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SOME HARDY TYPE INEQUALITIES WITH “BROKEN” EXPONENT p

JAMES A. OGUNTUASE, LARS-ERIK PERSSON AND NATASHA SAMKO

(Communicated by S. Abramovich)

Abstract. Some new Hardy-type inequalities, where the parameter p is permitted to take differ-
ent values in different intervals, are proved and discussed. The parameter can even be negative
in one interval and greater than one in another. Moreover, a similar result is derived for a multi-
dimensional case.

1. Introduction

Hardy’s original inequality reads: If f is a non-negative and p -integrable on
(0,∞), then

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p ∫ ∞

0
f p(x)dx, p > 1. (1.1)

This result was stated in [4] and finally proved in [5]. One remarkable fact is that

(1.1) in fact, via the substitution f (x) = g(x1− 1
p )x−

1
p , is equivalent to the inequality

∫ ∞

0

(
1
x

∫ x

0
g(t)dt

)p dx
x

� 1
∫ ∞

0
gp(x)

dx
x

, p > 1. (1.2)

We note that

(a) the inequality (1.2) is just a simple consequence of Jensen’s inequality (convexity)
and Fubini’s theorem.

(b) (1.2) holds also for p = 1 (but (1.1) does not) and p < 0 and, thus, also (1.1) holds
for p < 0.

(c) By using the more general substitution f (x) = g(x
p−1−α

p )x−
1+α

p , we find that (1.2)
is equivalent to also the following weighted version of (1.1): If f is a nonnegative
measurable function on (0,∞), then

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

xαdx �
(

p
p−1−α

)p ∫ ∞

0
f p(x)xαdx, (1.3)

whenever p � 1, α < p−1 or p < 0, α > p−1.
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For the case 0 < p � 1 (1.3) holds in the reversed direction with the same argu-
ment. See [22], where an even more general case was considered.

(d) Note that (1.3) was the first generalization of (1.1), which was also proved by Hardy
himself (see [6]).

(e) Obviously Hardy himself did not discover this way to handle his inequalities in
[4]–[6] via convexity. In fact, Jensen’s inequality is from 1905 (see [8]–[9]) and
was well-known to Hardy since he used it in many other situations.

(f) In fact, (1.2) and (1.3) are equivalent for all p � 1 and p < 0. They are also
equivalent to the following “dual” version of (1.3):

∫ ∞

0

(
1
x

∫ ∞

x
f (t)dt

)p

xαdx �
(

p
α +1− p

)p ∫ ∞

0
f p(x)xαdx (1.4)

whenever p � 1, α > p−1 or p < 0,α < p−1.

(g) This equivalence theorem was recently proved in [22] (see also [21]) in the more
general case where the interval (0,∞) is replaced with the interval (0, l), 0 < l �
∞. In this case (1.3) and (1.4) can be formulated in a little more precise way. E.g.
(1.3) reads

∫ l

0

(
1
x

∫ x

0
f (t)dt

)p

xα0dx �
(

p
p−1−α0

)p ∫ l

0
f p(x)xα0

[
1−
(x

l

) p−α0−1
p

]
dx

(1.5)
whenever p � 1, α0 < p− 1 or p < 0, α0 > p− 1 (for the case p < 0, we
require that f is strictly positive). In this case, the basic inequality (1.2) reads

∫ l

0

(
1
x

∫ x

0
g(t)dt

)p dx
x

� 1
∫ l

0
gp(x)

(
1− x

l

)
dx, (1.6)

which holds whenever p � 1 or p < 0 (for the case l = ∞, 1− x
l ≡ 1 and a

similar identification is used in (1.5)).

The main aim of this paper is to improve the basic inequality (1.6). We continue
the research initiated in [22] by proving a new variant of (1.6) where the weight 1

x is
replaced by a weight x−β , where β > 0. We even consider the more general case with
“broken” exponent, i.e. when p is replaced by p(x) which can take different values in
different intervals (see Theorem 2.1).

