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ON SOME MEANS DERIVED FROM
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Abstract. Sharp bounds for four bivariate means derived from the Schwab-Borchardt mean are
obtained. The bounding quantities are either geometric or arithmetic convex combinations of
two generating means. The four means discussed in this paper have been introduced and studied
in [13].

1. Introduction

History of bivariate means and their inequalities is long and laden with a detail.
Among numerous well known means the Schwab-Borchardt mean could be called in-
triguing and elegant. There are reasons why we called this mean intriguing. Several
well known bivariate means can be represented as the Schwab-Borchardt mean of two
means. Means obtained this way include the logarithmic mean, two Seiffert means,
the Neuman-Sándor mean and four other means introduced in [13]. A problem which
was recently investigated extensively deals with finding sharp bounds for these means,
where the bounding expressions depend usually on two simple means. For more de-
tails, see, e.g., [5, 6, 7, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22] and the references therein.
It is worth mentioning that the inequalities involving the Schwab-Borchardt mean can
be found in [3, 4, 8, 14, 15].

Results obtained in this paper complement in a natural way those established in
author’s work [13]. The present paper is organized as follows. Bivariate means used in
the subsequent parts of this work are introduced in Section 2. In particular, definitions
of four means derived from the Schwab-Borchardt mean are included in this section.
Those means have been defined and studied in [13]. Lemmas needed in the proofs of
the main results are either cited or proven in Section 3. The main results are presented in
Section 4. They deal with sharp lower and upper bounds for those means. The bounding
quantities used are either the geometric convex combinations or the arithmetic convex
combinations of what we called the generating means. The latter term is explained in
the next section in the paragraph which follows (5).
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2. Bivariate means used in this paper

For the reader’s convenience we provide below definitions of several bivariate
means used in the subsequent sections of this paper.

Let a and b be positive numbers. In order to avoid trivialities we will always
assume that a �= b . The unweighted arithmetic mean A of a and b is defined as

A =
a+b

2
.

Another unweighted bivariate means used in this paper are the harmonic mean H and
the contra-harmonic mean C which are defined in usual way

H =
2ab
a+b

, C =
a2 +b2

a+b
. (1)

One can easily verify that the means listed in (1) can be expressed in terms of A .
We have

H = A(1− v2), C = A(1+ v2), (2)

where

v =
a−b
a+b

. (3)

Clearly 0 < |v| < 1.
In order to facilitate presentation let us recall definition of the Schwab-Borchardt

mean SB

SB(a,b)≡ SB =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
b2−a2

cos−1(a/b)
if a < b,

√
a2−b2

cosh −1(a/b)
if b < a

(4)

(see, e.g., [3], [4]). This mean has been studied extensively in [14], [15], and in [8]. It is
well known that the mean SB(a,b) is strictly increasing in both a and b , nonsymmetric
and homogeneous of degree 1 in its variables.

Other bivariate means used in this paper are derived from the Schwab-Borchardt
mean. They are defined as follows [13]:

SAH = SB(A,H), SHA = SB(H,A),
SCA = SB(C,A), SAC = SB(A,C).

(5)

We will call the pairs of means {A,H} and {C,A} the generating means of the
four Schwab-Borchardt means defined in (5).

In the last section of this paper we will deal with optimal bounds for two pairs of
means {SHA,SAC} and {SAH,SCA} . The bounding quantities are either the geometric
or arithmetic convex combinations of two numbers. Recall that the following quantity
xλ yμ is called the geometric convex combination of positive numbers x and y while
λx+ μy is called the arithmetic convex combination of x and y , where the numbers λ
and μ are such that 0 � λ ,μ � 1 and λ + μ = 1.
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3. Lemmas

In this section we give some lemmas which are needed in the sequel.
The following one, often called L’Hospital’s - type rule for monotonicity, can be

found, e.g. in [2].

