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SOME INEQUALITIES FOR EDGE LENGTHS AND

CIRCUM–RADIUS OF A SIMPLEX IN HYPERBOLIC SPACE

YANG SHI-GUO, QI JI-BING AND SUN YU-TING

(Communicated by L. Yang)

Abstract. For an n -dimensional simplex in hyperbolic space Hn(−1) and spherical space Sn(1) ,
we establish some inequalities for its edge lengths and circum-radius.

1. Introduction

Let Rn+1
1 be (n+1)-dimensional vector space in which the scalar product of two

vectors x = (x0,x1, · · · ,xn) and y = (y0,y1, · · · ,yn) is given by

〈x,y〉 = −x0y0 +
n

∑
i=1

xiyi.

The unit pseudo-sphere with index one Sn
1 in Rn+1

1 is given by {x ∈ Rn+1
1 |〈x,x〉 = 1} .

The unit pseudo-hyperbolic space is defined as

Hn
0 = {x ∈ Rn+1

1 |〈x,x〉 = −1},

Which has two connected components Hn
0,+ and Hn

0,− . Each of them can be taken as a
model for the n -dimensional hyperbolic space of curvature −1, and denote it by Hn−n
(see [7, 8]). Another model for the n -dimensional hyperbolic space is given in [10].

The n -dimensional spherical space of curvature 1 is defined as follows [10].
The elements of the space are all the ordered (n+1)-tuples x = (x1,x2, · · · ,xn+1)

of real numbers with x2
1 + x2

2 + · · ·+ x2
n+1 = 1.

Distance is defined for each pair of elements x,y to be the smallest non-negative
number x̂y such that

cos x̂y = x1y1 + x2y2 + · · ·+ xn+1yn+1.

Using Sn(1) denote the n -dimensional spherical space of curvature 1. Actually, Sn(1)
is the boundary of an n -dimensional sphere of radius 1 in the (n + 1)-dimensional

Mathematics subject classification (2010): 51M10, 51M20, 52A20, 52A55.
Keywords and phrases: Circum-radius, edge lengths, hyperbolic simplex, inequality.
This work are supported by the Doctoral Programs Foundation of Education Ministry of China (20113401110009)

and Natural Science Foundation of Anhui Province Higer School (KJ2013A220).

c© � � , Zagreb
Paper JMI-08-32

445

http://dx.doi.org/10.7153/jmi-08-32


446 Y. SHI-GUO, Q. JI-BING AND S. YU-TING

Euclidean space En+1 with geodesic (that is, shorter arc) metric. We suppose that the
circum-center of Sn(1) is the origin O of the (n + 1)-dimensional Euclidean space
En+1 .

Recently, relations between edge lengths and volume of 3-dimensional simplex in
hyperbolic and spherical space are discussed in [1–6], and generalized law of sines for
an n -dimensional simplex in hyperbolic and spherical space are established in [7, 8, 9].

Let Δn be an n -dimensional simplex in the n -dimensional Euclidean space En ,
ai j (0 � i < j � n) and R be its edge lengths and circum-radius, respectively. Some
inequalities for edge lengths and circum-radius of Δn were obtained in [11], closely
related research can also see [12, 13].

In this paper, we discuss the problems for inequalities for edge lengths and circum-
radius of a simplex in the hyperbolic space Hn(−1) and the spherical space Sn(1) ,
and obtain some inequalities involving edge lengths and circum-radius of a simplex in
Hn(−1) and Sn(1) .

2. Inequalities for a simplex in hyperbolic space Hn(−1)

Let Ωn be an n -simplex with vertices P0,P1, · · · ,Pn in hyperbolic space Hn(−1) .
The hyperbolic distance φi j = arccosh(−〈Pi,Pj〉) between any two vertices Pi,Pj (i �=
j) are called the edge length of Ωn . For an n -simplex Ωn in Hn(−1) , we know that
either there is its circum-scribed sphere or there is not its circumscribed sphere. If there
exists a circum-scribed sphere for an n -simplex Ωn in Hn(−1) , we use R and C denote
circum-radius and circum-center of Ωn respectively. In hyperbolic space Hn(−1) , let
αi j be angle formed by rays CPi and CPj . Let λi �= 0 (i = 0,1, · · · ,n) be real numbers,
we put

G = (λiλ j cosαi j)n
i, j=0.