In order to prove our multidimensional result in Section 3 (see Theorem 3.1) we
even need to prove a more general case of this result, namely when also the parameter
β is “broken” in a similar way (see Theorem 2.3). Also some dual versions of these
results are proved (see Theorems 2.5 and 3.3, respectively). Finally, some concluding
remarks can be found in Section 4.
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2. The one-dimensional case

First we state the following slight improvement of a result stated (but not proved)
in [22, Theorem 3.6]:

THEOREM 2.1. Let b > 0 , β > 0 , 0 < l � ∞ and

p(x) =
{

p0, 0 � x � b,
p1, x > b,

where p0, p1 ∈ R\{0} . If f is nonnegative and measurable, then

∫ l

0

(
1
x

∫ x

0
f (t)dt

)p(x)

x−β dx � 1
β

∫ l

0
( f (x))p(x) x−β

(
1−
(x

l

)β
)

dx

+K
∫ l

0
(( f (x))p1 − ( f (x))p0)dx, (2.1)

K = 0 if l � b and K = 1
β
(
b−β − l−β) if l > b, whenever p0 � 1 , p1 � 1 or p0 � 1 ,

p1 < 0 or p1 � 1 , p0 < 0 or p0 < 0 , p1 < 0 (for the case with negative parameters,
we assume that the function f is strictly positive on the corresponding interval). If 0 <

p(x) � 1, then (2.1) holds in the reversed direction (for the case l = ∞, 1−( x
l

)β (x) ≡ 1
and l−β ≡ 0 ).

REMARK 2.2. For the case b = l = ∞ (p0 = p1 = p) and β = 1, (2.1) coincides
with (1.2), which as we have motivated in fact is equivalent with all variants (1.1),
(1.3) and (1.4) of Hardy’s inequality. Hence, (2.1) is more general than all inequalities
mentioned in the introduction.

In order to be able to prove our announced multidimensional version of Hardy’s
inequality with “broken” exponent, we in fact need the following improvement of The-
orem 2.1, where also the parameter β is broken in a similar way.

THEOREM 2.3. Let b, l and p(x) be defined as in Theorem 2.1 and, in addition,
let

β (x) =
{

β0, 0 � x � b,
β1, x > b,

where β0,β1 ∈ R\{0} . If f is nonnegative and measurable and β (x) > 0, then

∫ l

0

(
1
x

∫ x

0
f (t)dt

)p(x)

x−β (x)dx

�
∫ l

0

1
β (x)

( f (x))p(x) x−β (x)
(

1−
(x

l

)β (x)
)

dx+ I0, (2.2)
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where I0 = 0 if l � b (so that β (x) = β0 and p(x) = p0 ) and

I0 =
1
β1

(
b−β1 − l−β1

)∫ b

0
( f (x))p1 dx

− 1
β0

(
b−β0 − l−β0

)∫ b

0
( f (x))p0 dx,

if l > b. If 0 < p(x) � 1, then (2.2) holds in the reversed direction (for the case l = ∞,

1− (x
l

)β (x) ≡ 1 and l−β0 = l−β1 ≡ 0 ).

Note that for the case β0 = β1 Theorem 2.1 coincides with Theorem 2.3, so it is
sufficient to prove this Theorem.

Proof. Let l � b, l < ∞. Then, by Jensen’s inequality and the Fubini theorem,

∫ l

0

(
1
x

∫ x

0
f (t)dt

)p(x)

x−β (x)dx =
∫ l

0

(
1
x

∫ x

0
f (t)dt

)p0

x−β0dx

�
∫ l

0

∫ x

0
( f (t))p0 dtx−β0−1dx

=
∫ l

0
( f (t))p0

(∫ l

t
x−β0−1dx

)
dt

=
1
β0

∫ l

0
( f (t))p0

(
t−β0 − l−β0

)
dt

=
∫ l

0

1
β (t)

( f (t))p(t) t−β (t)
(

1−
(t

l

)β (t)
)

dt.

Now let l0 < l < ∞. By again using Jensen’s inequality and the Fubini theorem we find
that