LEMMA A. Let the functions f and g be continuous on [c,d] , differentiable on

(c,d) and such that g′(t) �= 0 on (c,d) . If f ′(t)
g′(t) is (strictly) increasing (decreasing) on

(c,d) , then the functions f (t)− f (d)
g(t)−g(d) and f (t)− f (c)

g(t)−g(c) are also (strictly) increasing (decreas-

ing) on (c,d) .

Also, we will need the following monotonicity result [16].

LEMMA B. Suppose that the power series f (t) = ∑∞
n=0 antn and g(t)= ∑∞

n=0 bntn

(bn > 0 for all n � 0) both converge for |t| < ∞ . Then the function f (t)/g(t) is
(strictly) increasing (decreasing) for t > 0 if the sequence {an/bn}∞

n=0 is (strictly)
increasing (decreasing).

For the latter use we also record the following result (see [23]).

LEMMA C. For t ∈ (0,∞) a function

ϕ1(t) =
ln

( sinh t
t

)

ln(cosh t)
(6)

is strictly increasing.

The next lemma reads as follows.

LEMMA 1. The following function

ϕ2(t) =
ln

(sin t
t

)

ln(cos t)
(7)

is strictly decreasing on the interval (0,π/2) .

Proof. Let 0 < t < π/2. Then

ln
( sin t

t

)
=

∞

∑
n=1

ant
2n,

where

an =
|B2n|22n−1

n(2n)!
,

n = 1,2, ... and B2n is the Bernoulli number (see [1, 4.3.71]). Also, if 0 < t < π/2,
then

ln(cost) =
∞

∑
n=1

bnt
2n,
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where

bn =
|B2n|(22n−1)

n(2n)!
,

n = 1,2, ... (see [1, 4.3.72]). In order to apply Lemma B we have to investigate
monotonicity of the sequence {an/bn} . Using formulas given above we have

an

bn
=

1
2(1−4−n)

,

where n is a positive integer. Clearly the sequence in question is strictly decreasing and
so is function ϕ2(t) . �

We shall also utilize the following.

LEMMA 2. Let

ϕ3(t) =
t− sint

tan t− sint
. (8)

Then the function ϕ3(t) is strictly decreasing on the interval (0,π/2) .

Proof. Let
f (t)
g(t)

:= ϕ3(t) =
t− sin t

tan t− sint
.

Differentiation yields

f ′(t)
g′(t)

=
1− cost

sec 2t− cost
=

1
sec 2t + sec t +1

=: h(t).

Taking into account that the function sec t is strictly increasing on the interval (0,π/2)
we conclude that the function h(t) is strictly decreasing on the same interval. We appeal
now to Lemma A, to obtain the desired result. �

The next lemma will also be used in the following section.

LEMMA 3. We define

ϕ4(t) =
t− tanh t

sinh t − tanh t
. (9)

Then the function ϕ4(t) is strictly decreasing for all t > 0 .

Proof. We follow the lines of proof of Lemma 2. Let

f (t)
g(t)

:= ϕ4(t) =
t− tanh t

sinh t− tanh t
.

Hence

f ′(t)
g′(t)

=
1− sech 2t

cosh t − sech 2t
=

cosh t +1
cosh 2t + cosh t +1

= 1− cosh 2t
cosh 2t + cosh t +1

.
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Dividing numerator and denominator of the last fraction by cosh 2t we obtain

f ′(t)
g′(t)

= 1− 1
1+ sech t + sech 2t

=: k(t).

Taking into account that the function sech t is strictly decreasing for all t > 0 we
conclude that the function k(t) is strictly decreasing on the stated domain. Utilizing
Lemma A again we obtain the desired result. �

4. Main results

To this end we will assume that the letters a and b stand for two positive and
unequal numbers.

Before we will state and prove the main results we recall formulas for means
defined in (5). From [13, (12)]

SHA = A
sin p

p
, (10)

where cos p = 1− v2 (0 < p < π/2) and v is defined in (3). Also,

SAC = A
tanq

q
(11)

where sec q = 1+ v2 (0 < q < π/3) (see [13, (25)]). We are in a position to state and
prove the following.

