lournal of
athematical
nequalities

Volume 8, Number 3 (2014), 453-464 doi:10.7153/jmi-08-33

BOUNDEDNESS ON MORREY SPACE FOR TOEPLITZ
TYPE OPERATOR ASSOCIATED TO SINGULAR INTEGRAL
OPERATOR WITH VARIABLE CALDERON-ZYGMUND KERNEL

CHUANGXIA HUANG, SHENG GUO AND LANZHE LI1U

(Communicated by N. Elezovic)

Abstract. In this paper, the boundedness of the Toeplitz type operators associated to the singular
integral operator with variable Calderén-Zygmund kernel on Morrey spaces is obtained. For this
purpose, some M -type sharp maximal function inequalities for the operators are proved.

1. Introduction and Preliminaries

As the development of singular integral operators (see [7], [21]), their commu-
tators have been well studied. In [4], [19], [20], the authors proved that the commu-
tators generated by the singular integral operators and BMO functions are bounded
on LP(R") for 1 < p < eo. Chanillo (see [2]) proved a similar result when singular
integral operators are replaced by the fractional integral operators. In [1], Calder6n
and Zygmund introduced some singular integral operators with variable kernel and dis-
cussed their boundedness. In [11-13], [22], the authors obtained the boundedness for
the commutators generated by the singular integral operators with variable kernel and
BMO functions. In [15], the authors proved the boundedness for the multilinear oscil-
latory singular integral operators generated by the operators and BMO functions. In
[8], [9], [14], some Toeplitz type operators associated to the singular integral operators
and strongly singular integral operators are introduced, and the boundedness for the
operators generated by BMO and Lipschitz functions is obtained. Motivated by these,
in this paper, we will study the Toeplitz type operator generated by the singular integral
operator with variable Calderén-Zygmund kernel.

First, let us introduce some notations. Throughout this paper, Q will denote a cube
of R" with sides parallel to the axes. For any locally integrable function f, the sharp
maximal function of f is defined by

1
7w =suw e /Q £ — foldy,
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where, and in what follows, fp = [Q|~! Jo f(x)dx. Itis well-known that (see [7], [21])

) Nsuplnf‘Q|/ lf () — cl|dy.

QBXCEC

We say that f belongs to BUO(R") if f* belongs to L*(R") and define ||f||smo =
||£#||1= . Tt is known that (see [21])

|1f = faollBmo < CK|| f|mo-
For 0 < r < oo, we denote f¥ by
SEe) =AY )

Let

M(f)(x) séuap@ / £()|dy.

For 1 > 0, let My(f) = M(|f|")"/". For k € N, we denote by M the operator M
iterated k times, i.e., M'(f) = M(f) and

M*(f) = M(M*1(f)) when k> 2.

For 0 <n <nand 1 <r<eo,set

1/r
M (F)(x) = sup(Q|1 L rorar)

Let ® be a Young function and ® be the complementary associated to @, we
denote the ®-average for a function f by

oo =int{a>0: - [ @ L)y <1}

and the maximal function associated to ® by

Mo (f)(x) = sup||f]lo,o-
xeQ

The Young functions which we use in this paper are ®(z) = ¢(1 +logt) and ®(¢) =
exp(t), the corresponding average and maximal functions are denoted by || -||1(0gz),0>
My 10gr) and || - [|expr.0> Mexpr. Following [19], we know the generalized Hélder’s
inequality and the following inequalities hold:

51 [ 001y < Il ollelo o

[l LatogL),0 < ML(iogr) (f) < CM*(f),



MORREY SPACE FOR TOEPLITZ TYPE OPERATOR 455

1f = faigllexpr.o < Cjllfl|Bmo-

DEFINITION 1. Let @ be a positive, increasing function on R" and there exists a
constant D > 0 such that
©(2t) < Do(t) for 1 > 0.