∫ l

0

(
1
x

∫ x

0
f (t)dt

)p(x)

x−β (x)dx

=
∫ b

0

(
1
x

∫ x

0
f (t)dt

)p0

x−β0dx+
∫ l

b

(
1
x

∫ x

0
f (t)dt

)p1

x−β1dx

�
∫ b

0

(∫ x

0
( f (t))p0 dt

)
x−β0−1dx+

∫ l

b

(∫ b

0
( f (t))p1 dt

)
x−β1−1dx

+
∫ l

b

(∫ x

b
( f (t))p1 dt

)
x−β1−1dx

=
∫ b

0
( f (t))p0

(∫ b

t
x−β0−1dx

)
dt +

∫ l

0
( f (t))p1 dt

∫ l

b
x−β1−1dx

+
∫ l

b
( f (t))p1

(∫ l

t
x−β1−1dx

)
dt
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=
∫ b

0

1
β0

( f (t))β0
(
t−β0 − l−β0

)
dt +

1
β1

(
b−β1 − l−β1

)∫ b

0
( f (t))p1 dt

+
∫ l

b

1
β1

( f (t))β1
(
t−β1 − l−β1

)
dt

=
∫ b

0

1
β0

( f (t))β0
(
t−β0 − l−β0

)
dt +

∫ l

b

1
β1

( f (t))β1
(
t−β1 − l−β1

)
dt + I0

=
∫ l

0

1
β (t)

( f (t))β (t) t−β (t)
(

1−
(t

l

)β (t)
)

dt + I0.

For the case 0 < p(x) � 1 (so that f (x) = up0 and g(u) = up1 are concave func-
tions) the only inequality holds in the reversed direction so also this case is proved. The
proof of the case l = ∞ only consists of obvious modifications of the proof above so
the proof is complete. �

REMARK 2.4. By following the proof of Theorem 2.3 for the case p0 = p1 = 1
we find that the only inequality holds with equality sign so inequality (2.2) reduces to
an identity. This explains partly why the additional term I0 appears.

Next, we also state a dual version of Theorem 2.3, namely when the Hardy opera-
tor

H : f (x) → 1
x

∫ x

0
f (t)dt

is replaced by the dual Hardy operator

H� : f (x) → x
∫ ∞

x
f (t)

dt
t2

.

THEOREM 2.5. Let b > 0,0 � l < ∞, and

p(x) =
{

p0, x � b,
p1, x > b,

β (x) =
{

β0, x � b,
β1, x > b,

where p0, p1,β0,β1 ∈ R\{0} . Moreover, assume that p0 � 1 , p1 � 1 or p0 � 1 , p1 <
0 or p1 � 1 , p0 < 0 or p0 < 0 , p1 < 0 (for the case with negative parameters, we
assume that the function f is strictly positive on the corresponding interval). If f is
nonnegative and measurable and β (x) > 0 , then

∫ ∞

l

(
x
∫ ∞

x
f (t)

dt
t2

)p(x)

xβ (x) dx
x2

�
∫ ∞

l

1
β (x)

( f (x))p(x) xβ (x)

(
1−
(

l
x

)β (x)
)

dx
x2 + I0, (2.3)

where I0 = 0 if l � b and

I0 =
1
β0

(
bβ0 − lβ0

)∫ ∞

b
( f (x))β0

dx
x2 − 1

β1

(
bβ1 − lβ1

)∫ ∞

b
( f (x))p1

dx
x2 ,
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when l < b (for the case l = 0, 1− ( l
x

)β (x) ≡ 1 and lβ0 = lβ1 ≡ 0 ). If 0 < p(x) � 1,
then (2.3) holds in the reversed direction.

Proof. Let l � b, l > 0. Then, by Jensen’s inequality and the Fubini theorem,

∫ ∞

l

(
x
∫ ∞

x
f (t)t−2dt

)p(x)

xβ (x) dx
x2 =

∫ ∞

l

(
x
∫ ∞

x
f (t)t−2dt

)p1

xβ1
dx
x2

�
∫ ∞

l
x

(∫ ∞

x
( f (t))p1 t−2dt

)
xβ1

dx
x2

=
∫ ∞

l
( f (t))p1 t−2dt

(∫ t

b
xβ1−1dx

)
dt

=
∫ ∞

l
( f (t))p1 t−2dt

1
β1

(
tβ1 −bβ1

)
dt

=
∫ ∞

l
( f (t))p(t) 1

β (t)
tβ (t)

(
1−
(

b
t

)β (t)
)

dt
t2

.