We obtain some inequalities for an n -simplex in Hn(−1) as follows.

THEOREM 1. Let Ωn be an n-simplex in Hn(−1) , and φi j (0 � i < j � n) be its
edge lengths. If there exists a circumscribed sphere of Ωn , let R be its circum-radius
and λi �= 0 (i = 0,1, · · · ,n) real numbers, then we have

∑
0�i< j�n

λiλ j sinh2 φi j

2
� 1

4
(

n

∑
i=0

λi)2 sinh2 R, (1)

equality holds if λ0 = λ1 = · · · = λn and Ωn is regular.

Put λ0 = λ1 = · · · = λn in inequality (1), we get

COROLLARY 1. If there exists a circumscribed sphere of n-simplex Ωn in Hn(−1) ,
then we have

∑
0�i< j�n

sinh2 φi j

2
� 1

4
(n+1)2 sinh2 R, (2)

equality holds if Ωn is regular.
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THEOREM 2. Let Ωn be an n-simplex in Hn(−1) , and φi j (0 � i < j � n) be its
edge lengths. If there exists a circumscribed sphere of Ωn , let R be its circum-radius
and λi �= 0 (i = 0,1, · · · ,n) real numbers, then we have

∑
0�i< j�n

λ 2
i λ 2

j (cosh2 R− coshφi j)2 � 1
n
( ∑
0�i< j�n

λ 2
i λ 2

j −
n−1

2

n

∑
i=0

λ 4
i )sinh4 R, (3)

equality holds if and only if the nonzero eigenvalues of matrix G are all equal.

If take λ0 = λ1 = · · · = λn in inequality (3), we get an inequality as follow.

COROLLARY 2. If there exists a circumscribed sphere of n-simplex Ωn in Hn(−1) ,
then we have

∑
0�i< j�n

(cosh2 R− coshφi j)2 � n+1
2n

sinh4 R, (4)

equality holds if and only if the nonzero eigenvalues of matrix G′ = (cosαi j)n
i, j=0 are

all equal.

To prove Theorem 1 and Theorem 2, we need some lemmas as follows.

LEMMA 1. Let Sk(1) be k -dimensional sphere of radius 1 in the s-dimensional
Euclidean space Es (s > k) , and the origin O be its circum-center, points Ai ∈ Sk(1)
(i = 0,1, · · · ,m) and λi �= 0 (i = 0,1, · · · ,m) be real numbers, then we have

∑
0�i< j�m

λiλ ja
2
i j � (

m

∑
i=0

λi)2, (5)

equality if and only if λ0
−−→
OA0 + λ1

−−→
OA1 + · · ·+ λm

−−→
OAm = 0 , that is equality holds in (5)

if and only if the barycenter of the mass-points system {Ai(λi)|i = 0,1, · · · ,m} in Es is
the origin O of Es . Where ai j = |AiA j| be the Euclidean distance between two points
Ai and Aj .

Proof. We put

−→
OA = λ0

−−→
OA0 + λ1

−−→
OA1 + · · ·+ λm

−−→
OAm,

then
0 � |−→OA|2 = |λ0

−−→
OA0 + λ1

−−→
OA1 + · · ·+ λm

−−→
OAm|2

=
m

∑
i=0

λ 2
i |
−−→
OA0|2 +2 ∑

0�i< j�m

λiλ j(
−→
OAi ·−−→OAj)

=
m

∑
i=0

λ 2
i + ∑

0�i< j�m

λiλ j(|−→OAi|2 + |−−→OAj|2−|−−→AiA j|2)

=
m

∑
i=0

λ 2
i +2 ∑

0�i< j�m

λiλ j − ∑
0�i< j�m

λiλ ja
2
i j.

From this we obtain inequality (5)holds.It is easy to see that equality holds if and only
if A ≡ O . �
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LEMMA 2. In Hn(−1) , let Ωn be an n-dimensional simplex with vertices Pi (i =
0,1, · · · ,n) and Ωn be inscribed a sphere with center C. Let αi j be the angle formed
by rays CPi and CPj (i �= j , i, j = 0,1, · · · ,n) in Hn(−1) , then there exist rays OAi

(i = 0,1, · · · ,n) in the n-dimensional Euclidean space En such that the angle formed
by rays OAi and OAj is equal to αi j for i �= j , i, j = 0,1, · · · ,n.

