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Abstract. Some complete convergence theorems for linear statistics that are weighted sums
n
∑
i=1

aniXi are established, where {Xn;n � 1} is a sequence of ϕ - mixing random variables and

{ani;1 � i � n,n � 1} is an array of constants. As an application, the Marcinkiewicz-Zygmund
strong law of large numbers for weighted sums of ϕ - mixing random variables is obtained.

1. Introduction

As Bai and Cheng (2000) remarked, many useful linear statistics based on a ran-
dom sample are weighted sums of independent and identically distributed (i.i.d.) ran-
dom variables. Examples include least-squares estimators, nonparametric regression
function estimators, jackknife estimates, and so on. In this respect, studies of strong
laws for these weighted sums have demonstrated significant progress in probability
theory with applications in mathematical statistics. In many stochastic models, the as-
sumption of independence among random variables is not plausible. So it is necessary
to extend the concept of independence to dependence cases, one of these dependence
structures is ϕ -mixing. So we want to know if the results obtained for i.i.d. random
variables are still true for ϕ -mixing sequences of random variables.

Let {Xn;n � 1} be a sequence of random variables defined on a fixed probability

space (Ω,F,P) and Sn =
n
∑
i=1

Xi for each n � 1. Let n and m be positive integers. Write

Fm
n = σ (Xi;n � i � m) . Given two σ -algebras ψ ,ζ in F , define that

ϕ(ψ ,ζ ) = sup{|P(B |A )−P(B)| ;A ∈ ψ ,P(A) > 0,B ∈ ζ}. (1.1)
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and define the ϕ -mixing coefficients by

ϕ(n) = sup
k�1

ϕ(Fk
1 ,F∞

k+n), n � 0. (1.2)

Obviously, 0 � ϕ(n+1) � ϕ(n) � 1, n � 0 and ϕ(0) = 1.

DEFINITION 1.1. A sequence of random variables {Xn;n � 1} is said to be a
ϕ -mixing sequence if ϕ(n) ↓ 0 as n → ∞ .

Note that if {Xn;n � 1} is a sequence of independent random variables, then
ϕ(n) = 0 for all n � 1.

The concept of ϕ -mixing random variables was introduced by Dobrushin (1956)
and many applications have been found. We can refer to Dobrushin (1956), Utev (1990)
and Chen (1991) for central limit theorem, Herrndorf (1983) and Peligrad (1985) for
weak invariance principle, Sen (1971, 1974) for weak convergence of empirical pro-
cesses, Iosifescu (1977) for limit theorem, Peligrad (1990) for Ibragimov-Iosifescu
conjecture, Shao (1993) for almost sure invariance principles, Hu and Wang (2008)
for large deviations, Wang et al (2009) for strong law of large numbers, Wang et al
(2010) for complete convergence for weighted sums, and so forth. When these results
are compared with the corresponding results for sequences of independent random vari-
ables, there still remains much to be desired.

Let {Xn;n � 1} be a sequence of random variables and let {ani;1 � i � n,n � 1}
is an array of constants. If there exists some α with 0 < α < 2 such that

n
∑
i=1

|ani|α =

O(n) , Bai and Cheng (2000) established Marcinkiewicz-Zygmund strong laws for lin-
ear statistics of i.i.d. random variables. Recently, Cai (2006) generalized and improved
the result of Bai and Cheng (2000) to the case of ρ∗ -mixing sequences of random vari-
ables under the same condition. But, they did not study the condition “there exists some

δ with 0 < δ < 1 and some α with 0 < α < 2 such that
n
∑
i=1

|ani|α = O(nδ )”. We are

inspired by the result of Cai (2006), and will further study the condition “there exists

some δ with 0 < δ < 1 and some α with 0 < α < 2 such that
n
∑
i=1

|ani|α = O(nδ )”. The

results obtained complement and improve the corresponding results for i.i.d. random
variable sequences to the case of ϕ -mixing random variables. The techniques used in
the paper are inspired by Cai (2006).

2. Main results and Proofs

Throughout this paper, C will represent a generic positive constant whose value
may change from one appearance to the next, and an = O(bn) will mean an � C(bn) .

To prove our results, we need the following lemmas.

LEMMA 2.1. (Lu and Lin (1997)) Let {Xn;n � 1} be a sequence of ϕ -mixing
random variables. Let X ∈ Lp(Fk

1 ) , Y ∈ Lq(F∞
k+n) , p � 1 , q � 1 and 1/p +1/q = 1 .

