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ORIGIN–SYMMETRIC BODIES OF REVOLUTION WITH

MINIMAL MAHLER VOLUME IN R
3 –A NEW PROOF

YOUJIANG LIN AND GANGSONG LENG

(Communicated by L. Yang)

Abstract. In [22], Meyer and Reisner proved the Mahler conjecture for rovelution bodies. In
this paper, using a new method, we prove that among origin-symmetric bodies of revolution in
R

3 , cylinders have the minimal Mahler volume. Further, we prove that among parallel sections
homothety bodies in R

3 , 3-cubes have the minimal Mahler volume.

1. Introduction

The well-known Mahler’s conjecture (see, e.g., [11], [18], [29] for references)
states that, for any origin-symmetric convex body K in R

n ,

P(K) � P(Cn) =
4n

n!
, (1.1)

where Cn is an n -cube and P(K) = Vol(K)Vol(K∗) , which is known as the Mahler
volume of K .

For n = 2, Mahler [19] himself proved the conjecture, and in 1986 Reisner [26]
showed that equality holds only for parallelograms. For n = 2, a new proof of inequality
(1.1) was obtained by Campi and Gronchi [4]. Recently, Lin and Leng [17] gave a new
and intuitive proof of the inequality (1.1) in R

2 .
For some special classes of origin-symmetric convex bodies in R

n , a sharper
estimate for the lower bound of P(K) has been obtained. If K is a convex body
which is symmetric around all coordinate hyperplanes, Saint Raymond [28] proved that
P(K) � 4n/n! ; the equality case was discussed in [20, 27]. When K is a zonoid (limits
of finite Minkowski sums of line segments), Meyer and Reisner (see, e.g., [12, 25, 26])
proved that the same inequality holds, with equality if and only if K is an n -cube.
For the case of polytopes with at most 2n + 2 vertices (or facets) (see, e.g., [2] for
references), Lopez and Reisner [15] proved the inequality (1.1) for n � 8 and the min-
imal bodies are characterized. Recently, Nazarov, Petrov, Ryabogin and Zvavitch [24]

Mathematics subject classification (2010): 52A10, 52A40.
Keywords and phrases: Convex body, body of revolution, polar body, Mahler conjecture, Cylinder.
The authors would like to acknowledge the support from China Postdoctoral Science Foundation Grant

2013M540806, National Natural Science Foundation of China under grant 11271244 and National Natural Science Founda-
tion of China under grant 11271282.

c© � � , Zagreb
Paper JMI-08-28

375

http://dx.doi.org/10.7153/jmi-08-28


376 Y. LIN AND G. LENG

proved that the cube is a strict local minimizer for the Mahler volume in the class of
origin-symmetric convex bodies endowed with the Banach-Mazur distance.

Bourgain and Milman [3] proved that there exists a universal constant c > 0 such
that P(K) � cnP(B) , which is now known as the reverse Santaló inequality. Very
recently, Kuperberg [14] found a beautiful new approach to the reverse Santaló in-
equality. What’s especially remarkable about Kuperberg’s inequality is that it provides
an explicit value for c .

Another variant of the Mahler conjecture without the assumption of origin-sym-
metry states that, for any convex body K in R

n ,

P(K) � (n+1)(n+1)

(n!)2 , (1.2)

with equality conjectured to hold only for simplices. For n = 2, Mahler himself proved
this inequality in 1939 (see, e.g., [5, 6, 16] for references) and Meyer [21] obtained the
equality conditions in 1991. Recently, Meyer and Reisner [23] have proved inequality
(1.2) for polytopes with at most n + 3 vertices. Very recently, Kim and Reisner [13]
proved that the simplex is a strict local minimum for the Mahler volume in the Banach-
Mazur space of n -dimensional convex bodies.

Strong functional versions of the Blaschke-Santaló inequality and its reverse form
have been studied recently (see, e.g., [1, 7, 8, 9, 10, 22]).

The Mahler conjecture is still open even in the three-dimensional case. Terence
Tao in [30] made an excellent remark about the open question.

To state our results, we first give some definitions. In the coordinate plane XOY
of R

3 , let

D = {(x,y) : −a � x � a, |y| � f (x)}, (1.3)

where f (x) ( [−a,a] , a > 0) is a concave, even and nonnegative function. An origin-
symmetric body of revolution R is defined as the convex body generated by rotating D
around the X -axis in R

3 . f (x) is called its generating function and D is its generating
domain. If the generating domain of R is a rectangle (the generating function of R is a
constant function), R is called a cylinder. If the generating domain of R is a diamond
(the generating function f (x) of R is a linear function on [−a,0] and f (−a) = 0), R
is called a bicone.

In this paper, we prove that cylinders have the minimal Mahler volume for origin-
symmetric bodies of revolution in R

3 .

THEOREM 1.1. For any origin-symmetric body of revolution K in R
3 , we have

P(K) � 4π2

3
, (1.4)

and the equality holds if and only if K is a cylinder or bicone.

REMARK 1. In [22], for the Schwarz rounding K̃ of a convex body K in R
n ,

Meyer and Reisner gave a lower bound for P(K̃) . Especially, for a general body of
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revolution K in R
3 , they proved

P(K) � 44π2

35 , (1.5)

with equality if and only if K is a cone and |AO|/|AD| = 3/4 (where, A is the vertex
of the cone and AD is the height and O is the Santaló point of K ).

The following Theorem 1.2 is the functional version of the Theorem 1.1.

THEOREM 1.2. Let f (x) be a concave, even and nonnegative function defined on
[−a,a] , a > 0 , and for x′ ∈ [− 1

a , 1
a ] define

f ∗(x′) = inf
x∈[−a,a]

1− x′x
f (x)

.

Then, we have

(∫ a

−a
( f (x))2dx

)(∫ 1
a

− 1
a

( f ∗(x′))2dx′
)

� 4
3
, (1.6)

with equality if and if f (x) = f (0) or f ∗(x′) = 1/ f (0) .

Let C be an origin-symmetric convex body in the coordinate plane YOZ of R
3

and f (x) (x ∈ [−a,a] , a > 0) is a concave, even and nonnegative function. A parallel
sections homothety body is defined as the convex body

K =
⋃

x∈[−a,a]

{ f (x)C+ xv},

where v = (1,0,0) is a unit vector in the positive direction of the X-axis, f (x) is called
its generating function and C is its homothetic section.

Applying Theorem 1.2, we prove that among parallel sections homothety bodies
in R

3 , 3-cubes have the minimal Mahler volume.

THEOREM 1.3. For any parallel sections homothety body K in R
3 , we have

P(K) � 43

3!
, (1.7)

and the equality holds if and only if K is a 3-cube or octahedron.

