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BOUNDEDNESS ON MORREY SPACE FOR TOEPLITZ
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OPERATOR WITH VARIABLE CALDERÓN–ZYGMUND KERNEL
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Abstract. In this paper, the boundedness of the Toeplitz type operators associated to the singular
integral operator with variable Calderón-Zygmund kernel on Morrey spaces is obtained. For this
purpose, some Mk -type sharp maximal function inequalities for the operators are proved.

1. Introduction and Preliminaries

As the development of singular integral operators (see [7], [21]), their commu-
tators have been well studied. In [4], [19], [20], the authors proved that the commu-
tators generated by the singular integral operators and BMO functions are bounded
on Lp(Rn) for 1 < p < ∞ . Chanillo (see [2]) proved a similar result when singular
integral operators are replaced by the fractional integral operators. In [1], Calderón
and Zygmund introduced some singular integral operators with variable kernel and dis-
cussed their boundedness. In [11–13], [22], the authors obtained the boundedness for
the commutators generated by the singular integral operators with variable kernel and
BMO functions. In [15], the authors proved the boundedness for the multilinear oscil-
latory singular integral operators generated by the operators and BMO functions. In
[8], [9], [14], some Toeplitz type operators associated to the singular integral operators
and strongly singular integral operators are introduced, and the boundedness for the
operators generated by BMO and Lipschitz functions is obtained. Motivated by these,
in this paper, we will study the Toeplitz type operator generated by the singular integral
operator with variable Calderón-Zygmund kernel.

First, let us introduce some notations. Throughout this paper, Q will denote a cube
of Rn with sides parallel to the axes. For any locally integrable function f , the sharp
maximal function of f is defined by

f #(x) = sup
Q�x

1
|Q|

∫
Q
| f (y)− fQ|dy,
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where, and in what follows, fQ = |Q|−1 ∫
Q f (x)dx . It is well-known that (see [7], [21])

f #(x) ≈ sup
Q�x

inf
c∈C

1
|Q|

∫
Q
| f (y)− c|dy.

We say that f belongs to BMO(Rn) if f # belongs to L∞(Rn) and define || f ||BMO =
|| f #||L∞ . It is known that (see [21])

|| f − f2kQ||BMO � Ck|| f ||BMO.

For 0 < r < ∞ , we denote f #
r by

f #
r (x) = [(| f |r)#(x)]1/r.

Let

M( f )(x) = sup
Q�x

1
|Q|

∫
Q
| f (y)|dy.

For η > 0, let Mη( f ) = M(| f |η )1/η . For k ∈ N , we denote by Mk the operator M
iterated k times, i.e., M1( f ) = M( f ) and

Mk( f ) = M(Mk−1( f )) when k � 2.

For 0 < η < n and 1 � r < ∞ , set

Mη,r( f )(x) = sup
Q�x

(
1

|Q|1−rη/n

∫
Q
| f (y)|rdy

)1/r

.

Let Φ be a Young function and Φ̃ be the complementary associated to Φ , we
denote the Φ-average for a function f by

|| f ||Φ,Q = inf

{
λ > 0 :

1
|Q|

∫
Q

Φ
( | f (y)|

λ

)
dy � 1

}

and the maximal function associated to Φ by

MΦ( f )(x) = sup
x∈Q

|| f ||Φ,Q.

The Young functions which we use in this paper are Φ(t) = t(1+ logt) and Φ̃(t) =
exp(t) , the corresponding average and maximal functions are denoted by || · ||L(logL),Q ,
ML(logL) and || · ||expL,Q , MexpL . Following [19], we know the generalized Hölder’s
inequality and the following inequalities hold:

1
|Q|

∫
Q
| f (y)g(y)|dy � || f ||Φ,Q||g||Φ̃,Q,

|| f ||L(logL),Q � ML(logL)( f ) � CM2( f ),
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|| f − f2 jQ||expL,Q � C j|| f ||BMO.

DEFINITION 1. Let ϕ be a positive, increasing function on R+ and there exists a
constant D > 0 such that

ϕ(2t) � Dϕ(t) for t � 0.