Now, let 0 < l < b. Then, by again using Jensen’s inequality and the Fubini theo-
rem,

∫ ∞

l

(
x
∫ ∞

x
f (t)

dt
t2

)p(x)

xβ (x)dx

=
∫ b

l

(
x
∫ ∞

x
f (t)

dt
t2

)p0

xβ0
dx
x2 +

∫ ∞

b

(
x
∫ ∞

x
f (t)

dt
t2

)p1

xβ1
dx
x2

�
∫ b

l
x

(∫ ∞

x
( f (t))p0 t−2dt

)
xβ0

dx
x2 +

∫ ∞

b
x

(∫ ∞

x
( f (t))p1 t−2dt

)
xβ1

dx
x2

=
∫ b

l
x

(∫ b

x
( f (t))p0 t−2dt

)
xβ0

dx
x2 +

∫ b

l
x

(∫ ∞

b
( f (t))p0 t−2dt

)
xβ0

dx
x2

+
∫ ∞

b
x

(∫ ∞

x
( f (t))p1 t−2dt

)
xβ1

dx
x

=
∫ b

l
( f (t))p0 t−2

(∫ t

l
xβ0−1dx

)
dt +

∫ ∞

b
( f (t))p0 t−2dt

∫ b

l
xβ0−1dx

+
∫ ∞

l
( f (t))p1 t−2

(∫ t

b
xβ1−1dx

)
dt

=
∫ b

l
( f (t))p0

1
β0

(
tβ0 − lβ0

) dt
t2

+ β0

(
bβ0 − lβ0

)∫ ∞

l
( f (t))p0

dt
t2

+
∫ ∞

b
( f (t))p1

1
β1

(
tβ1 −bβ1

) dt
t2

=
∫ ∞

l
( f (t))p(t) 1

β (t)
tβ (t)

(
1−
(

l
t

)β (t)
)

dt + I0.
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The proof of the case 0 < p(x) � 1 is the same since the only inequality holds
in the reversed direction then. The proof of the case l = 0 only consists of obvious
modifications of the proof above so the proof is complete. �

REMARK 2.6. Also in this case it is clear from the proof that if p0 = p1 = 1, then
(2.3) reduces to an identity. This partly explains why the additional term I0 in (2.3)
appears.

3. The multidimensional case

Before we formulate our main results in this Section (Theorems 3.1 and 3.3) we
need some notations and to recall some well-known relations. We let n = 2,3, ...,
x = (x1, ...,xn), dx =dx1...dxn and r > 0. Moreover, let Vr,n denote the volume of
the sphere {x : |x| � r} and Sr,n−1 denote the surface area of the same sphere. For
simplicity we also define Vn = V1,n and Sn−1 = S1,n−1. We also need the well-known

relations Vn = Sn−1
n and Vn,r =

∫ r
0 Sn−1un−1du.

THEOREM 3.1. Let p(x) be defined as in Theorem 2.3 with b = R0 and l = R,
0 < R0 , R � ∞, and where p0 � 1, p1 � 1 or p0 � 1, p1 < 1 or p1 � 0, p0 < 0 or
p0 < 0, p1 < 1. Moreover, let a(r) be defined by

a(r) =
{

a0, 0 < r � R0

a1, r > R0,

where a0,a1 ∈ R\{0} and β (r) := (n−1)(a(r)−1)+a(r) > 0.

If f = f (|x|) is a radially symmetric nonnegative function in R
n, n = 2,3,4, ...,

then

∫
|x|�R

(
1

Vr,n

∫
|t|�|x|

f (|t|)dt

)p(|x|)
|x|−a(|x|) dx

�
∫
|x|�R

1
β (|x|)np(|x|) ( f (|x|))p(|x|) |x|−a(|x|)

(
1−
( |x|

R

)β (|x|))
dx+J0, (3.1)

where J0 = 0 if R � R0 and

J0 =
1
β1

(
R−β1

0 −R−β1

)∫ R0

0

(
n f (r)rn−1)p1 dr

− 1
β0

(
R−β0

0 −R−β0

)∫ R0

0

(
n f (r)rn−1)p0 dr

if R > R0 with βi := (n−1)(pi−1)+ai, i = 0,1. If 0 < p(x) � 1, then (3.1) holds in

the reversed direction (for the case R = ∞, 1−
( |x|

R

)β (|x|)
= 1 and R−β0 = R−β1 = 0 ).
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Proof. Let R < ∞. By using the notations and information above we find that

I1 :=
∫
|x|�R

(
1

Vr,n

∫
|t|�|x|

f (|t|)dt

)p(|x|)
|x|−a(|x|) dx

=
∫ R

0

(
1

Vr,n

∫ r

0
f (u)Sn−1u

n−1du

)p(r)

r−a(r)Sn−1r
n−1dr

=
∫ R

0

(
Sn−1

Vn.rn

∫ r

0
f (u)un−1du

)p(r)

Sn−1r
−α(r)+n−1dr

=
∫ R

0

(
1
r

∫ r

0
n f (r)rn−1dr

)p(r)

Sn−1r
−(n−1)p(r)−a(r)+n−1dr.