Let f be alocally integrable function on R". Set, for 1 < p < co,

1 1/p
flwo= s (o[ ropay)
1Flere = xern, d>0 \ 9(d) Q(x7d)| o)

where Q(x,d) = {y € R" : |x—y| < d}. The generalized Morrey space is defined by
LPO(R") = {f € Lie(R") : || f||ro < oo}

If o(d)=d®, § >0, then LP?(R") = LP9(R"), which is the classical Morrey
spaces (see [17], [18]). If ¢(d) =1, then L”?(R") = LP(R"), which is the Lebesgue
spaces (see [7]).

As the Morrey space may be considered as an extension of the Lebesgue space, it
is natural and important to study the boundedness of the operator on the Morrey spaces
(see [5], [6], [10], [16]).

In this paper, we will study some singular integral operators as follows (see [1]).

DEFINITION 2. Let K(x) = Q(x)/|x|": R"\ {0} — R. K is said to be a Calder6n-
Zygmund kernel if

(a) Q € C*(R"\ {0});

(b) Q is homogeneous of degree zero;

(©) [ Q(x)x*do(x) =0 for all multi-indices @ € (NU{0})" with |ot| =N, where
¥ ={x € R":|x| = 1} is the unit sphere of R".

DEFINITION 3. Let K(x,y) = Q(x,y)/[y|" : R" x (R"\ {0}) — R. K is said to be
a variable Calderén-Zygmund kernel if

(d) K(x,-) is a Calderén-Zygmund kernel for a.e. x € R";

©) max|y|<2n a}’y‘Q( ,_)7)) ) =L <eo.

Moreover, let b be a locally integrable function on R" and T be the singular
integral operator with variable Calder6n-Zygmund kernel as

0= [ Klxx=y)s0)a

where K(x,x—y) = Q) and that Q(x,y)/|y|" is a variable Calderén-Zygmund

[x—y]"

kernel. The Toeplitz type operators associated to T is defined by
T, =Y T"'M,T"?
k=1
and ,
Z (T Mylo T + T 1,M, T,
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where T5! and T*3 are the singular integral operator T with variable Calderén-
Zygmund kernel or =/ (the identity operator), T2, T%% and T*% are the bounded
linear operators on LP(R") for 1 < p <o, TS =41, k=1,....,m, My(f) = bf and
I, is the fractional integral operator (0 < o < n) (see [2]).

Note that the commutator [b,T|(f) = bT(f) — T (bf) is a particular operator of
the Toeplitz type operators 7;, and S;,. The Toeplitz type operators 7;, and S; are the
non-trivial generalizations of the commutator. It is well known that commutators are
of great interest in harmonic analysis and have been widely studied by many authors
(see [19], [20]). The main purpose of this paper is to prove the Mk -type sharp max-
imal inequalities for the Toeplitz type operator 7;,. As the application, we obtain the
boundedness on the Morrey space for the Toeplitz type operators 7;, and S,.

2. Theorems and Lemmas

We shall prove the following theorems.

THEOREM 1. Let T be the singular integral operator as Definition 3, 0 <n < 1,
I <s<ooand b€ BMO(R"). If T1(g) =0 forany g € L"(R") (1 < r < oo), then there
exists a constant C > 0 such that, for any f € C5(R") and X € R",

(D) () < Cllbllawo S MA(TH2(1) ().
k=1

THEOREM 2. Let T be the singular integral operator as Definition 3, 0 <n < 1,
I <s<ooand b€ BMO(R"). If Si(g) =0 forany g € L"(R") (1 <r < oo), then there
exists a constant C > 0 such that, for any f € C5(R") and % € R",

(Sp(f))7 (%) < ClIblI8mo i(W(IaT""‘(f))(i) + Mo s(TH(f)) (%)).
k=1

THEOREM 3. Let T be the singular integral operator as Definition 3, 1 < p < oo,
0<D<2"and b€ BMO(R"). If T1(g) =0 forany g € L"(R") (1 <r <o), then T,
is bounded on LP?(R").

