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NOTE ON SOME UPPER BOUNDS FOR THE CONDITION NUMBER

GUANGHUI CHENG

(Communicated by N. Elezović)

Abstract. In this letter, some lower bounds for the smallest singular value of the nonsingular ma-
trix are established. In addition, we also proposed some upper bounds on the condition number
of a matrix which are the better than the bound proposed by Guggenheimer et al. [College Math.
J. 26(1) (1995) 2-5]. To illustrate our bounds, some examples are also given.

1. Introduction

Denote by Mn the set of all n× n nonsingular complex matrices. Let σi (i =
1, · · · ,n) be the singular values of A ∈ Mn and assume that σ1 � σ2 � · · · � σn−1 �
σn > 0. The condition number of A ∈ Mn is defined by

K (A) =
σ1

σn
.

The Frobenius norm of A = (ai j) ∈ Mn is defined by

‖A‖F =
( n

∑
i, j=1

|ai j|2
) 1

2

.

By the relationship between the Frobenius norm and singular value, we have

‖A‖2
F =

n

∑
i=1

σ2
i .

Recently, some lower bounds for the smallest singular value of nonsingular matrix
have been proposed [2-8], as well as some upper bounds for the condition number of
the nonsingular matrix. Yu and Gu [7] established the following lower bound:

σn � |detA|
(

n−1

‖A‖2
F

) n−1
2

> 0, (1)
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Inequality (1) is also seen in [5]. Zou [9] obtained a lower bound based on (1) as
follows:

σn � |detA|
(

n−1

‖A‖2
F − l2

) n−1
2

> 0, (2)

where l = |detA|
(

n−1

‖A‖2
F

) n−1
2

. Apparently, the bound of [9] is better than one of [7].

Guggenheimer et al. [1] gave the following upper bound:

K (A) <
2

|detA|
(‖A‖2

F

n

) n
2

.

In this paper, we propose some lower bounds for the smallest singular value σn

and some upper bounds for the condition number of the nonsingular matrix.

2. Main results

To prove our main results, firstly we will give a lemma.

LEMMA 1. If A ∈ Mn(n � 2) , then

σn >
σk

2
|detA|

(
n

‖A‖2
F

) n
2
[
1+

1
n

(
σk

2

)2

|detA|2
(

n

‖A‖2
F

)n+1]
, (3)

and moreover,

σn >
σk

2
|detA|

(
n

‖A‖2
F

) n
2

, (4)

where 1 � k � n−1.

Proof. Let

ϒ = σ2
1 · · ·

σ2
k

pk

σ2
k

qk
σ2

k+1 · · ·σ2
n−1, 1 � k � n−1, (5)

where
1
pk

+
1
qk

= 1, pk > 0, qk > 0. (6)

Applying the arithmetic-geometric mean inequality to (5) and (6), we get

ϒ �
(

1
n

n−1

∑
i=1

σ2
i

)n

=
(‖A‖2

F −σ2
n

n

)n

, (7)

and

2

√
1

pkqk
� 1

pk
+

1
qk

= 1, (8)
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respectively.
By |detA|2 = σ2

1 σ2
2 · · ·σ2

n , we have

ϒ =
σ2

k

σ2
n

1
pkqk

|detA|2, 1 � k � n−1. (9)

Hence, by (7), (8) and (9),

σ2
n � σ2

k

pkqk

(
n

‖A‖2
F −σ2

n

)n

|detA|2. (10)

It follows that

σ2
n � σ2

k

22

(
n

‖A‖2
F −σ2

n

)n

|detA|2

=
σ2

k

22

(
n

‖A‖2
F

)n( 1

1− σ2
n

‖A‖2
F

)n

|detA|2

� σ2
k

22 |detA|2
(

n

‖A‖2
F

)n(
1+

σ2
n

‖A‖2
F

)n

.

Moreover,

σn � σk

2
|detA|

(
n

‖A‖2
F

) n
2
(

1+
σ2

n

‖A‖2
F

) n
2

(11)

>
σk

2
|detA|

(
n

‖A‖2
F

) n
2

. (12)

Using (12) into (11), we have

σn >
σk

2
|detA|

(
n

‖A‖2
F

) n
2
[
1+

1
n

(
σk

2

)2

|detA|2
(

n

‖A‖2
F

)n+1] n
2

,

and since n � 2, it is easy to see that

σn >
σk

2
|detA|

(
n

‖A‖2
F

) n
2
[
1+

1
n

(
σk

2

)2

|detA|2
(

n

‖A‖2
F

)n+1]
, 1 � k � n−1.