Proof. Lemma 2 can see the exercise 2 in [10, P273 ]. We now give the following
proof.

There are several hyperbolic geometric models. By the theory of differential ge-
ometry, E. Beltrami constructs one hyperbolic geometric model. He gives a describe in
detail as follows: In the n+1-dimensional Euclidean space, let Sn(−1) is the pseudo-
sphere with Gaussian curvature K =−1, the hyperbolic geometry in the n -dimensional
hyperbolic space Hn(−1) is regarded as the geometry on Sn(−1) whose geodesics are
straight lines [14, 15].

By the condition of Lemma 2, there exist n + 1 rays (i.e. geodesics) D̂Bi (i =
0,1, · · · ,n) passed through the same point D on Sn(−1) , such that the angle between
any two rays D̂Bi and D̂B j is αi j (for i �= j , i, j = 0,1, · · · ,n ). Let δi (i = 0,1, · · · ,n)
denote the unit tangent vector at the point D of the the geodesics D̂Bi . Then αi j is
the angle formed by vectors δi and δ j (i �= j, i, j = 0,1, · · · ,n) . Suppose that Tn(D) is
the tangent plane of the pseudo-sphere Sn(−1) at the point D , then δi ∈ Tn(D) (i =
0,1, · · · ,n) . Therefore, there exist n+ 1 rays OAi (i = 0,1, · · · ,n) passed through the
same point O on the n -dimensional tangent plane Tn(D) such that the angle between
any two rays OAi and OAj is αi j (i �= j , i, j = 0,1, · · · ,n) . �

Proofs of Theorem 1 and Theorem 2. In Hn(−1) , let point C be the circum-center
of the simplex Ωn and αi j be angle formed by rays CPi and CPj for i, j ∈ {0,1, · · · ,n}
and i �= j . By Lemma 2 we know that there are n+1 unit vectors

−→
OAi in En such that

αi j is the angle formed by vectors
−→
OAi and

−−→
OAj for i, j ∈ {0,1, · · · ,n} and i �= j . Let

ai j = |AiA j| be Euclidean distance between points Ai and Aj , by Lemma 1 we have

∑
0�i< j�m

λiλ ja
2
i j � (

n

∑
i=0

λi)2. (6)

Using the cosine formula of hyperbolic simplex (see the equality (56) in [16]) for 2-
dimensional hyperbolic simplex CPiPj , we have

cosαi j =
cosh2 R− coshφi j

sinh2 R
. (7)

Using the cosine theorem for triangle OAiA j in En and equality (7), we get

a2
i j = |AiA j|2 = 2−2cosαi j = 2− 2(cosh2 R− coshφi j)

sinh2 R
=

4sinh2 φi j
2

sinh2 R
. (8)

Substituting (8) into (6), we get inequality (1). It is easy to prove that equality holds
in (1) if λ0 = λ1 = · · · = λn and the simplex Ωn is regular. The proof of Theorem 1 is
complete.
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From the proof of Theorem 1 above and Ωn is an n -dimensional simplex in hyper-
bolic space Hn(−1) , we know that the rank of unit vectors system

−−→
OA0,

−−→
OA1, · · · ,−−→OAn in

En is n . Because λi �= 0 (i = 0,1, · · · ,n) , thus the rank of vectors system λ0
−−→
OA0,λ1

−−→
OA1,

· · · ,λn
−−→
OAn is also n . From this, we know that Gram matrix G = (λiλ j

−→
OAi ·−−→OAj)n

i, j=0 =

(λiλ j cosαi j)n
i, j=0 of vectors system λi

−→
OAi (i = 0,1, · · · ,n) is semi-positive definite

symmetric matrix and its rank is n . Let xi > 0 (i = 1,2, · · · ,n) and x0 = 0 be the
eigenvalues of the matrix G , we put

σ1 =
n

∑
i=0

xi =
n

∑
i=1

xi,σ2 = ∑
0�i< j�n

xix j = ∑
1�i< j�n

xix j. (9)