THEOREM 4. Let T be the singular integral operator as Definition 3, 0 < D < 2",
l<p<n/o, 1/g=1/p—oa/n and b € BMO(R"). If Si(g) =0 for any g € L"(R")
(I <r<eo), then Sy is bounded from LP*?(R") to LY?(R").

COROLLARY. Let [b,T|(f) = bT(f) —T(bf) be the commutator generated by
the singular integral operator T as Definition 3 and b. Then Theorems 1-4 hold for
[b,T].

To prove the theorems, we need the following lemmas.

LEMMA 1. ([7, p. 485]) Let 0 < p < q < o and for any function f > 0. We
define that, for 1/r=1/p—1/q,

[ fllwee = iu%/l\{x€R" L fx) > A3, Npa(f) = SZPHJCXQHU’/HXQHLH
>
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where the sup is taken for all measurable sets Q with 0 < |Q| < eo. Then

1/llwes < Npg(f) < (a/(a= )"/l fllws-

LEMMA 2. (see[1]) Let T be the singular integral operator as Definition 3. Then
T is bounded on LP(R") for 1 < p < oo, and weak (L',L") bounded.

LEMMA 3. (see [19]) We have

57 | e lds < ey ollelions o

LEMMA 4. (see[2],[7]) Let O< o <n, I<s<p<nf/oand 1/g=1/p—a/n.
Then
[1Mes(f)lle < ClI S|

and
[T (F)l|ze < ClIf]er-

LEMMA 5. (see [7]) Let 0 < p,n < oo. Then, for any smooth function f for
which the left-hand side is finite,

[ My (F)@)Pdx<C | fi(f)(x)dx.

LEMMA 6. Let 0 < p,n <o and 0 < D < 2". Then, for any smooth function f
for which the left-hand side is finite,

[[My ()| Lro <C\|f#(f)|\LP~<P~

Proof. For any cube Q = Q(xg,d) in R", we know M(yp) € A; for any cube
0 = Q(x,d) by [3]. Noticing that M (o) <1 and M(xo)(x) < d"/(Jx —xo| —d)" if
x € 0°, by Lemma 5, we have, for f € L”»?(R"),

| M (P = [ M (1)) 2o )
[ My (1) ()" M (t0) ()
<C [ FwMixo) s

¢ </ f10)"M (o) (dx-+ Z /k+lg\sz
0|
</ e kzo/k“Q\sz 1 p2"“de>

n(0)"M(x0)(x)dx )

//\
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P p kn
c(/Q dijZ/k+1 2" dy>
CHf;‘,*HL,,q,Ez o2 a)
< ClIflle 2. (27"D) o(d)
k=0

<l re0(d)

thus

(ﬁ/QMn(f)(X)pdxy/p <C<ﬁ Qfﬁ(x)pdx>l/p

|[My (f)]|Lro < CHﬂ;HL,,A,(p.
This finishes the proof. [J

and

LEMMA 7. Let0< o <n, 0<D<2" I<s<p<n/oand1/g=1/p—a/n.
Then

IMas(F)a0 < ClIf|Lro

and
1o (f)||za0 < C||f]|Lro-

LEMMA 8. Let T be the bounded linear operators on L"(R") for any 1 < r < oo.
Then, for 1 < p <eoand 0 <D < 2",

T (f)l|ere < C||f]|Lro-

The proofs of two Lemmas are similar to that of Lemma 6 by Lemma 4, we omit
the details.

3. Proofs of Theorems

Proof of Theorem 1. 1t suffices to prove for f € Ci(R") and some constant Cy,
the following inequality holds:

1/n m
(g7 [~ ax) " < Clbllavo 3 470,

k=1

Without loss of generality, we may assume 75! are T (k = 1,...,m). Fix a cube
0 = Q(x9,d) and ¥ € Q. We write, by Ti(g) =0,

Tp(f)(X) = To—2 (/) (%) = To-bag) 12 (F) %) + Tl 09 (1) (%) = f1(x) + fa ().
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Then
1/n
(ﬁ/gln(f)(x) — fo(x0)|" dx)