2. Definitions, notation, and preliminaries

As usual, Sn−1 denotes the unit sphere, and Bn the unit ball centered at the origin,
O the origin and ‖ · ‖ the norm in Euclidean n -space R

n . The symbol for the set of
all natural numbers is N . Let K n denote the set of convex bodies (compact, convex
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subsets with non-empty interiors) in R
n . Let K n

o denote the subset of K n that con-
tains the origin in its interior. For u ∈ Sn−1 , we denote by u⊥ the (n−1)-dimensional
subspace orthogonal to u . For x , y ∈ R

n , x · y denotes the inner product of x and y .
Let int K denote the interior of K . Let conv K denote the convex hull of K . we

denote by V (K) the n -dimensional volume of K . The notation for the usual orthogonal
projection of K on a subspace S is K|S .

If K ∈ Kn
o , we define the polar body K∗ of K by

K∗ = {x ∈ R
n : x · y � 1 ,∀y ∈ K}.

REMARK 2. If P is a polytope, i.e., P= conv{p1, · · · , pm} , where pi (i = 1, · · · ,m)
are vertices of polytope P . By the definition of the polar body, we have

P∗ = {x ∈ R
n : x · p1 � 1, · · · ,x · pm � 1}

=
m⋂

i=1

{x ∈ R
n : x · pi � 1}, (2.1)

which implies that P∗ is an intersection of m closed halfspaces with exterior normal
vectors pi ( i = 1, · · · ,m) and the distance of hyperplane

{x ∈ R
n : x · pi = 1}

from the origin is 1/‖pi‖ .

Associated with each convex body K in R
n is its support function hK : R

n →
[0,∞) , defined for x ∈ R

n , by

hK(x) = max{y · x : y ∈ K}, (2.2)

and its radial function ρK : R
n\{0}→ (0,∞) , defined for x 	= 0, by

ρK(x) = max{λ � 0 : λx ∈ K}. (2.3)

For K , L ∈ K n , the Hausdorff distance is defined by

δ (K,L) = min{λ � 0 : K ⊂ L+ λBn, L ⊂ K + λBn}. (2.4)

A linear transformation (or affine transformation) of R
n is a map φ from R

n to
itself such that φx = Ax (or φx = Ax+ t , respectively), where A is an n×n matrix and
t ∈ R

n . It is known that Mahler volume of K is invariant under affine transformation.
For K ∈ K n

o , if (x1,x2, · · · ,xn) ∈ K , we have (ε1x1, · · · ,εnxn) ∈ K for any signs
εi =±1 ( i = 1, · · · ,n ), then K is a 1-unconditional convex body. In fact, K is symmetric
with respect to all coordinate planes.

The following Lemma 2.1 will be used to calculate the volume of an origin-
symmetric body of revolution. Since the lemma is an elementary conclusion in calculus,
we omit its proof.
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LEMMA 2.1. In the coordinate plane XOY, let

D = {(x,y) : a � x � b, |y| � f (x)},

where f (x) is a linear, nonnegative function defined on [a,b] . Let R be a body of
revolution generated by D. Then

V (R) =
π
3

(b−a)
[
f (a)2 + f (a) f (b)+ f (b)2] . (2.5)

3. Main result and its proof

In the paper, we consider convex bodies in a three-dimensional Cartesian coordi-
nate system with origin O and its three coordinate axes are denoted by X -axis, Y -axis,
and Z -axis.

LEMMA 3.1. If K ∈ K 3
0 , then for any u ∈ S2 , we have

K∗ ∩u⊥ = (K|u⊥)∗. (3.1)

On the other hand, if K′ ∈ K 3
0 satisfies

K′ ∩u⊥ = (K|u⊥)∗ (3.2)

for any u ∈ S2∩ v⊥0 (v0 is a fixed vector), then,

K′ = K∗. (3.3)

Proof. Firstly, we prove (3.1).
Let x ∈ u⊥ , y ∈ K and y′ = y|u⊥ , since the hyperplane u⊥ is orthogonal to the

vector y− y′ , then

y · x = (y′ + y− y′) · x = y′ · x+(y− y′) · x = y′ · x.

If x ∈ K∗ ∩ u⊥ , for any y′ ∈ K|u⊥ , there exists y ∈ K such that y′ = y|u⊥ , then
x · y′ = x · y � 1, thus x ∈ (K|u⊥)∗ . Thus, we have K∗ ∩u⊥ ⊂ (K|u⊥)∗ .

If x ∈ (K|u⊥)∗ , then for any y ∈ K and y′ = y|u⊥ , x · y = x · y′ � 1, thus x ∈ K∗ ,
and since x ∈ u⊥ , thus x ∈ K∗ ∩u⊥ . Thus, we have (K|u⊥)∗ ⊂ K∗ ∩u⊥ .

Next we prove (3.3).
Let S1 = S2∩ v⊥0 . For any vector v ∈ S2 , there exists a u ∈ S1 satisfying v ∈ u⊥ .

Since K′ ∩u⊥ = (K|u⊥)∗ and K∗ ∩u⊥ = (K|u⊥)∗ , thus K′ ∩u⊥ = K∗ ∩u⊥ . Hence, we
have ρK′(v) = ρK∗(v) . Since v ∈ S2 is arbitrary, we get K′ = K∗. �

LEMMA 3.2. In the coordinate plane XOY, let P be a 1-unconditional convex
body. Let R and R′ be two origin-symmetric bodies of revolution generated by P and
P∗ , respectively. Then R′ = R∗ .
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Proof. Let v0 = {1,0,0} and S1 = S2 ∩ v⊥0 , for any u ∈ S1, we have R|u⊥ =
R∩ u⊥ . Since R′ ∩ u⊥ = P∗ = (R∩ u⊥)∗ for any u ∈ S1 , thus R′ ∩ u⊥ = (R|u⊥)∗ for
any u ∈ S1 . By Lemma 3.1, we have R′ = R∗ . �

LEMMA 3.3. For any origin-symmetric body of revolution R, there exists a linear
transformation φ satisfying

(i) φR is an origin-symmetric body of revolution;
(ii) φR ⊂C3 = [−1,1]3, where C3 is the unit cube in R

3 .

Proof. Let f (x) (x ∈ [−a,a]) be the generating function of R .
For vector v = (1,0,0) and any t ∈ [−a,a], the set R∩ (v⊥ + tv) is a disk in the

plane v⊥ + tv with the point (t,0,0) as the center and f (t) as the radius.

Next, for a 3×3 diagonal matrix A =

⎡
⎣b 0 0

0 c 0
0 0 c

⎤
⎦ , where b,c ∈ R

+ , let φR = {Ax :

x ∈ R} , we prove that φR is still an origin-symmetric body of revolution.
For t ′ ∈ [−ab,ab] , if (t ′,y′,z′) ∈ φR∩ (v⊥ + t ′v) , there is (t,y,z) ∈ R∩ (v⊥ + tv)

satisfying t ′ = bt, y′ = cy, z′ = cz. Hence, we have

‖(t ′,y′,z′)− (t ′,0,0)‖ = c‖(t,y,z)− (t,0,0)‖� c f (t),

which implies that φR∩ (v⊥ + t ′v) ⊂ B′ , where B′ is a disk in the plane v⊥ + t ′v with
(t ′,0,0) as the center and c f (t ′/b) as the radius.