Let f be a locally integrable function on Rn . Set, for 1 � p < ∞ ,

|| f ||Lp,ϕ = sup
x∈Rn, d>0

(
1

ϕ(d)

∫
Q(x,d)

| f (y)|pdy

)1/p

,

where Q(x,d) = {y ∈ Rn : |x− y|< d} . The generalized Morrey space is defined by

Lp,ϕ(Rn) = { f ∈ L1
loc(R

n) : || f ||Lp,ϕ < ∞}.
If ϕ(d) = dδ , δ > 0, then Lp,ϕ(Rn) = Lp,δ (Rn) , which is the classical Morrey

spaces (see [17], [18]). If ϕ(d) = 1, then Lp,ϕ(Rn) = Lp(Rn) , which is the Lebesgue
spaces (see [7]).

As the Morrey space may be considered as an extension of the Lebesgue space, it
is natural and important to study the boundedness of the operator on the Morrey spaces
(see [5], [6], [10], [16]).

In this paper, we will study some singular integral operators as follows (see [1]).

DEFINITION 2. Let K(x) = Ω(x)/|x|n : Rn \{0}→ R. K is said to be a Calderón-
Zygmund kernel if

(a) Ω ∈C∞(Rn \ {0});
(b) Ω is homogeneous of degree zero;
(c)
∫

Σ Ω(x)xαdσ(x) = 0 for all multi-indices α ∈ (N∪{0})n with |α|= N , where
Σ = {x ∈ Rn : |x| = 1} is the unit sphere of Rn .

DEFINITION 3. Let K(x,y) = Ω(x,y)/|y|n : Rn× (Rn \ {0})→ R. K is said to be
a variable Calderón-Zygmund kernel if

(d) K(x, ·) is a Calderón-Zygmund kernel for a.e. x ∈ Rn;

(e) max|γ|�2n

∣∣∣∣∣∣ ∂ |γ|
∂ γ y Ω(x,y)

∣∣∣∣∣∣
L∞(Rn×Σ)

= L < ∞.

Moreover, let b be a locally integrable function on Rn and T be the singular
integral operator with variable Calderón-Zygmund kernel as

T ( f )(x) =
∫

Rn
K(x,x− y) f (y)dy,

where K(x,x− y) = Ω(x,x−y)
|x−y|n and that Ω(x,y)/|y|n is a variable Calderón-Zygmund

kernel. The Toeplitz type operators associated to T is defined by

Tb =
m

∑
k=1

Tk,1MbT
k,2

and

Sb =
m

∑
k=1

(Tk,3MbIαTk,4 +Tk,5IαMbT
k,6),
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where Tk,1 and Tk,3 are the singular integral operator T with variable Calderón-
Zygmund kernel or ±I (the identity operator), Tk,2 , Tk,4 and Tk,6 are the bounded
linear operators on Lp(Rn) for 1 < p < ∞ , Tk,5 = ±I , k = 1, ...,m , Mb( f ) = b f and
Iα is the fractional integral operator (0 < α < n) (see [2]).

Note that the commutator [b,T ]( f ) = bT ( f )− T (b f ) is a particular operator of
the Toeplitz type operators Tb and Sb . The Toeplitz type operators Tb and Sb are the
non-trivial generalizations of the commutator. It is well known that commutators are
of great interest in harmonic analysis and have been widely studied by many authors
(see [19], [20]). The main purpose of this paper is to prove the Mk -type sharp max-
imal inequalities for the Toeplitz type operator Tb . As the application, we obtain the
boundedness on the Morrey space for the Toeplitz type operators Tb and Sb .

2. Theorems and Lemmas

We shall prove the following theorems.

THEOREM 1. Let T be the singular integral operator as Definition 3, 0 < η < 1 ,
1 < s < ∞ and b∈ BMO(Rn) . If T1(g) = 0 for any g ∈ Lr(Rn) (1 < r < ∞) , then there
exists a constant C > 0 such that, for any f ∈C∞

0 (Rn) and x̃ ∈ Rn ,

(Tb( f ))#
η (x̃) � C||b||BMO

m

∑
k=1

M2(Tk,2( f ))(x̃).

THEOREM 2. Let T be the singular integral operator as Definition 3, 0 < η < 1 ,
1 < s < ∞ and b∈ BMO(Rn) . If S1(g) = 0 for any g∈ Lr(Rn) (1 < r < ∞) , then there
exists a constant C > 0 such that, for any f ∈C∞

0 (Rn) and x̃ ∈ Rn ,

(Sb( f ))#
η (x̃) � C||b||BMO

m

∑
k=1

(M2(IαTk,4( f ))(x̃)+Mα ,s(Tk,6( f ))(x̃)).