Then
|EXY −EXEY | � 2(ϕ(n))1/p (E|X |p)1/p (E|Y |q)1/q

. (2.1)
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LEMMA 2.2. (Shao (1993)) Let {Xn;n � 1} be a sequence of ϕ -mixing random

variables. Put Ta(n) =
a+n
∑

i=a+1
Xi for ∀a � 0 . Suppose that there exists an array {Ca,n}

of positive numbers such that

ET 2
a (n) � Ca,n for any a � 0, n � 1. (2.2)

Then for each p � 2 , there exists a constant C depending only on p and ϕ(·) such that

E( max
1� j�n

|Ta( j)|p) � C[Cp/2
a,n +E( max

a+1�i�a+n
|Xi|p)]. (2.3)

LEMMA 2.3. (Wang et al (2010)) Let {Xn;n � 1} be a sequence of ϕ -mixing

random variables satisfying
∞
∑

n=1
ϕ1/2 (n) < ∞ . Assume that EXn = 0 and E|Xn|p < ∞

for some p � 2 and each n � 1 . Then there exists a constant C =C(p,ϕ(·)) depending
only on p and ϕ(·) such that for any n � 1 and a � 0 ,

E

(
max

1� j�n

∣∣∣∣∣
a+ j

∑
i=a+1

Xi

∣∣∣∣∣
p)

� C

⎡
⎣ a+n

∑
i=a+1

E|Xi|p +

(
a+n

∑
i=a+1

(EX2
i )

)p/2
⎤
⎦ . (2.4)

In particular, for any n � 1 ,

E

(
max

1� j�n

∣∣∣∣∣
j

∑
i=1

Xi

∣∣∣∣∣
p)

� C

⎡
⎣ n

∑
i=1

E|Xi|p +

(
n

∑
i=1

(EX2
i )

)p/2
⎤
⎦ . (2.5)

Now, we state and prove the main results of this paper.

THEOREM 2.1. Let {X ,Xn;n � 1} be a sequence of ϕ -mixing random variables

with identically distributed satisfying
∞
∑

n=1
ϕ1/2 (n) < ∞ , let Tn =

n
∑
i=1

aniXi , n � 1 , where

the weights {ani;1 � i � n,n � 1} be an array of constants such that
n
∑
i=1

|ani|α = O(nδ )

for some δ with 0 < δ < 1 and some α with 0 < α < 2 . If 1 < α < 2 , assume
additionally that EXn = 0 . Suppose that for some h > 0 , γ > 0 ,

E[exp(h|X |γ)] < ∞. (2.6)

Then, for any ε > 0 ,

∞

∑
n=1

nsα−2P( max
1� j�n

∣∣Tj
∣∣> εbn) < ∞, (2.7)

where s � 1
α and bn = n1/α(logn)1/γ .

Proof of Theorem 2.1. For ∀i � 1, define

X (n)
i = XiI(|Xi| � bn);
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T (n)
j =

j

∑
i=1

(aniX
(n)
i −EaniX

(n)
i ).

Then for ∀ε > 0, we get that

P

(
max

1� j�n

∣∣Tj
∣∣> εbn

)

= P

(
max

1� j�n

∣∣Tj
∣∣> εbn, max

1� j�n

∣∣Xj
∣∣> bn

)
+P

(
max

1� j�n

∣∣Tj
∣∣> εbn, max

1� j�n

∣∣Xj
∣∣� bn

)

� P

(
max

1� j�n

∣∣Xj
∣∣> bn

)
+P

(
max

1� j�n

∣∣∣∣∣T (n)
j +

j

∑
i=1

EaniX
(n)
i

∣∣∣∣∣> εbn

)

� P

(
max

1� j�n

∣∣Xj
∣∣> bn

)
+P

(
max

1� j�n

∣∣∣T (n)
j

∣∣∣> εbn− max
1� j�n

∣∣∣∣∣
j

∑
i=1

EaniX
(n)
i

∣∣∣∣∣
)

. (2.8)

Firstly, we will prove that

b−1
n max

1� j�n

∣∣∣∣∣
j

∑
i=1

EaniX
(n)
i

∣∣∣∣∣→ 0, as n → ∞. (2.9)

It follows from
n
∑
i=1

|ani|α = O(nδ ) and Hölder inequality that

n

∑
i=1

|ani|k �
(

n

∑
i=1

|ani|k×
α
k

) k
α
(

n

∑
i=1

1

) α−k
α

� Cn for ∀1 � k � α. (2.10)

When 1 < α < 2, from EXn = 0, (2.10), Markov inequality and (2.6), as n → ∞ , we
can obtain that

b−1
n max

1� j�n

∣∣∣∣∣
j

∑
i=1

EaniX
(n)
i

∣∣∣∣∣ � b−1
n

n

∑
i=1

∣∣∣EaniX
(n)
i

∣∣∣
= b−1

n

n

∑
i=1

E |aniXi| I(|Xi| > bn)