1/n 1/n
<c(ig fiaemar) e (g [ 1m0 - peorar) <1+,

For I, by Lemma 1, 2 and 3, we obtain

1 k,1 ) . 1/n
@/Q‘T / M(h*bZQ)XZQT (f)(x)|"dx

<|o|™! |‘Tk"lM(b—bzg)xwTk’z(f)XQ‘|U’
h oJ1/n-1

clol™'| |Tk’1M(b—b2Q)szTk’2(f)\|WL1
clol™'| |M(b7h2QmQTk’2 (Nl

Clof™ [ ) —bagll ()9l

NN

N

C| ‘b - b2Q| ‘EXPL72Q| ‘Tk?z(f) ‘ |L(l()gL) 20

< ,
< C||b|[roM*(T5(f)) (%),

thus

m C 1/n
1< 3 (11 1T Mg T 0000 )
k=1

< Cllbllawo 3 MATH (1)) ().
k=1

For 11, by [1], we know that

where g, < Cu' 2, [a|li= < Cu~", |V (x—y)| < Cu/>! and

Yuv(x_y) Yuv(xo_y)

=yl o=y

< Cu"/2|x—x0\/|x0 _y|n+1

for |x —y| > 2|xp — x| > 0. Then, we get, for x € Q,
‘Tk’lM(b—bQQ)x(zQ)c (f) (x) - Tk’lM(b—bQQ)l(zQ)c Tkﬁz(f) ()C())|

s /me [(y) = baol|K (x,x = y) = K (x0,%0 = )| T2 (£) () |dy
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2 /2/d<|y xo|<2it1d [6(y) = bagl K (x,x =) = K (x0,50 —y)||T** () () ldy

Sl-1]

< CZ ) ) b2Q‘ 2 2 |auv

2Jd§|y7x0|<21+1d

j=1 u=1v=1
Yi(x— Y (xo —
P2y T ,) T42(1)0)
=y [x0 — |
< x — xo| k2
<C b(y) —byo| —|T" d
63) = baol s T (N )y

2/d<|y—xg|<2/t1d

# [P0V = Bl 1))y

g ~.
M8 [\g!

~.
I
iR

1

i k2
2T IG] oy PO~ 20lIT (1) )y

y
a
g

~.
Il
—_

a
Ms

' k2
< 271b = b20llexpr o+ 10l T (Nl L10gr) 27410

~.
I
iR

8

< C Y j2 7 |IbllsyoM*(TH(£)) (%)
j=1

< C|b||ppmoM* (T4 (f)) (%),

thus
C m
11 < @/kal|Tk’1M(h7b2Q)x(2Q)fTk’2(f)( x)—TH M, bro)x(2 Tkz(f)(xoﬂdx

< Cllbllawo 3 MATH (1)) ().

This completes the proof of Theorem 1. [J

Proof of Theorem 2. It suffices to prove for f € C;(R") and some constant Cp,
the following inequality holds:

1/n m
(ig7 IS0 ax) < Cllbllamo 3042 ()0 Mo

k=1

Without loss of generality, we may assume T3 are T'(k = 1,...,m). Fix a cube Q =
Q(xo,d) and % € Q. Write, by Ti(g) =0,

(N = 3 TEMILTH (£ () + S, TS 1My TH (F) (1)
k=1 k=1

= Ap(x) + Bp(x) = Ap—p, (X) + By (X),
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k=1 =
=A;(x)+Az(x)

By bQ ZTk IocM(b bQ)XZQTk6( +ZTkSIaM(b bt
:Bl(x)—FBz(x).