THEOREM 3. Let T be the singular integral operator as Definition 3, 1 < p < ∞ ,
0 < D < 2n and b ∈ BMO(Rn) . If T1(g) = 0 for any g ∈ Lr(Rn) (1 < r < ∞) , then Tb

is bounded on Lp,ϕ(Rn) .

THEOREM 4. Let T be the singular integral operator as Definition 3, 0 < D < 2n ,
1 < p < n/α , 1/q = 1/p−α/n and b ∈ BMO(Rn) . If S1(g) = 0 for any g ∈ Lr(Rn)
(1 < r < ∞) , then Sb is bounded from Lp,ϕ(Rn) to Lq,ϕ(Rn) .

COROLLARY. Let [b,T ]( f ) = bT ( f )− T (b f ) be the commutator generated by
the singular integral operator T as Definition 3 and b. Then Theorems 1–4 hold for
[b,T ] .

To prove the theorems, we need the following lemmas.

LEMMA 1. ([7, p. 485]) Let 0 < p < q < ∞ and for any function f � 0 . We
define that, for 1/r = 1/p−1/q,

|| f ||WLq = sup
λ>0

λ |{x ∈ Rn : f (x) > λ}|1/q, Np,q( f ) = sup
Q

|| f χQ||Lp/||χQ||Lr ,
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where the sup is taken for all measurable sets Q with 0 < |Q| < ∞ . Then

|| f ||WLq � Np,q( f ) � (q/(q− p))1/p|| f ||WLq .

LEMMA 2. (see [1]) Let T be the singular integral operator as Definition 3. Then
T is bounded on Lp(Rn) for 1 < p < ∞ , and weak (L1,L1) bounded.

LEMMA 3. (see [19]) We have

1
|Q|

∫
Q
| f (x)g(x)|dx � || f ||expL,Q||g||L(logL),Q.

LEMMA 4. (see [2], [7]) Let 0 < α < n, 1 � s < p < n/α and 1/q = 1/p−α/n.
Then

||Mα ,s( f )||Lq � C|| f ||Lp

and
||Iα( f )||Lq � C|| f ||Lp .

LEMMA 5. (see [7]) Let 0 < p,η < ∞ . Then, for any smooth function f for
which the left-hand side is finite,∫

Rn
Mη( f )(x)pdx � C

∫
Rn

f #
η ( f )(x)pdx.

LEMMA 6. Let 0 < p,η < ∞ and 0 < D < 2n . Then, for any smooth function f
for which the left-hand side is finite,

||Mη ( f )||Lp,ϕ � C|| f #
η ( f )||Lp,ϕ .

Proof. For any cube Q = Q(x0,d) in Rn , we know M(χQ) ∈ A1 for any cube
Q = Q(x,d) by [3]. Noticing that M(χQ) � 1 and M(χQ)(x) � dn/(|x− x0|− d)n if
x ∈ Qc , by Lemma 5, we have, for f ∈ Lp,ϕ(Rn) ,

∫
Q

Mη ( f )(x)pdx =
∫

Rn
Mη ( f )(x)pχQ(x)dx

�
∫

Rn
Mη ( f )(x)pM(χQ)(x)dx

� C
∫

Rn
f #
η (x)pM(χQ)(x)dx

= C

(∫
Q

f #
η (x)pM(χQ)(x)dx+

∞

∑
k=0

∫
2k+1Q\2kQ

f #
η (x)pM(χQ)(x)dx

)

� C

(∫
Q

f #
η (x)pdx+

∞

∑
k=0

∫
2k+1Q\2kQ

f #
η (x)p |Q|

|2k+1Q|dx

)
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� C

(∫
Q

f #
η (x)pdx+

∞

∑
k=0

∫
2k+1Q

f #
η (x)p2−kndy

)

� C|| f #
η ||pLp,ϕ

∞

∑
k=0

2−knϕ(2k+1d)

� C|| f #
η ||pLp,ϕ

∞

∑
k=0

(2−nD)kϕ(d)

� C|| f #
η ||pLp,ϕ ϕ(d),

thus (
1

ϕ(d)

∫
Q

Mη ( f )(x)pdx

)1/p

� C

(
1

ϕ(d)

∫
Q

f #
η (x)pdx

)1/p

and
||Mη ( f )||Lp,ϕ � C|| f #

η ||Lp,ϕ .