On the other hand, if (t ′,y′,z′) ∈ B′ , then ‖(t ′,y′,z′)− (t ′,0,0)‖ � c f (t ′/b) . Let
t = t ′/b , y = y′/c and z = z′/c . Noting t ′ ∈ [−ab,ab] , we have t ∈ [−a,a] and

‖(t,y,z)− (t,0,0)‖ =
1
c
‖(t ′,y′,z′)− (t ′,0,0)‖ � f (t).

Hence, we have (t,y,z) ∈ R∩ (v⊥ + tv) , which implies that (t ′,y′,z′) = (bt,cy,cz) ∈
φR∩ (v⊥ + t ′v) . Thus, B′ ⊂ φR∩ (v⊥ + t ′v) . Therefore, we have φR∩ (v⊥ + t ′v) = B′ .
It follows that φR is an origin-symmetric body of revolution and its generating function
is F(x) = c f (x/b) , x ∈ [−ab,ab] .

Set b = 1/a and c = 1/ f (0) , we obtain φR ⊂C3 = [−1,1]3 . �

REMARK 3. By Lemma 3.3 and the affine invariance of Mahler volume, to prove
our theorems, we need only consider the origin-symmetric body of revolution R whose
generating domain P satisfies T ⊂ P ⊂ Q , where

T = {(x,y) : |x|+ |y|� 1} and Q = {(x,y) : max{|x|, |y|} � 1}.
In the following lemmas, let �ABD denote conv{A,B,D} , where A = (−1,1) ,

B = (0,1) and D = (−1,0) .

LEMMA 3.4. Let P be a 1-unconditional polygon in the coordinate plane XOY
satisfying

P∩{(x,y) : x � 0, y � 0} = conv{O,D,A2,A1,B},
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where A1 lies on the line segment AB and A2 ∈ int�ABD, R the origin-symmetric
body of revolution generated by P. Then

P(R) � min{P(R1),P(R2)} (3.4)

and

P(R) � 4π2

3
, (3.5)

where R1 and R2 are origin-symmetric bodies of revolution generated by 1-unconditional
polygons P1 and P2 satisfying

P1∩{(x,y) : x � 0, y � 0} = conv{O,D,A2,B}

and
P2∩{(x,y) : x � 0, y � 0} = conv{O,D,C,B},

respectively, where C is the point of intersection between two lines A2D and AB.

O

B(0,1)

A
2
(x

0
,y

0
)

D(−1,0)

C

E

M

F A
1
(−t,1)A

A
1
′M′A

2
′

X

Y

Figure 3.1: P and P∗ in the second quadrant.

Proof. In Figure 3.1, let A2 = (x0,y0) and A1 = (−t,1) , then

C =
(x0− y0 +1

y0
,1
)

and 0 � t � −x0 + y0−1
y0

.

From Remark 2, we can get P∗ , which satisfies

P∗ ∩{(x,y) : x � 0, y � 0} = conv{M,E,D,O,B},
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where E lies on the line segment AD and M ∈ int�ABD . Let F be the point of
intersection between two lines EM and AB . Let

F1(t) =
1
2
V (R), F2(t) =

1
2
V (R∗) and F(t) = F1(t)F2(t).

Firstly, we prove (3.4). The proof consists of three steps for good understanding.

First step. We calculate the first and second derivatives of the functions F(t) .
Since EF⊥OA2 and the distance of the line EF from O is 1/‖OA2‖ , we have the

equation of the line EF

y = −x0

y0
x+

1
y0

. (3.6)

Similarly, since BM⊥OA1 and the distance of the line BM from O is 1/‖OA1‖ , we
get the equation of the line BM

y = tx+1. (3.7)

Using equations (3.6) and (3.7), we obtain

M = (xM,yM) =
(

1− y0

ty0 + x0
,

x0 + t
ty0 + x0

)
(3.8)

and

E = (xE ,yE) =
(
−1,

x0 +1
y0

)
. (3.9)

Noting that

P∩{(x,y) : x � 0, y � 0}
= conv{D,A2,A

′
2}∪ conv{A1,A2,A

′
2,A

′
1}∪ conv{O,B,A1,A

′
1},

where A′
1 and A′

2 are the orthogonal projections of points A1 and A2 , respectively, on
the X -axis, and applying Lemma 2.1, we have

F1(t) =
π
3

y2
0(x0 +1)+

π
3

(−t− x0)(y2
0 + y0 +1)+ πt

=
π
3

(−y2
0− y0 +2)t +

π
3

(y2
0 − x0y0− x0). (3.10)

Thus, we have

F ′
1(t) =

π
3

(−y2
0− y0 +2). (3.11)

Noting that

P∗ ∩{(x,y) : x � 0, y � 0}
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= conv{D,E,M,M′}∪ conv{M,M′,O,B},

where M′ is the orthogonal projection of point M on the X -axis, and applying Lemma
2.1, we obtain

F2(t) =
π
3

(xM − xE)(y2
E + yEyM + y2

M)+
π
3

(−xM)(y2
M + yM +1)

=
π
3

( 1− y0

ty0 + x0
+1
)[(x0 +1

y0

)2
+
(x0 +1

y0

)( x0 + t
ty0 + x0

)
+
( x0 + t

ty0 + x0

)2
]

+
π
3

( y0−1
ty0 + x0

)[( x0 + t
ty0 + x0

)2
+
( x0 + t

ty0 + x0

)
+1

]

=
π
3

Δ1t3 + Δ2t2 + Δ3t + Δ4

y2
0(ty0 + x0)3

, (3.12)

where

Δ1 = y3
0(x

2
0 +3x0 +3),

Δ2 = y2
0(3x3

0 +9x2
0 +9x0 + y3

0−3y0 +2),
Δ3 = 3y0[x4

0 +3x3
0 +3x2

0 + x0(y3
0− y2

0− y0 +1)],
Δ4 = x2

0(x
3
0 +3x2

0 +3x0 +2y3
0−3y2

0 +1).

Thus, we have

F ′
2(t) =

π
3

(3Δ1x0−Δ2y0)t2 +(2Δ2x0−2Δ3y0)t +(Δ3x0−3Δ4y0)
y2
0(ty0 + x0)4

=
π
3

(y0 −1)2−y0(y0 +2)t2−2x0(2y0 +1)t−3x2
0

(ty0 + x0)4 . (3.13)

Then, we have

F ′(t) = F ′
1(t)F2(t)+F1(t)F ′

2(t)

=
π2

9
Λ1t4 + Λ2t3 + Λ3t2 + Λ4t + Λ5

y2
0(ty0 + x0)4

, (3.14)

where

Λ1 = y4
0[x

2
0(−y2

0− y0 +2)+3x0(−y2
0− y0 +2)+3(−y2

0− y0 +2)],
Λ2 = y3

0[4x3
0(−y2

0− y0 +2)+12x2
0(−y2

0− y0 +2)+12x0(−y2
0− y0 +2)],

Λ3 = y2
0[6x4

0(−y2
0− y0 +2)+18x3

0(−y2
0− y0 +2)+18x2

0(−y2
0− y0 +2)

+x0(y5
0 −2y4

0 +8y2
0−13y0 +6)+ (−y6

0 +3y4
0−2y3

0)],
Λ4 = y0[4x5

0(−y2
0− y0 +2)+12x4

0(−y2
0− y0 +2)+12x3

0(−y2
0− y0 +2)

+x2
0(2y5

0−4y4
0 +4y3

0 +4y2
0−14y0 +8)+ x0(−4y6

0 +6y5
0−2y3

0)],
Λ5 = x6

0(−y2
0− y0 +2)+3x5

0(−y2
0− y0 +2)+3x4

0(−y2
0− y0 +2)
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+x3
0(y

5
0 −2y4

0 +4y3
0−4y2

0− y0 +2)+ x2
0(−3y6

0 +6y5
0−3y4

0).

