Q if and only if g is convex (concave) on [0,1] for all
X,y € Q.

LEMMA 4. Let x = (X1, -+, %) and y = (y1, -+ ,ym) € R". If f is a log-convex
function, then the functions p(t) =logg(t) is convex on [0,1], where

thxj (I=1)yj).

Proof.
TN g/(t)
pt)= OR
where ,
(1) =D (xj—yp)f (txj+ (1 =1)y))
j=1
ey 8(0glt) — (')
=T em
where

m
Z =) " (txj+ (1 =1)y;)).
By the Cauchy inequality, we have

g"(1)g(t) = (g'(1))°
= ( (xj—yj')zf”(txj+(1—I)Yj)> (if(fxﬂ'(l—t)w))

_Q

2
> ( yj‘\/f// (txj+(L=1)y))- \/f (txj + tb’j))

_Q

From the log-convexity of f it follows that (log f(u))” = %&;f’("))z > 0, hence

P+ (L= 0)y)) L+ (T=0)y)) > f x4+ (=1,

and then g”(¢)g(¢) — (¢'(t))> = 0,1i.e. p"(t) >0, thatis, p(r) = logg(t) is convex on
[0,1].
The proof of Lemma 4 is completed. [

M=

~.
Il
—_

M=

2
(ocj = y)f (exj 4 (1 = t)Yj))

—_

M= |Ms

1

2
(xj = yj)f (exj+ (1= t)Yj))
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LEMMA 5. Let

If x> 1, then f(t) is a log-convex function on R .

Proof. By computing, we have

X 2
(tog ) = ~TUE 4 L

(xf
We need only prove (log f(¢))” > 0. It equivalent to
¥ (logx)? < (¥ —1)2. (6)

In both sides the inequality (6), dividing by x' and extracting the square root, then the
inequality (6) equivalent to

g(t):= X2 — x5 —tlogx > 0.

2
When x > 1, g'(t) = 1 logx <x% X8 —2) = og(x) <x% - 1) X2 >0, hence g(r)
is increasing on R, and then g(¢) > g(0) = 0, thatis (log f(z))” > 0.

The proof of Lemma 5 is completed. [

3. Proof of Main Results

Proof of Theorem 1. For any 1 < i < --- < i <n, by Lemma 3 and Lemma
4, it follows that logzlj=1 f(xi;) is convex on I¥. Obviously, logzlj‘-= 1 f(xi;) is also
convex on I", and then log Ff (x) = 21<i1<,,,<,~k<nlogz]j€-=1f(x,-_,.) is convex on I". Fur-
thermore, it is clear that log F’ (x) is symmetric on ", by Lemma 1, it follows that
log F(x) is Schur-convex on /", and then from Lemma 2 we conclude that F*(x) is
also Schur-convex on I".

The proof of Theorem 1 is completed. [

Proof of Theorem 2. For x € I" C R and x| # x, we have

OF; 8Fk*>

x| R oxa
OF} OF* OF} OF*
—(1 1 k _ k K k
(logx; —logxs) (Jq I X1 7% +x1 7% X2 95
logx; —logx oF* OF* oF}
—x Z2X1 g 2(x1_x2) K 9f A
X1 —X2 dx;  dxo dx;

A = (logx; —logxy) (Jq

(x1 —x2) (logx; —logxy).

Since F{(x) is Schur-convex on ", by Theorem A, we have

IF;  IF;
(.Xl —xz) (a—xl — 8—)(:2> 2 0.
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Notice that f and log? is increasing, we have

oF;
=
8)62

logx; —logx; >0
X1 — X2
and
(x1 —x2) (logx; —logx,) >0,
so that A > 0, by Theorem B, it follows that F(x) is Schur geometric convex on
. g

Proof of Theorem 3. The proof of Theorem 3 similar to Theorem 2, the detailed
proof is left to the reader. [J

REMARK 1. If using the decision theorems, i.e. Theorem A, Theorem B and
Theorem C respectively direct to prove Theorem 1, Theorem 2 and Theorem 3, I am
afraid not above proofs are simple, interested readers may wish to try.