This finishes the proof. �

LEMMA 7. Let 0 < α < n, 0 < D < 2n , 1 � s < p < n/α and 1/q = 1/p−α/n.
Then

||Mα ,s( f )||Lq,ϕ � C|| f ||Lp,ϕ

and
||Iα( f )||Lq,ϕ � C|| f ||Lp,ϕ .

LEMMA 8. Let T be the bounded linear operators on Lr(Rn) for any 1 < r < ∞ .
Then, for 1 < p < ∞ and 0 < D < 2n ,

||T ( f )||Lp,ϕ � C|| f ||Lp,ϕ .

The proofs of two Lemmas are similar to that of Lemma 6 by Lemma 4, we omit
the details.

3. Proofs of Theorems

Proof of Theorem 1. It suffices to prove for f ∈ C∞
0 (Rn) and some constant C0 ,

the following inequality holds:

(
1
|Q|

∫
Q
|Tb( f )(x)−C0|η dx

)1/η
� C||b||BMO

m

∑
k=1

M2(Tk,2( f ))(x̃).

Without loss of generality, we may assume Tk,1 are T (k = 1, ...,m) . Fix a cube
Q = Q(x0,d) and x̃ ∈ Q . We write, by T1(g) = 0,

Tb( f )(x) = Tb−b2Q( f )(x) = T(b−b2Q)χ2Q
( f )(x)+T(b−b2Q)χ(2Q)c

( f )(x) = f1(x)+ f2(x).
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Then (
1
|Q|

∫
Q
|Tb( f )(x)− f2(x0)|η dx

)1/η

� C

(
1
|Q|

∫
Q
| f1(x)|ηdx

)1/η
+C

(
1
|Q|

∫
Q
| f2(x)− f2(x0)|ηdx

)1/η
= I + II.

For I , by Lemma 1, 2 and 3, we obtain

(
1
|Q|

∫
Q
|Tk,1M(b−b2Q)χ2Q

T k,2( f )(x)|η dx

)1/η

� |Q|−1
||Tk,1M(b−b2Q)χ2Q

T k,2( f )χQ||Lη

|Q|1/η−1

� C|Q|−1||Tk,1M(b−b2Q)χ2Q
T k,2( f )||WL1

� C|Q|−1||M(b−b2Q)χ2Q
T k,2( f )||L1

� C|Q|−1
∫

2Q
|b(x)−b2Q||Tk,2( f )(x)|dx

� C||b−b2Q||expL,2Q||Tk,2( f )||L(logL),2Q

� C||b||BMOM2(Tk,2( f ))(x̃),

thus

I �
m

∑
k=1

(
C
|Q|

∫
Q
|Tk,1M(b−b2Q)χ2Q

T k,2( f )(x)|η dx

)1/η

� C||b||BMO

m

∑
k=1

M2(Tk,2( f ))(x̃).

For II , by [1], we know that

T ( f )(x) =
∞

∑
u=1

gu

∑
v=1

auv(x)
∫

Rn

Yuv(x− y)
|x− y|n+m f (y)dy,

where gu � Cun−2 , ||auv||L∞ � Cu−2n , |Yuv(x− y)|� Cun/2−1 and∣∣∣∣Yuv(x− y)
|x− y|n − Yuv(x0 − y)

|x0 − y|n
∣∣∣∣� Cun/2|x− x0|/|x0− y|n+1

for |x− y|> 2|x0− x| > 0. Then, we get, for x ∈ Q ,

|Tk,1M(b−b2Q)χ(2Q)c
( f )(x)−Tk,1M(b−b2Q)χ(2Q)c

T k,2( f )(x0)|

�
∫

(2Q)c
|b(y)−b2Q||K(x,x− y)−K(x0,x0 − y)||Tk,2( f )(y)|dy



460 C. HUANG, S. GUO AND L. LIU

=
∞

∑
j=1

∫
2 jd�|y−x0|<2 j+1d

|b(y)−b2Q||K(x,x− y)−K(x0,x0− y)||Tk,2( f )(y)|dy

� C
∞

∑
j=1

∫
2 jd�|y−x0|<2 j+1d

|b(y)−b2Q|
∞

∑
u=1

gu

∑
v=1

|auv(x)|

×
∣∣∣∣Yuv(x− y)
|x− y|n − Yuv(x0 − y)

|x0 − y|n
∣∣∣∣ |Tk,2( f )(y)|dy

� C
∞

∑
j=1

∫
2 jd�|y−x0|<2 j+1d

|b(y)−b2Q| |x− x0|
|x0− y|n+1 |Tk,2( f )(y)|dy

� C
∞

∑
j=1

d
(2 j+1d)n+1

∫
2 j+1Q

|b(y)−b2Q||Tk,2( f )(y)|dy

� C
∞

∑
j=1

2− j 1
|2 j+1Q|

∫
2 j+1Q

|b(y)−b2Q||Tk,2( f )(y)|dy

� C
∞

∑
j=1

2− j||b−b2Q||expL,2 j+1Q||Tk,2( f )||L(logL),2 j+1Q

� C
∞

∑
j=1

j2− j||b||BMOM2(Tk,2( f ))(x̃)