Simplifying the above equation, we get

F ′(t) =
π2

9
−y2

0− y0 +2

y2
0(ty0 + x0)3

{
(x2

0 +3x0 +3)y3
0t

3 +3x0(x2
0 +3x0 +3)y2

0t
2

+[3x4
0 +9x3

0 +9x2
0 + x0(−y3

0 +3y2
0−5y0 +3)+ y3

0(y0−1)]y0t

+
[
x5
0 +3x4

0 +3x3
0 + x2

0
−y4

0 + y3
0−3y2

0 + y0 +2
y0 +2

+ x0
3y5

0−3y4
0

y0 +2

]}
. (3.15)

From (3.14), we can get

F ′′(t) =
π2

9
(4Λ1x0−Λ2y0)t3+(3Λ2x0−2Λ3y0)t2+(2Λ3x0−3Λ4y0)t+(Λ4x0−4Λ5y0)

y2
0(ty0+x0)5

=
π2

9
Γ1t2 + Γ2t + Γ3

y2
0(ty0 + x0)5

, (3.16)

where

Γ1 = −2x0y
3
0(y

5
0 −2y4

0 +8y2
0−13y0 +6)−2y6

0(−y3
0 +3y0−2),

Γ2 = x2
0y

2
0(−4y5

0 +8y4
0−12y3

0 +4y2
0 +16y0−12)+ x0y

5
0(10y3

0−18y2
0 +6y0 +2),

Γ3 = x3
0y

2
0(−2y4

0 +4y3
0−12y2

0 +20y0−10)+ x2
0y

4
0(8y3

0−18y2
0 +12y0−2).

Simplifying the above equation, we get

F ′′(t) =
π2

9

Γ1
y0

t +
(

Γ2
y0
− x0Γ1

y2
0

)
y2
0(ty0 + x0)4

=
π2

9
(y0 −1)2

(ty0 + x0)4 {[−2x0(y0 +2)(y2
0−2y0 +3)+2y3

0(y0 +2)]t

+[x2
0(−2y2

0−10)+ x0y
2
0(8y0−2)]}. (3.17)

Second step. We prove that

(i) F ′
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D1

and

(ii) F ′′
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D2,

where

D1 =
{

(x,y) : −1 � x � y−1,
−1+

√
5

2
� y � 1}

∪{(x,y) : −1 � x � y3 +2y2 +3y−6
(2− y)(y+3)

, 0 � y � −1+
√

5
2

}
(3.18)
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Figure 3.2: The domains of D1 and D2 .

and

D2 =
{
(x,y) :

y3 +2y2 +3y−6
(2− y)(y+3)

� x � y−1, 0 � y � −1+
√

5
2

}
. (3.19)

In fact, from (3.15), we have that

F ′
(−x0 + y0−1

y0

)
=

π2

9y2
0

G(x0,y0), (3.20)

where

G(x0,y0) = x2
0(2− y0)(y0 +3)− x0(y3

0 +3y2
0 +4y0−12)− (y0 +2)(y3

0 +3y0−3).

Noting that G(x0,y0) is a quadratic function of the variable x0 defined on [−1,y0−1]
and 0 � y0 � 1, the graph of the quadratic function is a parabola opening upwards.

When x0 = −1, we obtain

G(−1,y0) = −y2
0(y

2
0 + y0 +1) < 0.

When x0 = y0−1, we have

G(y0−1,y0) = −3y2
0(y

2
0 + y0−1).

Then we have

G(y0−1,y0) � 0 for
−1+

√
5

2
� y0 � 1

and

G(y0 −1,y0) � 0 for 0 � y0 <
−1+

√
5

2
.
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When

x0 =
y3
0 +2y2

0 +3y0−6
(2− y0)(y0 +3)

∈ [−1,y0−1],

we have

G
(y3

0 +2y2
0 +3y0−6

(2− y0)(y0 +3)
,y0

)
= G(−1,y0) < 0.

Hence,
G(x0,y0) � 0, for (x0,y0) ∈ D1.

From (3.20), we have

F ′
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D1. (3.21)

By (3.17), we get

F ′′
(−x0 + y0−1

y0

)
=

π2

9
1

y0(1− y0)
H(x0,y0), (3.22)

where

H(x0,y0) = 12x2
0− x0(4y3

0 +2y0−12)−2y3
0(y0 +2). (3.23)

Noting that H(x0,y0) is a quadratic function of the variable x0 defined on [−1,y0−1]
and the coefficient of the quadratic term is positive, the graph of the quadratic function
is a parabola opening upwards.

Let x0 = y0−1, we have

H(y0−1,y0) = −6y4
0−10y0(1− y0) � 0. (3.24)

Let

x0 =
y3
0 +2y2

0 +3y0−6
(2− y0)(y0 +3)

,

we have

H
(y3

0 +2y2
0 +3y0−6

(2− y0)(y0 +3)
,y0

)

=
2y8

0 +4y7
0 +24y6

0 +50y5
0−38y4

0−18y3
0−48y2

0−72y0

(2− y0)2(y0 +3)2

� 0. (3.25)

From (3.24) and (3.25), we have

H(x0,y0) � 0 for (x0,y0) ∈ D2.

Therefore, from (3.22) and 0 < y0 < 1, we have

F ′′
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D2. (3.26)
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Third step. We prove P(R) � min{P(R1),P(R2)} .
By (3.17), we have

F ′′(t) =
π2

9
(y0−1)2

(ty0 + x0)4 I(t), (3.27)

where

I(t) = [−2x0(y0 +2)(y2
0−2y0 +3)+2y3

0(y0 +2)]t
+[x2

0(−2y2
0−10)+ x0y

2
0(8y0−2)] (3.28)

and

0 � t � −x0 + y0−1
y0

. (3.29)

Since
−2x0(y0 +2)(y2

0−2y0 +3)+2y3
0(y0 +2) > 0,

I(t) is an increasing function of the variable t .
By (3.26), for any

(x0,y0) ∈ D2,

we have

F ′′
(−x0 + y0−1

y0

)
� 0.

From (3.27), we have

I
(−x0 + y0−1

y0

)
� 0,

which implies that I(t) � 0 for any

0 � t � −x0 + y0−1
y0

.

Therefore F ′′(t) � 0 for any

0 � t � −x0 + y0−1
y0

.