THEOREM 1. The two-sided inequalities

Hα1A1−α1 < SHA < Hβ1A1−β1 (12)

and
Aα2C1−α2 < SAC < Aβ2C1−β2 (13)

hold true if
1
3

� α1 � 1 and β1 = 0 (14)

and
1
3

� α2 � 1 and 0 � β2 <
(

ln
4π2

27

)
/ ln4 = 0.274..., (15)

respectively.

Proof. It is easy to see that the inequality (12) is equivalent to

(H/A)α1 < SHA/A < (H/A)β1 .

Taking logarithms and using the fact that H/A < 1 we can write the last two-sided
inequality as follows

β1 < ϕ2(p) < α1, (16)
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where 0 < p < π/2 and ϕ2 is defined in (7). It is elementary task to show that

ϕ2(0+) = 1/3 and ϕ2(π/2−) = 0.

Utilizing (16) and the fact that the function ϕ2 is strictly decreasing on its domain (see
Lemma 1) we obtain conditions (14). In order to prove that the two-sided inequalities
(13) are valid if conditions (15) are satisfied we follow the lines introduced above in
this proof. First we rewrite (13) as

(A/C)α2 < SAC/C < (A/C)β2 .

Since A/C < 1, the last inequality is equivalent to

β2 < ϕ2(q) < α2, (17)

where q ∈ (0,π/3) . Taking into account that

ϕ2(0+) = 1/3 and ϕ2(π/3−) =
(

ln
4π2

27

)
/ ln4,

and also that the function ϕ2(q) is strictly decreasing on the stated domain, one obtains
the desired result (15). The proof is complete. �

We will now determine geometric convex combinations as the lower and upper
bounds for another pair of means derived from the Schwab-Borchardt mean. The means
of interest are now SAH and SCA . It has been demonstrated in [13, (11)] that

SAH = A
tanh r

r
, (18)

where sech r = 1− v2 (r > 0) and also that

SCA = A
sinh s

s
, (19)

where cosh s = 1+ v2 (0 < s < γ := cosh −1(2)) (see [13, (24)]). The proof is com-
plete.

Our next result reads as follows.

THEOREM 2. The following inequalities

Aα3H1−α3 < SAH < Aβ3H1−β3 (20)

hold true if

0 � α3 � 1
3

and β3 = 1. (21)

Also,
Cα4A1−α4 < SCA < Cβ4A1−β4 (22)

if

0 � α4 � 1
3

and
(

ln

√
3

γ

)
/ ln2 � β4 � 1. (23)



ON SOME MEANS DERIVED FROM THE SCHWAB-BORCHARDT MEAN II 365

Let us note that
(

ln

√
3

γ

)
/ ln2 = 0.395... .

Proof. For the proof of (20) with conditions of its validity as stated above let us
rewrite (20) in the form

α3 <
ln(SAH/H)
ln(A/H)

< β3.

Using (18), (2) and the fact that 1−v2 = sech r we can write the last two-sided inequal-
ity in the form

α3 < ϕ1(r) < β3,

where r > 0. Elementary computations yield ϕ1(0+) = 1/3 and limr→∞ ϕ1(r) = 1.
Taking into account that the function ϕ1 is strictly increasing on the stated domain (see
Lemma C) we obtain

α3 � 1
3

� ϕ1(r) � 1 = β3.

This yields the desired result. The second part of the thesis can be established in a
similar fashion. First we express (22) as

α4 <
ln(SCA/A)
ln(C/A)

< β4.

Using (19) and (2) together with the formula 1 + v2 = cosh s we can write the last
two-sided inequality as follows

α4 < ϕ1(s) < β4,

where 0 < s < γ . Taking into account that the function ϕ1 is strictly increasing on the

stated domain and also that lims→0 ϕ1(s) = 1/3 and ϕ1(γ) =
(

ln

√
3

γ

)
/ ln2 we obtain

α4 � 1
3

� ϕ1(s) �
(

ln

√
3

γ

)
/ ln2 � β4.