(é/ ’Abfhg(f)(x) _Az(xo)‘n dx) 1/n

<Q|/ AL )ndx>l/n+c<|Q/|A2(x)—A2(xo)ndx>

- Il+12

<Q|/ )Bb bQ(f)(x)—Bz(XO)‘ndX>l/n

461

Ao-bl 2 M (b= bQ)XZQIaTM(f) (x) + 2 Tk?gM(bJJQ))C(ZQ)rIocTk’4 (f)(x)

o T ()

I/n

C(@/Q|Bl(x)”dx>1/”+C<|6/Q|Bz(x>_32(xo)ndx>1/n

=L+

2\Q| IH M- bo) ngla Af )Xol
k=1 |QJ1/n-1

<CY, |Q‘_l|‘Tk73M(b*hQ)X2QIaTk74(f)‘|WL'

< C Y101 IMypy) oo LT ()|
<CX o [ 6~ baollaT*()(0)ldx
k=1

< CE Hb_b2Q‘|expL,2Q‘|IaTk’4(f)HL(l()gL)72Q

< Cl|bllsmo ZMZ T ()) (%),

For I} and I,, by using the same argument as in the proof of Theorem 1, we get

k3 I I/n
CZ <Q|/ T5 " Mp—bg) oo laT™ (f)(x)|”dx>
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moq oo
L <C —/ / b(y) — byol||K(x,x —y) — K(x0,X0 —
BB Ly oy P~ Bl Kl ) < K0 )

IIaTk’4( Ny )\dydx

| —xol k4
b(y) — bro|7———— 5 IaT" dyd.
gk /My g P00 = P20l T ()0 s

CE ZIl |2J+IQ\ 2i +1Q|b(y) — bao[[IaT**(f) () ldy

<C Z Z 2_j| ‘b - b2Q| ‘expL,2-f+lQ| ‘IOCTkA(f) ‘ |L(l()gL),2j+1Q
=1 j=1

CS S 2 bllamoM (1T (F))(®)
k=1 j=1

< Cllbllswo 3 M2 (UaTH (1) (5).
k=1

For I3, by Lemma 4, we get, for | < p < min(s,n/c) and 1/g=1/p—a/n,

S 1 k,6 q ta
B < €3 (7 MM g T )
N 1/q k.6 P I/
<cS o b(x) — b||T* d
3 o1 1| [ (ot =pol TSt 0

m 1 Jo—p) (s=p)/ps k6 /s
[ b)) g / T sd
kzl<|2Q /2Q| (¥)=bol x) (IZQ1 sot/n 2Q| @)l x)

< C||bl[mo i Mo s (T (f)) ().

k=1

For 14, we get
1 1
x—y[r= fxg —y[r

I < |0t // b(y)—by
© kg‘lQ(zQ)CH) d
d

1b(y) — b2Q|W|Tk’6(f)(Y)|dy

IT%O(f)(v)|dydx

N
a
M=
M s

1~/2]d<|y X0|<2J+ld

~
Il
—

~.
Il

d(zjd)—n-‘ra—l(2jd)n(1—l/s)(2jd)n/s—oc

1/s 1 1/s
s k,6 K
(5701 fong o000l @) (g g TO0I)

VAN
@)
M=
Ms

~
I
—_
~.
Il
—
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< Cllbllmo 3 Mas T (@) Y 27

k=1 j=1

< C||b||mo i Mo (TR0 (£))(%).

k=1

This completes the proof of Theorem 2. [

Proof of Theorem 3. By Theorem 1 and Lemmas 7-8, we have
1T (F)l[zro < [|Mn(Ty(N))lzre < CI(T () llre

m
< Clbllmo Y IM*(T*2(f)) e
k=1

< Cllbllsmo Y NT()lere

< ClIbllmoll fllero-

This completes the proof of Theorem 3. [

Proof of Theorem 4. Choose 1 < s < p in Theorem 2, then we have, by Lemmas
7 and 8,

1S5 ())llzee < (1M (Ss(f))llzae < CISp(N) lzae

< C|bl[mo Z (1M (1T ()) 230 + [|Mas (T () |00

§

< ClIbllawo Y, (T (f)llLeo + 1T (f)|1r0)
k=1

m
< ClIbllsmo X, (IT*(P)llzre + fllzro)
k=1

< C| ‘b| ‘BMO”fHLMJ.

This completes the proof of Theorem 4. [
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