It follows that the function F(t) is concave on the interval

[
0,

−x0 + y0−1
y0

]
,

which implies

F(t) � min
{

F(0),F
(−x0 + y0−1

y0

)}
.

Therefore, we have
P(R) � min{P(R1),P(R2)}.
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By (3.21), for any (x0,y0) ∈ D1 , we have

F ′
(−x0 + y0−1

y0

)
� 0.

Now we prove that the inequality (3.4) holds in each of the following situations:

(i) I
(−x0 + y0−1

y0

)
� 0;

(ii) I
(−x0 + y0−1

y0

)
> 0 and I(0) < 0;

(iii) I(0) � 0.

We have proved (3.4) in the case (i), and now we prove (3.4) in cases (ii) and (iii).
For the case (ii), since I(t) is increasing and by (3.27), there exists a real number

t0 ∈
(
0,
−x0 + y0−1

y0

)
satisfying

F ′′(t) � 0 for t ∈ [0,t0]

and

F ′′(t) > 0 for t ∈
(
t0,

−x0 + y0−1
y0

]
.

It follows that F ′(t) is decreasing on the interval [0,t0] and increasing on the interval(
t0,

−x0 + y0−1
y0

]
.

If F ′(0) � 0, and since

F ′
(−x0 + y0−1

y0

)
� 0,

we have

F ′(t) � 0 for any t ∈
[
0,

−x0 + y0−1
y0

]
,

which implies that the function F(t) is decreasing and

F(t) � F
(−x0 + y0−1

y0

)
for any t ∈

[
0,
−x0 + y0−1

y0

]
.

Therefore we have

P(R) � min{P(R1),P(R2)} = P(R2).

If F ′(0) > 0, there exists a real number

t1 ∈
(
0,
−x0 + y0−1

y0

)
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satisfying
F ′(t) > 0 for any t ∈ [0,t1)

and

F ′(t) � 0 for any t ∈
[
t1,

−x0 + y0−1
y0

]
,

which implies that the function F(t) is increasing on the interval [0,t1) and decreasing
on the interval [

t1,
−x0 + y0−1

y0

]
.

It follows that

F(t) � min
{

F(0),F
(−x0 + y0−1

y0

)}
for any t ∈

[
0,

−x0 + y0−1
y0

]
.

We then have
P(R) � min{P(R1),P(R2)}.

For the case (iii), since the function I(t) is increasing, we have

I(t) � 0 for any t ∈
[
0,
−x0 + y0−1

y0

]
.

Hence, from (3.27), we have

F ′′(t) � 0 for any t ∈
[
0,
−x0 + y0−1

y0

]
.

Therefore, the function F ′(t) is increasing on the interval

[
0,

−x0 + y0−1
y0

]
,

and since

F ′
(−x0 + y0−1

y0

)
� 0,

we have

F ′(t) � 0 for any t ∈
[
0,

−x0 + y0−1
y0

]
,

which implies that the function F(t) is decreasing on the interval

[
0,

−x0 + y0−1
y0

]
.

Therefore, we have

F(t) � F
(−x0 + y0−1

y0

)
for any t ∈

[
0,
−x0 + y0−1

y0

]
,
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Figure 3.3: P, P1 , PDEB , and their polar bodies in the second quadrant.

which implies that

P(R) � min{P(R1),P(R2)} = P(R2).

Secondly, we prove (3.5).
In (3.4), if

min{P(R1),P(R2)} = P(R2).

Let
T = {(x,y) : |x|+ |y|� 1}

and
Q = {(x,y) : max{|x|, |y|} � 1}.

Let RT and RQ be the origin-symmetric bodies of revolution generated by T and Q ,
respectively. In (3.4), replacing R , R1 , and R2 , by R2 , RT , and RQ , respectively (see
(1) of Figure 3.3), we obtain

P(R2) � min{P(RT ),P(RQ)} =
4π2

3
. (3.30)

It follows that

P(R) � P(R2) � 4π2

3
.
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In (3.4), if
min{P(R1),P(R2)} = P(R1),

let E , F be the vertices of P∗
1 in the second quadrant, where E , F lie on line seg-

ments AD and AB , respectively (see (2) of Figure 3.3). Let PDEB be a 1-unconditional
polygon satisfying

PDEB ∩{(x,y) : x � 0,y � 0} = conv{E,D,O,B},
and let RDEB be an origin-symmetric body of revolution generated by PDEB . In (3.4),
replacing R , R1 , and R2 , by R1

∗ , RDEB , and RQ , respectively (see (3) of Figure 3.3),
we have

P(R) � P(R1) = P(R1
∗) � min{P(RDEB),P(RQ)}. (3.31)

In (3.31), if
min{P(RDEB),P(RQ)} = P(RQ),

we have proved (3.5); if

min{P(RDEB),P(RQ)} = P(RDEB),

let
PDEB

∗ ∩{(x,y) : x � 0, y � 0} = conv{G,D,O,B},
where G lies on the line segment AB , which is a vertex of PDEB

∗ (see (4) of Figure
3.3). In (3.4), replacing R , R1 , and R2 , by RDEB

∗ , RT , and RQ , respectively, we obtain

P(RDEB
∗) � min{P(RT ),P(RQ)} =

4π2

3
. (3.32)

Hence, we have

P(R) � P(R1) � P(RDEB) � 4π2

3
. �

LEMMA 3.5. Let P be a 1-unconditional polygon in the coordinate plane XOY
satisfying

P∩{(x,y) : x � 0, y � 0} = conv{A1,A2, · · · ,An−1,D,O,B},
where A1 lies on the line segment AB, A2, · · · ,An−1 ∈ int�ABD, and the slopes of lines
OAi ( i = 1, · · · ,n− 1) are increasing on i , R the origin-symmetric body of revolution
generated by P. Then

P(R) � min{P(R1),P(R2)}, (3.33)

where R1 and R2 are origin-symmetric bodies of revolution generated by 1-unconditional
polygons P1 and P2 satisfying

P1∩{(x,y) : x � 0, y � 0} = conv{A2,A3, · · · ,An−1,D,O,B}
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Figure 3.4: P and P∗ in the second quadrant.

and
P2∩{(x,y) : x � 0, y � 0} = conv{C,A3, · · · ,An−1,D,O,B},

respectively, where C is the point of intersection between two lines A2A3 and AB.

Proof. In Figure 3.4, let A1 = (−t,1) and A2 = (x0,y0) . Let the slope of the line
A3A2 be k , then

1− y0

−x0
< k <

y0

x0 +1
(3.34)

and the equation of the line A3A2 is

y− y0 = k(x− x0). (3.35)

In (3.35), let y = 1, we get the abscissa of C

xC = x0 +
1− y0

k
.