� C||b||BMOM2(Tk,2( f ))(x̃),

thus

II � C
|Q|

∫
Q

m

∑
k=1

|Tk,1M(b−b2Q)χ(2Q)c
T k,2( f )(x)−Tk,1M(b−b2Q)χ(2Q)c

T k,2( f )(x0)|dx

� C||b||BMO

m

∑
k=1

M2(Tk,2( f ))(x̃).

This completes the proof of Theorem 1. �

Proof of Theorem 2. It suffices to prove for f ∈ C∞
0 (Rn) and some constant C0 ,

the following inequality holds:

(
1
|Q|

∫
Q
|Sb( f )(x)−C0|η dx

)1/η
�C||b||BMO

m

∑
k=1

(M2(IαTk,4( f ))(x̃)+Mα ,s(Tk,6( f ))(x̃)).

Without loss of generality, we may assume Tk,3 are T (k = 1, ...,m) . Fix a cube Q =
Q(x0,d) and x̃ ∈ Q . Write, by T1(g) = 0,

Sb( f )(x) =
m

∑
k=1

Tk,3MbIαTk,4( f )(x)+
m

∑
k=1

Tk,5IαMbT
k,6( f )(x)

= Ab(x)+Bb(x) = Ab−bQ(x)+Bb−bQ(x),
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where

Ab−bQ(x) =
m

∑
k=1

Tk,3M(b−bQ)χ2Q
IαTk,4( f )(x)+

m

∑
k=1

Tk,3M(b−bQ)χ(2Q)c
IαTk,4( f )(x)

= A1(x)+A2(x)

and

Bb−bQ(x) =
m

∑
k=1

Tk,5IαM(b−bQ)χ2Q
Tk,6( f )(x)+

m

∑
k=1

Tk,5IαM(b−bQ)χ(2Q)c
T k,6( f )(x)

= B1(x)+B2(x).

Then (
1
|Q|

∫
Q

∣∣∣Ab−bQ( f )(x)−A2(x0)
∣∣∣η dx

)1/η

� C

(
1
|Q|

∫
Q
|A1(x)|ηdx

)1/η
+C

(
1
|Q|

∫
Q
|A2(x)−A2(x0)|ηdx

)1/η

= I1 + I2

and (
1
|Q|

∫
Q

∣∣∣Bb−bQ( f )(x)−B2(x0)
∣∣∣η dx

)1/η

� C

(
1
|Q|

∫
Q
|B1(x)|ηdx

)1/η
+C

(
1
|Q|

∫
Q
|B2(x)−B2(x0)|ηdx

)1/η

= I3 + I4.

For I1 and I2 , by using the same argument as in the proof of Theorem 1, we get

I1 � C
m

∑
k=1

(
1
|Q|

∫
Rn
|Tk,3M(b−bQ)χ2Q

IαTk,4( f )(x)|η dx

)1/η

�
m

∑
k=1

|Q|−1
||Tk,3M(b−bQ)χ2Q

IαTk,4( f )χQ||Lη

|Q|1/η−1

� C
m

∑
k=1

|Q|−1||Tk,3M(b−bQ)χ2Q
IαTk,4( f )||WL1

� C
m

∑
k=1

|Q|−1||M(b−bQ)χ2Q
IαTk,4( f )||L1

� C
m

∑
k=1

|Q|−1
∫

2Q
|b(x)−b2Q||IαTk,4( f )(x)|dx

� C
m

∑
k=1

||b−b2Q||expL,2Q||IαTk,4( f )||L(logL),2Q

� C||b||BMO

m

∑
k=1

M2(IαTk,4( f ))(x̃),
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I2 � C
m