Next we use Theorem 2.3 with β (r) := (n−1)(p(r)−1)+a(r) and f (r) replaced
by n f (r)rn−1 and find that

I1 �
∫ R

0

1
β (r)

(n f (r))p(r) r(n−1)p(r)r−(n−1)p(r)−a(r)+n−1Sn−1

(
1−
( r

R

)β (r)
)

dr+ I0,

where I0 is defined in Theorem 2.3, so that, by again using general spherical coordi-
nates,

I1 �
∫
|x|�R

1
β (|x|)np(|x|) ( f (|x|))p(|x|) |x|−a(|x|)

(
1−
( |x|

R

)β (|x|))
dx+J0.

The proof of the case 0 < p(x) � 1 follows in the same way. For the case R = ∞
the proof follows by making obvious modifications of the arguments above so the proof
is complete. �

REMARK 3.2. Theorem 3.1 is very different from other known multidimensional
Hardy type inequalities in the literature (see e.g. the books [7], [14], [15] and the refer-
ences there) e.g. the exponent p can have different values which can even be negative
on one part of the ball and � 1 on another, also the power exponent a can take different
values in a similar way and the “error term” which appears can be 0, > 0 or < 0.

The dual version of Theorem 3.1 reads:

THEOREM 3.3. Let f (x) and p(x) be defined as in Theoren 3.1 with b = R0 and
l = R, 0 � R < ∞, where p0 � 1 , p1 � 1 or p0 � 1 , p1 < 0 or p1 � 1 , p0 < 0 or p0 ,
p1 < 0. Moreover, let

a(r) =
{

a0, 0 � r < R0

a1, r � R0,

where a0,a1 ∈ R\{0} and β (r) := (n−1)(p(r)+1)+a(r)> 0. Then

∫
|x|�R

(
VR,n

∫
|t|�|x|

f (|t|) dt(
V|t|,n

)2
)p(x)

|x|a(|x|) dx

|x|2

�
∫
|x|�R

1
β (|x|)np(|x|) ( f (|x|)p(|x|) |x|a(x)

(
1−
(

R
|x|
)β (|x|)) dx

|x|2 + J1, (3.2)
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where J1 = 0 if R0 � R and

J1 =
1
β0

(
Rβ0

0 −Rβ0

)∫ ∞

R0

(
n f (r)r1−n)p0 dr

r2

− 1
β1

(
Rβ1

0 −Rβ1

)∫ ∞

R0

(
n f (r)r1−n)p1 dr

r2

if R0 > R with βi := (n−1)(pi +1)+ai, i = 0,1. If 0 < p(x) � 1, then (3.2) holds in

the reversed direction (For the case R = 0 we have

(
1−
(

R
|x|
)β (|x|)) ≡ 1 and Rβ0 =

Rβ1 = 0).

Proof. Let R > 0. By using notations and arguments as in the proof of Theorem
3.1 we obtain that

I2 =
∫
|x|�R

(
V|x|,n

∫
|t|�|x|

f (|t|) dt(
V|t|,r

)2
)p(x)

|x|a(|x|) dx

|x|2

=
∫ ∞

R

(
Vn.r

n
∫ ∞

r
f (u)Sn−1u

n−1 du

(Vnun)2

)p(r)

ra(r)Sn−1r
n−1 dr

r2

=
∫ ∞

R

(
Sn−1rn

Vn

∫ ∞

r
f (u)u−n−1du

)p(r)

ra(r)Sn−1r
n−1 dr

r2

=
∫ ∞

R

(
r
∫ ∞

r
n f (u)u−n+1 du

u2

)p(r)

Sn−1r
(n−1)p(r)+a(r)+n−1dr

r2 .