Let E, F and B be the vertices of P∗ satisfying BE⊥OA1 and EF⊥OA2 . Let I
be the point of intersection between two lines EF and AB . We have

BE : y = tx+1

and

EF : y = −x0

y0
x+

1
y0

.
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Then, we get

I =
(1− y0

x0
,1
)

and

E =
( 1− y0

ty0 + x0
,

t + x0

ty0 + x0

)
. (3.36)

Let

F(t) =
1
2
V (R)

1
2
V (R∗) =

1
4
P(R), (3.37)

which is a function of the variable t , where

0 � t � −xC =
−x0k+ y0−1

k
.

Our proof has three steps.

First step. Calculate F ′(t) and F ′′(t) .
Let V = 1

2V (R1) and V 0 = 1
2V (R1

∗) , then we obtain

F(t) =
(
V +

π
3

(2− y0− y2
0)t
)

×
(

V 0 − π
3

y0−1
x0

(
2− t + x0

ty0 + x0
−
(

t + x0

ty0 + x0

)2
))

.

(3.38)

Therefore, we have

F ′(t) =
π
3

(2− y0− y2
0)(Φ1t3 + Φ2t2 + Φ3t + Φ4)

(y0t + x0)3 , (3.39)

where

Φ1 = y0

[
− π

3
(1− y0)2(2y0 +1)

x0
+V 0y2

0

]
,

Φ2 = −π(1− y0)2(2y0 +1)+3V0x0y
2
0,

Φ3 = −2π(1− y0)2x0 +3V 0x2
0y0 +(y0−1)V,

Φ4 = V 0x3
0−

3x0(1− y0)V
y0 +2

. (3.40)

Thus, we have

F ′′(t) =
2π
3

(1− y0)2

(ty0 + x0)4 J(t), (3.41)
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where

J(t) = (y0 +2)[Vy0 + πx0(y0 −1)]t
+x0[V (4y0−1)+ πx0(y2

0 + y0−2)]. (3.42)

Second step. We prove that

(i) F ′
(−x0k+ y0−1

k

)
� 0 or F ′′

(−x0k+ y0−1
k

)
� 0 for (x0,y0) ∈ D1

and

(ii) F ′′
(−x0k+ y0−1

k

)
� 0 for (x0,y0) ∈ D2,

where D1 and D2 have been given in (3.18) and (3.19).
By (3.39) and (3.40), let

t0 =
−x0k+ y0−1

k
,

we have

F ′(t0) =
π
3

(ϒ1V
0 + ϒ2V + ϒ3), (3.43)

where

ϒ1 = (1− y0)(y0 +2),

ϒ2 =
k2(−x0k+ y0 +2)

(x0k− y0)3 ,

ϒ3 = −π
3

y0 +2
x0(x0k− y0)3 [k3x3

0(y0 −1)(−2y0 +3)+3k2x2
0y0(y0−1)(2y0−3)

+3kx0(1− y0)3(2y0 +1)+ y0(2y0 +1)(y0−1)3]. (3.44)

Since k > 0, x0 < 0 and 0 < y0 < 1, we have that ϒ1 � 0 and ϒ2 � 0, thus, as V
increases and V 0 decreases, F ′(t0) decreases.

Let P0 be a 1-unconditional polygon satisfying

P0∩{(x,y) : x � 0, y � 0} = conv{A2,D,O,B}

and R0 be an origin-symmetric body of revolution generated by P0 . Let V0 = 1
2V (R0)

and V0
∗ = 1

2V (R∗
0) . In (3.38), let V =V0 and V 0 =V0

∗ , we get a function F0(t) , which
is the same function as F(t) in Lemma 3.4.

Since V � V0 and V 0 � V ∗
0 , we have

F ′
(−x0k+ y0−1

k

)
� F ′

0

(−x0k+ y0−1
k

)
. (3.45)
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Since
1− y0

−x0
� k � y0

x0 +1
,

we have

0 � −x0k+ y0−1
k

� −x0 + y0−1
y0

.

In (3.45), let

k =
y0

x0 +1
,

we have

F ′
(−x0 + y0−1

y0

)
� F ′

0

(−x0 + y0−1
y0

)
. (3.46)

From Lemma 3.4, we have

F ′
0

(−x0 + y0−1
y0

)
� 0 for any (x0,y0) ∈ D1, (3.47)

hence

F ′
(−x0 + y0−1

y0

)
� 0 for any (x0,y0) ∈ D1. (3.48)

If F ′′(t0) > 0, by (3.41), J(t0) > 0, since x0 < 0 and 0 � y0 � 1, J(t) is an increasing
linear function, thus J(t) > 0 for t � t0 , which implies F ′′(t) > 0 for t � t0 . Thus
F ′(t) is increasing for t � t0 . Since

F ′
(−x0 + y0−1

y0

)
� 0,

we have F ′(t0) � 0. Therefore we have proved (i).
Next we prove (ii).
Let G be the point of intersection between two lines AD and A2A3 , then G =

(−1,y0− k(x0 +1)) . Let PM be a 1-unconditional polygon satisfying

PM ∩{(x,y) : x � 0, y � 0} = conv{A2,G,D,O,B}

and RM an origin-symmetric body of revolution generated by PM . From Lemma 2.1,
we have that

1
2
V (RM) =

π
3

(x0 +1)[(y0− k(x0 +1))2 +(y0− k(x0 +1))y0 + y2
0]

+
π
3

(−x0)(y2
0 + y0 +1). (3.49)

In (3.42), let

V =
1
2
V (RM)
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and

t =
−x0k+ y0−1

k
,

we get a function of the variable k

L(k) =
Θ1k3 + Θ2k2 + Θ3k+ Θ4

k
, (3.50)

where

Θ1 = −π
3

x0(x0 +1)3(y0 −1)2,

Θ2 =
π
3

(x0 +1)2y0(y0−1)(4x0y0 − x0 + y0 +2),

Θ3 =
π
3

(y0−1)(−5x2
0y

3
0 −9x0y

3
0−3x2

0y
2
0−9x0y

2
0− x2

0−3y3
0−6y2

0),

Θ4 =
π
3

(y0−1)(y0 +2)(2x0y
3
0 +3y3

0− x0y
2
0 +2x0y0−3x0). (3.51)

Let

L1(k) = Θ1k
3 + Θ2k

2 + Θ3k+ Θ4. (3.52)

Since k > 0, to prove L(k) � 0, it suffices to prove L1(k) � 0. In the following,
we prove L1(k) � 0 for

1− y0

−x0
� k � y0

x0 +1
.

By (3.52), we have

L′′
1(k) = 6Θ1k+2Θ2. (3.53)

Since

L′′
1

( y0

x0 +1

)
=

2π
3

(x0 +1)3y0(y0−1)(y0 +2) � 0

and
Θ1 = −π

3
x0(x0 +1)3(y0 −1)2 > 0,

then

L′′
1(k) � 0 for any

1− y0

−x0
� k � y0

x0 +1
.

Hence, the function L′
1(k) is decreasing on the interval

[1− y0

−x0
,

y0

x0 +1

]
.