∑
k=1

1
|Q|

∫
Q

∞

∑
j=1

∫
2 jd�|y−x0|<2 j+1d

|b(y)−b2Q||K(x,x− y)−K(x0,x0 − y)|

×|IαTk,4( f )(y)|dydx

� C
m

∑
k=1

1
|Q|

∫
Q

∞

∑
j=1

∫
2 jd�|y−x0|<2 j+1d

|b(y)−b2Q| |x− x0|
|x0 − y|n+1 |IαTk,4( f )(y)|dydx

� C
m

∑
k=1

∞

∑
j=1

2− j 1
|2 j+1Q|

∫
2 j+1Q

|b(y)−b2Q||IαTk,4( f )(y)|dy

� C
m

∑
k=1

∞

∑
j=1

2− j||b−b2Q||expL,2 j+1Q||IαTk,4( f )||L(logL),2 j+1Q

� C
m

∑
k=1

∞

∑
j=1

j2− j||b||BMOM2(IαTk,4( f ))(x̃)

� C||b||BMO

m

∑
k=1

M2(IαTk,4( f ))(x̃).

For I3 , by Lemma 4, we get, for 1 < p < min(s,n/α) and 1/q = 1/p−α/n ,

I3 � C
m

∑
k=1

(
1
|Q|

∫
Rn
|IαM(b−bQ)χ2Q

Tk,6( f )(x)|qdx

)1/q

� C
m

∑
k=1

|Q|−1/q
[∫

2Q
(|b(x)−bQ||Tk,6( f )(x)|)pdx

]1/p

� C
m

∑
k=1

(
1

|2Q|
∫

2Q
|b(x)−bQ|ps/(s−p)dx

)(s−p)/ps( 1

|2Q|1−sα/n

∫
2Q

|Tk,6( f )(x)|sdx

)1/s

� C||b||BMO

m

∑
k=1

Mα ,s(Tk,6( f ))(x̃).

For I4 , we get

I4 � |Q|−1
m

∑
k=1

∫
Q

∫
(2Q)c

|b(y)−b2Q|
∣∣∣∣ 1
|x− y|n−α − 1

|x0− y|n−α

∣∣∣∣ |Tk,6( f )(y)|dydx

� C
m

∑
k=1

∞

∑
j=1

∫
2 jd�|y−x0|<2 j+1d

|b(y)−b2Q| d
|x0 − y|n−α+1 |Tk,6( f )(y)|dy

� C
m

∑
k=1

∞

∑
j=1

d(2 jd)−n+α−1(2 jd)n(1−1/s)(2 jd)n/s−α

×
(

1
|2 j+1Q|

∫
2 j+1Q

|b(y)−bQ|s′dy

)1/s′( 1

|2 j+1Q|1−sα/n

∫
2 j+1Q

|Tk,6( f )(y)|sdy

)1/s
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� C||b||BMO

m

∑
k=1

Mα ,s(Tk,6( f ))(x̃)
∞

∑
j=1

j2− j

� C||b||BMO

m

∑
k=1

Mα ,s(Tk,6( f ))(x̃).

This completes the proof of Theorem 2. �

Proof of Theorem 3. By Theorem 1 and Lemmas 7–8, we have

||Tb( f )||Lp,ϕ � ‖Mη(Tb( f ))‖Lp,ϕ � C‖(Tb( f ))#
η‖Lp,ϕ

� C||b||BMO

m

∑
k=1

‖M2(Tk,2( f ))‖Lp,ϕ

� C||b||BMO

m

∑
k=1

‖Tk,2( f )‖Lp,ϕ

� C||b||BMO‖ f‖Lp,ϕ .

This completes the proof of Theorem 3. �

Proof of Theorem 4. Choose 1 < s < p in Theorem 2, then we have, by Lemmas
7 and 8,

||Sb( f )||Lq,ϕ � ‖Mη(Sb( f ))‖Lq,ϕ � C‖(Sb( f ))#
η‖Lq,ϕ

� C||b||BMO

m

∑
k=1

(‖M2(IαTk,4( f ))‖Lq,ϕ +‖Mα ,s(Tk,6( f ))‖Lq,ϕ )

� C||b||BMO

m

∑
k=1

(‖IαTk,4( f )‖Lq,ϕ +‖Tk,6( f )‖Lp,ϕ )

� C||b||BMO

m

∑
k=1

(‖Tk,4( f )‖Lp,ϕ +‖ f‖Lp,ϕ )

� C||b||BMO‖ f‖Lp,ϕ .

This completes the proof of Theorem 4. �
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