Using Maclaurin’s inequality (see [11]), we have

(
1
n

σ1)2 � 2σ2

n(n−1)
, (10)

with equality if and only if x1 = x2 = · · · = xn .
By the relation between roots and determinants of principal sub-matrices of matrix

G , we have

σ1 =
n

∑
i=0

λ 2
i ,σ2 = ∑

0�i< j�n

λ 2
i λ 2

j (1− cos2 αi j). (11)

Substituting (11) into (10), we get

∑
0�i< j�n

λ 2
i λ 2

j (1− cos2 αi j) � n−1
2n

(
n

∑
i=0

λ 2
i )2. (12)

Equality holds in (12) if and only if the nonzero eigenvalues of matrix G are all equal.
Substituting (7) into (12), we get inequality (3). The proof of Theorem 2 is com-

plete. �

In fact, let xi = λi
λ0+···+λn

(i = 0,1, · · · ,n) in inequality (1), because cosh2 R−
sinh2 R = 1, 2sinh2( φi j

2 ) = coshφi j −1, we have

cosh2 R �
n

∑
i=0

n

∑
i=0

xix j coshφi j

So our result implies one of main results of [13], moreover, this inequality more concise
and elegant.

3. Inequalities for a simplex and any point in spherical space Sn(1)

In this section, let Ωn be an n -dimensional simplex with vertices Pi (i = 0,1, · · · ,n)
in spherical space Sn(1) . The spherical distance φi j = P̂iPj between two vertices Pi and
Pj (i �= j) are called the edge length of Ωn . Sn(1) can be regard as n -dimensional unite
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sphere in (n+ 1)-dimensional Euclidean space En+1 and its center is the origin O of
En+1 , and φi j = ∠PiOPj is the spherical distance between points Pi and Pj for i �= j ,
i, j = 0,1, · · · ,n . Let R and point C denote the circum-radius and the circum-center of
spherical simplex Ωn in Sn(1) (C ∈ Sn(1)) , we obtain an inequality as follows.

THEOREM 3. Let Ωn be an n-dimensional simplex in Sn(1) and φi j (0 � i < j �
n) its edge lengths, λi �= 0 (i = 0,1, · · · ,n) be real numbers, then we have

∑
0�i< j�n

λiλ j sin2 φi j

2
�

[1
4
(

n

∑
i=0

λi +1)2−
n

∑
i=0

λi

]
+(

n

∑
i=0

λi)cos2 R
2

, (13)

equality holds if and only if the barycenter of the mass-points system {P0(λ0),P1(λ1), · · · ,
Pn(λn),C(1)} in En+1 is the origin O of En+1 .

If take λ0 = λ1 = · · · = λn in (13), we get an inequality as follows.

COROLLARY 3. For an n-simplex Ωn in spherical space Sn(1) , then

∑
0�i< j�n

sin2 φi j

2
� n2

4
+(n+1)cos2

R
2

. (14)

with equality if and only if the barycenter of the points system {P0,P1, · · · ,Pn,C} in
En+1 is the origin O of En+1 .

Proof of Theorem 3. The points P0,P1, · · · ,Pn,C (the point C is the circum-center
of spherical simplex Ωn ) are on the n -dimensional unit sphere Sn(1) in En+1 . By
Lemma 1 we have

∑
0� i< j� n

λiλ j|PiPj|2 +
n

∑
i=0

λi|CPi|2 � (
n

∑
i=0

λi +1)2, (15)

with equality if and only if the barycenter of the mass points system {P0(λ0),P1(λ1), · · · ,
Pn(λn),C(1)} in En+1 is the origin O of En+1 . Where |PiPj| denotes the Euclidean
distance between points Pi and Pj . It is easy to see that

φi j = P̂iPj = ∠ PiOPj (i, j = 0,1, · · · ,n), R = ĈPi = ∠ COPi (i = 0,1, · · · ,n).

For triangles COPi and PiOPj in Euclidean space En+1 , by cosine theorem for a trian-
gle we have

|CPi|2 = 2−2cosR = 4sin2 R
2

(i = 0,1, · · · ,n), (16)

|PiPj|2 = 2−2cosφi j = 4sin2 φi j

2
(i, j = 0,1, · · · ,n), (17)

Substituting (16) and (17) into (15), we get inequality (13). The proof of Theorem 3 is
complete. �
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