4. Applications

THEOREM 4. The symmetric function

ax= 1] Zj:ll—xl::’ k=1,.n. %)

1<ip < <ig<n

is Schur-convex function, Schur geometrically and Schur harmonically convex function
n (0,1)". And for x € (0,1)", we have

I +x;; k(n+s ()
M - e (H )) , k=1,---n. ©)

1<ip < <ig<n

where s =¥ x; and (}) = k!(n"_!k)! .

Proof. Let f(x) = 1=2,x € (0,1). By computing, we have f/(x) = (1Ex)2 > 0 and

(log f(x))" = M‘ﬁ >0, thatis, f is an increasing log-convex function. By The-
orem 1, Theorem 2 and Theorem 3, it follows that Q(x) is respectively Schur-convex
function, Schur geometrically and Schur harmonically convex function on (0, 1)".

Since y = (n, R 7}1) < X = (x1,x2,,X,), from Schur-convexity of Q(x), it

follows that Oy (y) < Ok(x), i.e. inequality (8) holds.
The proof of Theorem 4 is completed. [
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REMARK 2. Specially, taking k = 1, s = 1, from the inequality (8) we can get

the known Klamkin inequality:
14X "
i l—x n—1

By analogous proof with Theorem 4, we can obtain the following theorem.

THEOREM 5. The symmetric function

k Xi:
Rx)= TI  Xjg= k=L (10)
J

1<ij < <ig<n

is Schur-convex function, Schur geometrically and Schur harmonically convex function
on [5,1)". And for x € [5,1)", we have

xi' (’IZ)
Yo (B e (1)
-

1<iy < <ig<n n—s

where s =Y | x; and (Z) = W—’k)'

THEOREM 6. The symmetric function

k Xi.
D)= J1 2 k=L (12)

1§i1<-~-<ik§n

is Schur-convex on R and Schur geometric and Schur harmonic convex on [e™!, o).
And for x € R, we have

k Xi . (n)
T3 x> (HAPr®)™, k=1n. (13)
1<ii < <ig<n
1 yn n n!
where A(X) =137 | x;j and (}) = eI

Proof. 1t is not difficult to verify that x* is log-convex function on (0,e) and
increasing on [¢~!, ). By Theorem 1, Theorem 2 and Theorem 3, it follows that Dy (x)
is Schur-convex on R, is Schur geometric and Schur harmonic convex on [e~!,e0)".

Since y = (A(x),A(x), -+, A(X)) < x = (x1,X2,"*+,X,), from Schur-convexity of
Dy (x), it follows that Dy (y) < Di(x), i.e. inequality (13) holds.

The proof of Theorem 6 is completed. [

From Lemma 5 and Theorem 1, we can obtain the following Theorem 7.

THEOREM 7. Let x > 1.

;.
ko oxYV—1
Pi(t) = [1 2j:1 i, , k=1,-,n. (14)
J

1<ip<-<ix<n
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is Schur-convex on R’} .
And for p,q € R and p < q, we have

-1 xMi—1

IT 24 —< 1 X — 0 k=l a9)

1< <-<ix<n Pi; 1< <--<ix<n 4i;

REMARK 3.
(i) Taking n=2,k=1 and p= (m,m), q= (m+r,m—r), from the inequality (15)

we can get the known inequality:

(xm—r_l)(xm+r_1)> <1_r_> (xm_l)Z’ (16)

where r € Nom > 2,r < m.

(ii) Taking k = 1, from the inequality (15) we can get the inequality (3) in [16].
n n
[Ta; " =) <Tpjx® = 1). (17)
j=1 j=1

(iif) Taking k = n, from the inequality (15) we can get the inequality:

xPi—1

277 T, 2171

x4 —1

(18)
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