This completes the proof. �
The remaining two theorems deal with sharp bounds for the reciprocals of the four

means defined in (5). The bounding quantities are the arithmetic convex combinations
of the reciprocals of the generating means.

THEOREM 3. The two-sided inequalities

α5

H
+

1−α5

A
<

1
SHA

<
β5

H
+

1−β5

A
(24)

hold true if

α5 = 0 and
1
3

� β5 � 1. (25)



366 EDWARD NEUMAN

Also, the inequalities

α6

A
+

1−α6

C
<

1
SAC

<
β6

A
+

1−β6

C
(26)

are valid if

0 � α6 � 2π
3
√

3
−1 = 0.209... and

1
3

� β6 � 1. (27)

Proof. In order to prove that inequalities (24) are valid if the conditions (25) are
satisfied we write the former as

α5

( 1
H

− 1
A

)
<

1
SHA

− 1
A

< β5

( 1
H

− 1
A

)
.

Substituting (10) and (2) into last inequalities and taking into account that 1−v2 = cos p
we obtain, after a little algebra,

α5 < ϕ3(p) < β5,

where p ∈ (0,π/2) . Easy computations and the fact that the function ϕ3 is strictly
decreasing on the stated domain yield

0 = ϕ3((π/2)−) � ϕ3(p) � ϕ3(0+) =
1
3
.

Conditions (25) of validity of inequalities (24) now follow. In a similar fashion one can
demonstrate that the inequalities (26) hold true if the conditions (27) are satisfied. First
using (11), (2) and 1+ v2 = sec q (0 < q < π/3) we can write (26) in the equivalent
form as

α6 < ϕ3(q) < β6.

Simple computations together with the monotonicity property of ϕ3 yield

2π
3
√

3
−1 = ϕ3((π/3)−) � ϕ3(q) � ϕ3(0+) =

1
3
.

The conditions (27) now follow. �
We close this section with the following.

THEOREM 4. In order for the inequalities

α7

H
+

1−α7

A
<

1
SAH

<
β7

H
+

1−β7

A
(28)

to be valid it suffices that

α7 = 0 and
2
3

� β7 � 1. (29)
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Also, the inequalities

α8

A
+

1−α8

C
<

1
SCA

<
β8

A
+

1−β8

C
(30)

are hold true if

0 � α8 � 2
3

γ −1 = 0.520... and
2
3

� β8 � 1. (31)

Proof. To obtain the first part of the thesis we write (28) in the equivalent form

α7

( 1
H

− 1
A

)
<

1
SAH

− 1
A

< β7

( 1
H

− 1
A

)
.

Making use of (18) and (2) we can rewrite the last two-sided inequality in the form

α7 < ϕ4(r) < β7,

where sech r = 1− v2 (r > 0) and v is defined in (3). Computing limits of ϕ4(r)
as r → 0+ and as r → +∞ and taking into account that the function ϕ4 is strictly
decreasing on the stated domain we obtain

0 = ϕ4(+∞) � ϕ4(r) � ϕ4(0+) = 2/3.

The conditions (29) now follow. Finally, in order to prove that the inequalities (30) are
satisfied if conditions (31) are valid we follow the steps used above to obtain

α8

( 1
A
− 1

C

)
<

1
SCA

− 1
C

< β8

( 1
A
− 1

C

)
.

With the aid of (19) and (2) we write the above inequalities as

α8 < ϕ4(s) < β8,

where cosh s = 1+ v2 (0 < s < γ) . Computing limits of ϕ4(s) at s = 0 and at s = γ
and next utilizing monotonicity of ϕ4 we obtain

2
3

γ −1 = ϕ4(γ−) � ϕ4(s) � ϕ4(0+) = 2/3.

This yields the desired conditions (31). The proof is complete. �
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