� Cb−1
n nE |X | I(|X | > bn)

= Cb−1
n n

∞

∑
k=n

E |X |I(bk < |X | � bk+1)

� Cb−1
n n

∞

∑
k=n

bk+1EI(bk < |X | � bk+1)

� Cb−1
n n

∞

∑
k=n

bk+1P(|X | > bk)

� Cb−1
n n

∞

∑
k=n

bk+1
E[exp(h|X |γ)]

exp(hbγ
k)
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� Cb−1
n n

∞

∑
k=n

(k+1)1/α [log(k+1)]1/γ k−hkγ/α

� Cb−1
n n

∞

∑
k=n

k−2

� Cn−1/α (logn)−1/γ nn−1 → 0. (2.11)

Note that for any 0 < p < 1, then,(
n

∑
i=1

|bi|
)p

�
n

∑
i=1

|bi|p.

By using the above Cr inequality, for any 0 < s < t , we get that

(
n

∑
i=1

(|ani|s)t/s

)s/t

�
n

∑
i=1

|ani|s.

Hence, (
n

∑
i=1

|ani|t
)1/t

�
(

n

∑
i=1

|ani|s
)1/s

. (2.12)

Therefore, when 0 < α � 1, it follows from (2.12), Markov inequality and (2.6) that

b−1
n max

1� j�n

∣∣∣∣∣
j

∑
i=1

EaniX
(n)
i

∣∣∣∣∣ � b−1
n

n

∑
i=1

∣∣∣EaniX
(n)
i

∣∣∣
� b−1

n

n

∑
i=1

E |aniXi| I(|Xi| � bn)

= b−1
n

n

∑
i=1

|ani|E |X | I(|X | � bn)

� Cb−1
n nδ/α E |X | I(|X | � bn)

= Cb−1
n nδ/α

n

∑
k=2

E |X |I(bk−1 < |X | � bk)

� Cb−1
n nδ/α

n

∑
k=2

bkEI(bk−1 < |X | � bk)

� Cb−1
n nδ/α

n

∑
k=2

bkP(|X | > bk−1)

� Cb−1
n nδ/α

n

∑
k=2

bk
E[exp(h|X |γ )]
exp(hbγ

k−1)

� Cb−1
n nδ/α

n

∑
k=2

k1/α (logk)1/γ (k−1)−h(k−1)γ/α
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� Cn−1/α (logn)−1/γ nδ/α

= C(logn)−1/γ nδ/α −1/α → 0, (2.13)

as n → ∞ . From (2.11) and (2.13), hence (2.9) holds true.
It follows from (2.8) and (2.9) that

P( max
1� j�n

∣∣Tj
∣∣> εbn) �

n

∑
j=1

P(
∣∣Xj
∣∣> bn)+P( max

1� j�n

∣∣∣T (n)
j

∣∣∣> εbn

2
), (2.14)

for n large enough.
Next, we need only to prove that

I �
∞

∑
n=1

nsα−2
n

∑
j=1

P(
∣∣Xj
∣∣> bn) < ∞; (2.15)

II �
∞

∑
n=1

nsα−2P( max
1� j�n

∣∣∣T (n)
j

∣∣∣> εbn

2
) < ∞. (2.16)

By the fact that E[exp(h|X |γ )] < ∞ , we easily obtain that

I �
∞

∑
n=1

nsα−2
n

∑
j=1

P(
∣∣Xj
∣∣> bn)

= C
∞

∑
n=1

nsα−2
n

∑
j=1

P(|X | > bn)

� C
∞

∑
n=1

nsα−1 E[exp(h|X |γ)]
exp(hbγ

n)

� C
∞

∑
n=1

nsα−1

nhn
γ
α

< ∞. (2.17)

It follows from Lemma 2.3 and Markov’s inequality that for q � 2

II �
∞

∑
n=1

nsα−2P( max
1� j�n

∣∣∣T (n)
j

∣∣∣> εbn

2
)

� C
∞

∑
n=2

nsα−2b−q
n E( max

1� j�n

∣∣∣T (n)
j

∣∣∣q)
� C

∞

∑
n=2

nsα−2b−q
n [

n

∑
j=1

E
∣∣∣an jX

(n)
j

∣∣∣q +(
n

∑
j=1

E
∣∣∣an jX

(n)
j

∣∣∣2)q/2

]

� II1 + II2. (2.18)

Let q > max{2,α,α(sα −1)/(1− δ )} . Then it follows from (2.12) that

II1 = C
∞

∑
n=2

nsα−2b−q
n

n

∑
i=1

E
∣∣∣aniX

(n)
i

∣∣∣q

= C
∞

∑
n=2

nsα−2b−q
n

n

∑
i=1

|ani|qE|Xi|qI(|Xi| � bn)
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= C
∞