By (3.52), we have

L′
1(k) = 3Θ1k

2 +2Θ2k+ Θ3. (3.54)
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From (3.54), we have that

L′
1

( y0

x0 +1

)
=

π
3

(1− y0)[x2
0(2y2

0 +1)+ x0(2y3
0 +4y2

0)+ y3
0 +2y2

0]

=
π
3

(1− y0)

[
(2y2

0 +1)
(

x0 +
y3
0 +2y2

0

2y2
0 +1

)2

+
y2
0(y0 +2)(1− y3

0)
2y2

0 +1

]

� 0. (3.55)

Therefore

L′
1(k) � 0 for any

1− y0

−x0
� k � y0

x0 +1
.

It follows that the function L1(k) is increasing on the interval[1− y0

−x0
,

y0

x0 +1

]
.

When
k =

y0

x0 +1
,

we have RM = R0 and
−x0k+ y0−1

k
=

−x0 + y0−1
y0

.

In Lemma 3.4, for R = R0 , we had proved

F ′′
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D2.

Hence,
L1

( y0

x0 +1

)
� 0 for (x0,y0) ∈ D2,

which implies that L1(k) � 0 for any

1− y0

−x0
� k � y0

x0 +1
when (x0,y0) ∈ D2.

It follows that, for R = RM ,

F ′′
(−x0k+ y0−1

k

)
� 0 for any

1− y0

−x0
� k � y0

x0 +1

when (x0,y0) ∈ D2.
In Lemma 3.4, for R = R0 , we know that

F ′′
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D2,

from (3.41), which implies that

J
(−x0 + y0−1

y0

)
� 0 for (x0,y0) ∈ D2.
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Since J(t) is an increasing linear function and

−x0k+ y0−1
k

� −x0 + y0−1
y0

for k <
y0

x0 +1
,

we have

J
(−x0k+ y0−1

k

)
� 0 for (x0,y0) ∈ D2,

which implies, for R = R0 , that

F ′′
(−x0k+ y0−1

k

)
� 0

for any
1− y0

−x0
� k � y0

x0 +1
and (x0,y0) ∈ D2.

Therefore, for
V = V (R0) or V = V (RM),

we have

J
(−x0k+ y0−1

k

)
� 0 for (x0,y0) ∈ D2.

Since

J(t) = [(y0 +2)y0t +x0(4y0−1)]V +[πx0(y0−1)(y0 +2)t−πx2
0(2−y0−y2

0)], (3.56)

which can be considered as a linear function of the variable V , and

V (R0) < V (R) <V (RM),

we have, for any V =V (R) , that

J
(−x0k+ y0−1

k

)
� 0 for (x0,y0) ∈ D2. (3.57)

It follows that

F ′′
(−x0k+ y0−1

k

)
� 0 for (x0,y0) ∈ D2. (3.58)

Third step. We prove

P(R) � min{P(R1),P(R2)}.
We omit the proof of this step which is similar to the proof of third step in Lemma
3.4. �

LEMMA 3.6. For any a 1-unconditional polygon P ⊂ [−1,1]2 in the coordinate
plane XOY satisfying B,D ∈ P, let R be an origin-symmetric body of revolution gen-
erated by P. Then

P(R) � 4π2

3
, (3.59)

with equality if and only if R is a cylinder or bicone.
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Figure 3.5: The two cases of 1-unconditional polygon P.

Proof. Let A1,A2, · · · ,An be the vertices of P contained in the domain {(x,y) :
x � 0,y � 0} and the slopes of lines OAi ( i = 1, · · ·n ) are increasing on i . Without
loss of generality, suppose that the vertex An coincides with point D . The vertex A1

satisfies the following two cases:
(i) A1 coincides with the point B ;
(ii) A1 does not coincide with the point B , but lies on the line segment BC (C is

the point of intersection between two lines A2A3 and AB).
If R satisfies the case (ii), from the Lemma 3.5, we obtain an origin-symmetric

body of revolution R1 with smaller Mahler volume than R and its generating domain
P1 has fewer vertices than P .

If R satisfies the case (i), then its polar body R∗ satisfies the case (ii). Since
P(R) = P(R∗) and P has the same number of vertices as P∗ , from the Lemma 3.5,
we can also obtain an origin-symmetric body of revolution R1 with smaller Mahler
volume than R and its generating domain P1 has fewer vertices than P .

From the above discuss and the proof of (3.5), let R0 = R , we can get a sequence
of origin-symmetric bodies of revolution

{R0,R1,R2 · · · ,RN},

where N is a natural number depending on the number of vertices of P , satisfying
P(Ri+1) � P(Ri) ( i = 0,1, · · · ,N−1) and RN is a cylinder or bicone. Therefore, we
have

P(R) � 4π2

3
,

with equality if and only if R is a cylinder or bicone. �
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THEOREM 3.7. For any origin-symmetric body of revolution K in R
3 , we have

P(K) � 4π2

3
, (3.60)

with equality if and only if K is a cylinder or bicone.

Proof. By Remark 3, without loss of generality, suppose that the generating do-
main P of K is contained in the square [−1,1]2 and B,D ∈ P .

Since a convex body can be approximated by a polytope in the sense of the Haus-
dorff metric (see Theorem 1.8.13 in [29]), hence, for P and any ε > 0, there is a
1-unconditional polygon Pε with δ (P,Pε) � ε . Let Rε be an origin-symmetric body
of revolution generated by Pε , then δ (K,Rε) � ε. Thus, there exists a sequence of
origin-symmetric bodies of revolution (Ri)i∈N satisfying

lim
i→∞

δ (Ri,K) = 0.

Since P(K) is continuous in the sense of the Hausdorff metric, applying Lemma 3.6,
we have

P(K) � 4π2

3
, (3.61)

with equality if and only if K is a cylinder or bicone. �
In the following, we will restate and prove Theorem 1.2 and 1.3.

THEOREM 3.8. Let f (x) be a concave, even and nonnegative function defined on
[−a,a] , a > 0 , and for x′ ∈ [− 1

a , 1
a ] define

f ∗(x′) = inf
x∈[−a,a]

1− x′x
f (x)

. (3.62)

Then (∫ a

−a
( f (x))2dx

)(∫ 1
a

− 1
a

( f ∗(x′))2dx′
)

� 4
3
, (3.63)

with equality if and if f (x) = f (0) or f ∗(x′) = 1/ f (0) .