In order to obtain a better lower bound, let k = 1 in (3) and (4).

THEOREM 1. If A ∈ Mn(n � 2) , then

σn >
σ1

2
|detA|

(
n

‖A‖2
F

) n
2
[
1+

1
n

(
σ1

2

)2

|detA|2
(

n

‖A‖2
F

)n+1]
, (13)

and moreover,

σn >
σ1

2
|detA|

(
n

‖A‖2
F

) n
2

. (14)
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THEOREM 2. If A ∈ Mn(n � 2) , then

K (A) <
2

|detA|
(‖A‖2

F

n

) n
2 1

1+ 1
n(σ1

2 )2|detA|2( n
‖A‖2

F
)n+1

, (15)

and moreover,

K (A) <
2

|detA|
(‖A‖2

F

n

) n
2

. (16)

REMARK 1. Since

2
|detA|

(‖A‖2
F

n

) n
2 1

1+ 1
n (σ1

2 )2|detA|2( n
‖A‖2

F
)n+1

<
2

|detA|
(‖A‖2

F

n

) n
2

,

it is easy to show that the upper bound (15) of the condition number of A is better than
the upper bound (16) of [1] from Theorem 2.

THEOREM 3. If A = (ai j) ∈ Mn(n � 2) , then

σn >
σ1

2
|detA|

(
n

‖A‖2
F − l2

) n
2

, (17)

where l = σ1
2 |detA|( n

‖A‖2
F
)

n
2 .

Proof. From (4) and (10), for 1 � k � n−1, we have

σ2
n � σ2

k

pkqk

(
n

‖A‖2
F −σ2

n

)n

|detA|2 � σ2
k

pkqk

(
n

‖A‖2
F − l2

)n

|detA|2,

where l = σ1
2 |detA|( n

‖A‖2
F
)

n
2 .

In order to obtain a better lower bound of the smallest singular value, let k = 1 and
p1 = q1 = 2 in the above inequality, we can get

σ2
n � σ2

1

22

(
n

‖A‖2
F − l2

)n

|detA|2.

Hence,

σn >
σ1

2
|detA|

(
n

‖A‖2
F − l2

) n
2

.

THEOREM 4. If A ∈ Mn(n � 2) , then

K (A) <
2

|detA|
(‖A‖2

F − l2

n

) n
2

. (18)

where l = σ1
2 |detA|( n

‖A‖2
F
)

n
2 .
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REMARK 2. Evidently, the lower bounds (17) and (18) are sharper than the lower
bounds (14) and (16), respectively. From the above proof, we note that we can get the
better bound inequalities than (17) and (18) if we repeat the above procedure using the
new lower bounds in the proof.

3. Examples

In this section, we will consider two simple examples for validating our results.

EXAMPLE 1. [3] Consider a 3×3 matrix as follows:

A =

⎡
⎣10 1 2

2 20 3
20 1 10

⎤
⎦ .

By direct calculation, we have σ3 = 2.4909 and K (A) = 10.1870.

1. By Theorem 2 in [3], we have σ3 � 0.6227.

2. By Theorem 3.1 in [8], we have σ3 � 2.0694.

3. By Theorem 2.1 in [9], we have σ3 � 2.3961.

4. By (14) in this paper, we have σ3 � 2.4604.

5. By (17) in this paper, we have σ3 � 2.4825.

6. By (16) in this paper (see also [1]), we have K (A) � 10.3131.

7. By (18) in this paper, we have K (A) � 10.2214.

EXAMPLE 2. [3] Consider a 3×3 matrix as follows:

A =

⎡
⎣0.75 0.5 0.4

0.5 1 0.6
0 0.5 1

⎤
⎦ .

By direct calculation, we have σ3 = 0.2977 and K (A) = 6.0610.

1. By Theorem 2 in [3], we have σ3 � 0.0560.

2. By Theorem 3.1 in [8], we have σ3 � 0.1547.

3. By Theorem 2.1 in [9], we have σ3 � 0.1977.

4. By (14) in this paper, we have σ3 � 0.2343.

5. By (17) in this paper, we have σ3 � 0.2395.

6. By (16) in this paper (see also [1]), we have K (A) � 7.7009.

7. By (18) in this paper, we have K (A) � 7.5359.
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