∑
n=2

nsα−2b−q
n

n

∑
i=1

|ani|qE|X |qI(|X | � bn)

� C
∞

∑
n=2

nsα−2b−q
n nqδ/αE|X |qI(|X | � bn)

= C
∞

∑
n=2

nsα−2b−q
n nqδ/α

n

∑
k=2

E|X |qI(bk−1 < |X | � bk)

� C
∞

∑
k=2

∞

∑
n=k

nsα−2+(qδ/α)n−q/α(logn)−q/γbq
kP(|X | > bk−1)

� C
∞

∑
k=2

bq
k
E[exp(h|X |γ )]
exp(hbγ

k−1)

� C
∞

∑
k=2

k
q
α (logk)

q
γ (k−1)−h(k−1)γ/α

< ∞. (2.19)

By 0 < α < 2 and (2.12), we have that

II2 = C
∞

∑
n=2

nsα−2b−q
n (

n

∑
i=1

E
∣∣∣aniX

(n)
i

∣∣∣2)q/2

= C
∞

∑
n=2

nsα−2b−q
n [

n

∑
i=1

|ani|2(E|X |2I(|X | � bn))]q/2

� C
∞

∑
n=2

nsα−2b−q
n nqδ/α [E|X |2I(|X | � bn)]

q/2

= C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n [

n

∑
k=2

E|X |2I(bk−1 < |X | � bk)]
q/2

� C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n [

n

∑
k=2

b2
kP(|X | > bk−1)]

q/2

� C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n [

n

∑
k=2

b2
k
E exp(h|X |γ )
exp(hbγ

k−1)
]q/2

� C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n [

n

∑
k=2

k2/α (logk)2/γ

exp(h(k−1)γ/α log(k−1))
]q/2

= C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n [

n

∑
k=2

k2/α (logk)2/γ (k−1)−h(k−1)γ/α
]q/2

� C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n [

n

∑
k=2

k−2]q/2

� C
∞

∑
n=2

nsα−2+(qδ/α)b−q
n < ∞. (2.20)

Putting (2.19) and (2.20) into (2.18), we get that II < ∞ . The proof of Theorem 2.1 is
complete. �
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COROLLARY 2.1. Under the conditions of Theorem 2.1, then

lim
n→∞

|Tn|/bn = 0 a.s. (2.21)

The proof of above Corollary 2.1 is analogous to that the proof of Corollary 2.1 in
Cai (2006), so we omit it here.

REMARK 2.1. The result in Theorem 2.1:
∞
∑

n=1
nsα−2P( max

1� j�n

∣∣Tj
∣∣> εbn) < ∞

(where bn = n1/α(logn)1/γ ) is obtained under the weights {ani;1 � i � n,n � 1} such

that
n
∑
i=1

|ani|α = O(nδ ) for some δ with 0 < δ < 1 and some α with 0 < α < 2, while

Theorem 2.4 in Wang et al. (2010):
∞
∑

n=1
nα p−2P( max

1� j�n

∣∣Tj
∣∣� εnα) < ∞ is obtained

under the weights of
n
∑
i=1

|ani|p = O(nδ ) for some p with 1 � p � 2 and some δ with

0 < δ � 2
q (q � 2) .

THEOREM 2.2. Let {X ,Xn;n � 1} be a sequence of ϕ -mixing random variables

with identically distributed satisfying
∞
∑

n=1
ϕ1/2 (n) < ∞ , let Tn =

n
∑
i=1

aniXi , n � 1 , where

the weights {ani;1 � i � n,n � 1} be an array of constants such that
n
∑
i=1

|ani|α = O(n)

for some 0 < α < 2 . Furthermore, if 1 < α < 2 , assume additionally that EXn = 0 .
Suppose that for some h > 0 , γ > 0 such that (2.6) satisfies. Then,

∀ε > 0,
∞

∑
n=1

n−1P( max
1� j�n

∣∣Tj
∣∣> εbn) < ∞. (2.22)

where bn = n1/α(logn)1/γ .

Proof of Theorem 2.2. Theorem 2.2 is in fact a special case of Theorem 2.1 for
s = 1

α , δ = 1 and q > max{2,α,2γ} , since then the series

∞

∑
n=3

nsα−2+(qδ/α)b−q
n =

∞

∑
n=3

1

n(logn)q/γ �
∞

∑
n=3

1

n(logn)2 < ∞

converges, and this is enough to conclude that (2.19) and (2.20) hold in this case. The
rest of the proof is similar to that of the above Theorem 2.1 and is omitted. �
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