Proof. Let R and R′ be origin-symmetric bodies of revolution generated by f (x)
and f ∗(x′) , respectively, then their generating domains are

D = {(x,y) : −a � x � a, |y| � f (x)}

and

D′ = {(x′,y′) : −1
a

� x′ � 1
a
, |y′| � f ∗(x′)},
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respectively.
Next, we prove D′ = D∗ . For (x′,y′) ∈ D′ and (x,y) ∈ D , we have

(x′,y′) · (x,y) = x′x+ y′y � x′x+ f ∗(x′) f (x) � x′x+
1− x′x
f (x)

f (x) = 1,

which implies (x′,y′) ∈ D∗ . If (x′,y′) /∈ D′ , then either |x′| > 1
a or |x′| � 1

a and |y′| >
f ∗(x′) . If x′ > 1

a (or x′ < − 1
a ), then for (a,0) ∈ D (or (−a,0) ∈ D), we have

(x′,y′) · (a,0) > 1 (or (x′,y′) · (−a,0) > 1),

which implies (x′,y′) /∈ D∗ . If |x′| � 1
a and y′ > f ∗(x′) (or y′ < − f ∗(x′)), let

f ∗(x′) =
1− x′x0

f (x0)
,

then for (x0, f (x0)) ∈ D (or (x0,− f (x0)) ∈ D), we have

(x′,y′) · (x0, f (x0)) > x′x0 + f ∗(x′) f (x0) = 1

(or (x′,y′) · (x0,− f (x0)) > x′x0 + f ∗(x′) f (x0) = 1),

which implies (x′,y′) /∈D∗ . Hence, we have D′ = D∗ . By Lemma 3.2, we get R′ = R∗ .
By Theorem 3.7, we have

∫ a

−a
( f (x))2dx

∫ 1
a

− 1
a

( f ∗(x′))2dx′ =
1

π2V (R)V (R′) =
1

π2 P(R) � 4
3
,

with equality if and if f (x) = f (0) or f ∗(x′) = 1/ f (0) . �
By Theorem 3.8, we prove that among parallel sections homothety bodies in R

3 ,
3-cubes have the minimal Mahler volume.

THEOREM 3.9. For any parallel sections homothety body K in R
3 , we have

P(K) � 43

3!
, (3.64)

with equality if and only if K is a 3-cube or octahedron.

Proof. Let
K =

⋃
x∈[−a,a]

{ f (x)C+ xv},

where f (x) is its generating function and C is homothetic section. Next, for

K′ =
⋃

x′∈[− 1
a , 1

a ]

{ f ∗(x′)C∗ + x′v},
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where f ∗(x′) is given in (3.62), we prove K′ = K∗ . For any

(x′,y′,z′) ∈ K′ and (x,y,z) ∈ K,

we have
(0,y′,z′) ∈ f ∗(x′)C∗ and (0,y,z) ∈ f (x)C.

Hence, we have

(0,y′,z′) · (0,y,z) � f ∗(x′) f (x) � 1− x′x
f (x)

f (x) = 1− x′x.

It follows that
(x′,y′,z′) · (x,y,z) = x′x+(0,y′,z′) · (0,y,z) � 1,

which implies that (x′,y′,z′) ∈ K∗ .
If (x′,y′,z′) /∈ K′ , then either |x′| > 1

a or |x′| � 1
a and (0,y′,z′) /∈ f ∗(x′)C∗ . If

x > 1
a (or x < − 1

a ), then for (a,0,0) ∈ K (or (−a,0,0) ∈ K ), we have

(x′,y′,z′) · (a,0,0) > 1 (or (x′,y′,z′) · (−a,0,0) > 1),

which implies that (x′,y′,z′) /∈ K∗ . If |x′| � 1
a and (0,y′,z′) /∈ f ∗(x′)C∗ , there exists

(0,y,z) ∈C such that
(0,y,z) · (0,y′,z′) > f ∗(x′).

Let

f ∗(x′) =
1− x′x0

f (x0)
.

For
(x0, f (x0)y, f (x0)z) ∈ K

we have

(x′,y′,z′) · (x0, f (x0)y, f (x0)z)
= x′x0 + f (x0)(0,y,z) · (0,y′,z′)
> x′x0 + f (x0) f ∗(x′)

= x′x0 + f (x0)
1− x′x0

f (x0)
= 1, (3.65)

which implies that (x′,y′,z′) /∈ K∗ . Hence, we have K′ = K∗ .
Therefore, we obtain

P(K) = V (K)V (K′)

= P(C)
∫ a

−a
( f (x))2dx

∫ 1
a

− 1
a

( f ∗(x′))2dx′

� 42

2!
4
3

=
43

3!
, (3.66)

with equality if and only if K is a 3-cube or octahedron. �
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1430–1452.
[11] R. J. GARDNER, Geometric tomography, Second edition. Encyclopedia of Mathematics and its Ap-

plications, 58. Cambridge University Press, Cambridge, 2006.
[12] Y. GORDON, M. MEYER AND S. REISNER, Zonoids with minimal volume-product – a new proof,

Proc. Amer. Math. Soc. 104 (1988), 273–276.
[13] J. KIM, S. REISNER, Local minimality of the volume-product at the simplex, Mathematika, in press.
[14] G. KUPERBERG, From the Mahler Conjecture to Gauss Linking Integrals, Geom. Funct. Anal. 18

(2008), 870–892.
[15] M. A. LOPEZ, S. REISNER, A Special Case of Mahler’s Conjecture, Discrete Comput. Geom. 20

(1998), 163–177.
[16] E. LUTWAK, D. YANG AND G. ZHANG, A volume inequality for polar bodies, J. Differential Geom.

84 (2010) 163–178.
[17] Y. LIN, G. LENG, Convex bodies with minimal volume product in R

2 – a new proof, Discrete Math.
310 (2010), 3018–3025.
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[20] M. MEYER, Une caractérisation volumique de certains espacés normes de dimension finie, Israel J.
Math. 55 (1986), 317–326.

[21] M. MEYER, Convex bodies with minimal volume product in R
2 , Monatsh. Math. 112 (1991), 297–

301.
[22] M. MEYER AND S. REISNER, Inequalities involving integrals of Polar-conjugate concave functions,

Monatsh. Math. 125 (1998), 219–227.
[23] M. MEYER AND S. REISNER, Shadow systems and volumes of polar convex bodies, Mathematika 53

(2006), 129–148.
[24] F. NAZAROV, F. PETROV, D. RYABOGIN AND A. ZVAVITCH, A remark on the Mahler conjecture:

local minimality of the unit cube, Duke Math. J. 154 (2010), 419–430.
[25] S. REISNER, Random polytopes and the volume-product of symmetric convex bodies, Math. Scand. 57

(1985), 386–392.
[26] S. REISNER, Zonoids with minimal volume-product, Math. Z. 192 (1986), 339–346.
[27] S. REISNER, Minimal volume product in Banach spaces with a 1-unconditional basis, J. Lond. Math.

Soc. 36 (1987), 126–136.
[28] J. SAINT RAYMOND, Sur le volume des corps convexes sym etriques, Seminaire d’initiation al Anal-

yse, 1980/1981, Publ. Math. Univ. Pierre et Marie Curie, Paris, 1981, 1–25.



404 Y. LIN AND G. LENG

[29] R. SCHNEIDER, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia Math. Appl., vol. 44,
Cambridge University Press, Cambridge, 1993.

[30] T. TAO, Structure and Randomness: pages from year one of a mathematical blog, Amer. Math. Soc.
(2008), 216–219.

(Received April 24, 2013) Youjiang Lin
School of Mathematics and Statistics

Chongqing Technology and Business University
Chongqing

People’s Republic of China 400067
e-mail: lxyoujiang@126.com

Gangsong Leng
Department of Mathematics

Shanghai University
Shanghai, People’s Republic of China 200444

e-mail: gleng@staff.shu.edu.cn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