By now using Theorem 2.5 with β (r) = (n−1)(p(r)+1)+a(r) we find that

I2 �
∫ ∞

R

1
β (r)

(n f (r))p(r) r(1−n)p(r)Sn−1r
(n−1)p(r)+a(r)+n−1

(
1−
(

R
r

)β (r)
)

dr
r2 + J1,

so that, by again using spherical coordinates in R
n,

I2 �
∫
|x|�R

1
β (|x|)np(|x|) ( f (|x|))p(|x|) |x|a(|x|)

(
1−
(

R
|x|
)β (|x|)) dx

|x|2 + J1,

where J1 = 0 if R0 � R and

J1 =
1
β0

(
Rβ0

0 −Rβ0

)∫ ∞

R0

(
n f (r)r−n+1)p0 dr

r2

− 1
β1

(
Rβ1

0 −Rβ1
)∫ ∞

R0

(
n f (r)r−n+1)p1 dr

r2

if R0 > R. The result for the case 0 < p(x) � 1 follows in the same way. For the case
R = ∞ the proof follows by making suitable modifications in the proof above so the
proof is complete. �
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4. Concluding remarks

REMARK 4.1. It seems to be Godunova (see [2] and [3]) who first discovered
the convexity technique to prove classical Hardy’s inequality in its original form (1.1).
However, this proof was not much noticed and it was only after Kaijser et al. [11]
rediscovered this technique of proof which was a great development of the area, see
e.g. [10], [11], [13], [16], [17], [18], [19], [20], [21], [22], and even the PhD thesis of
K. Krulic [12].

REMARK 4.2. The ideas and results in this paper were initiated in [22] and it
seems tempting to develop the theory in the standard way (see e.g. the books [14] and
[15]) in this direction. The idea to consider Hardy inequalities with “general” variable
exponent p = p(x) is considered before in a more general way (see e.g. [1]) but this
approach (for a special case) is new and give us possibility to consider even negative
values on p(x) and to have sharp constant (cf. [22]).

REMARK 4.3. Inspired by our investigations in [21], our original aim was to gen-
eralize Theorem 2.1 to a multidimensional situation, where the Hardy operator

H = H1 f (x) → 1
x

∫ x

0
f (t)dt

is replaced by a corresponding multidimensional operator

Hn : f (x1, ...,xn) → 1
x1...xn

∫ x1

0
...
∫ xn

0
f (t1, ...,tn)dt1...dtn.

However, as expected from the general theory this leads to many difficulties even in the
two-dimensional case (cf. the result of Sawyer [23]). For the moment we leave this as
an open (probably difficult) question.

Finally we give the following example of our results in Theorem 3.1 and Theorem
3.3 with R = ∞ and R = 0, respectively, and p0 = p1 = p.

EXAMPLE 4.4. With the notations in Theorem 3.1 it yields that, for p � 1 and
p < 0,

(a) ∫
Rn

(
1

Vr,n

∫
|t|�|x|

f (|t|)dt

)p

|x|−α dx � np

β1

∫
Rn

( f (|x|))p |x|−a dx (4.1)

where β1 := (n−1)(p−1)+a> 0,

(b) ∫
Rn

(
1

Vr,n

∫
|t|�|x|

f (|t|) dt(
V|t|,n

)2
)p

|x|α dx
x2 � np

β2

∫
Rn

( f (|x|))p |x|α dx
x2 , (4.2)

where β2 := (n−1)(p+1)+a > 0. For the case 0 < p � 1 both (4.1) and (4.2)
hold in the reversed direction.
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REMARK 4.5. For the one-dimensional case we obtain the inequalities

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

x−αdx � 1
α

∫ ∞

0
( f (x))p x−αdx (4.3)

and ∫ ∞

0

(
x
∫ ∞

x
f (t)

dt
t2

)p

xα−2dx � 1
α

∫ ∞

0
( f (x))p xα−2dx

yielding for p � 1 and p < 0, and α > 0.
As we have noted before, (4.3) even with α = 1 is equivalent with the first power

weighted forms (1.3) and (1.4) of Hardy’s inequality via the substitution pointed out in
(c) in the introduction.
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SE-971 87 Luleå, Sweden and Narvik University College

P. O. Box 385, N-8505 Narvik, Norway
e-mail: larserik@ltu.se

Natasha Samko
Department of Mathematics
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