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UNCERTAINTY PRINCIPLE FOR THE SPHERICAL MEAN OPERATOR

RADOUAN DAHER, ABDELMAJID KHADARI AND SLIM OMRI

(Communicated by S. Koumandos)

Abstract. The Lp −Lq version of Miyachi’s theorem is proved for the Fourier transform associ-
ated with the spherical mean operator.

1. Introduction

In the classical case, Miyachi’s uncertainty principle [4] states that if f is a mea-
surable function on R satisfying

eax2
f ∈ L1(dμ)+L∞(dμ),

and ∫
R

log+ | f̂ (x)|ebx2

δ
dx < +∞,

for some positive constants a,b,δ such that ab =
1
4

, where L1(dμ) and L∞(dμ) de-

note the standard Lebesgue spaces, then f is a multiple constant of a gaussian function.
Recently, Miyachi’s theorem has been proved by Daher, for Jacobi-Dunkl transform
[1]. The spherical mean operator R is defined, for a function f on R×Rn , even with
respect to the first variable, by [5]

R( f )(r,x) =
∫

Sn
f (rη ,x+ rξ )dσn(η ,ξ ), (r,x) ∈ R×R

n,

where Sn is the unit sphere of Rn+1 and dσn is the surface measure on Sn normalized
to have total measure one. The operator R has many important physical applications,
namely in image processing of so-called synthetic aperture radar (SAR) data [3], or
in the linearized inverse scattering problem in acoustics [2]. Many harmonic analysis
result related to the spherical mean operator and its Fourier transform have already
been proved notably by Nessibi, Rachdi, Omri and Trimèche [5, 6]. Our purpose in this
work is to establish an Lp−Lq version of Miyachi’s theorem for the Fourier transform
associated with the spherical mean operator. This paper is organized as follows, in
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the second section we prove some useful properties relates to the Bessel operator and
the Hankel transform, the third section is devoted to recall and show some harmonic
analysis results related to the sphercial mean operator R and its Fourier transform F ,
and finally in the last section we prove the main result of this paper that is, the Lp −Lq

version of Miyachi’s theorem for the Fourier transform F .

2. The Bessel operator and The Hankel transform

In this section we shall show some useful properties related to the Bessel oper-

ator. For every α > −1
2

, the Bessel operator is defined on ]0,+∞[ , by �α =
∂ 2

∂ r2 +

2α +1
r

∂
∂ r

, and it is well known that for every nonnegative real number s , the func-

tion jα(s.) , is the unique infinitely differentiable function on [0,+∞[ satisfying the
following Cauchy problem ⎧⎨⎩ �αu = −s2u,

u′(0) = 0,
u(0) = 1,

,

where jα is the modified Bessel function defined by [8]

∀z ∈ C, jα (z) = Γ(α +1)
+∞

∑
n=0

(−1)n
(

z
2

)2n

Γ(α +n+1)n!
. (2.1)

The modified Bessel function jα has the following integral representation

∀z ∈ C, jα(z) =
2Γ(α +1)√
πΓ(α + 1

2)

∫ 1

0
(1− t2)α− 1

2 cos(zt)dt.

In particular, we have

∀z ∈ C, p ∈ N,
∣∣∣ j(p)

α (z)
∣∣∣� e|Im(z)|. (2.2)

In the following we denote by

• dτα the measure defined on [0,+∞[ , by dτα(r) =
r2α+1

2αΓ(α +1)
dr .

• Lp(dτα) the Lebesgue spaces of measurable functions on [0,+∞[ satisfying

• ‖ f‖p,τα =
(∫ +∞

0
| f (r)|pdτα(r)

) 1
p

< +∞ , if p ∈ [1,+∞[ .

• ‖ f‖∞,τα ess sup
r∈[0,+∞[

| f (r)| < +∞ , If p = +∞ .

• Ee(R) the space of even functions, infinitely differentiable on R .
• Se(R) the subspace of the schwartz class S(R) , formed by the even functions.
• C0,e(R) the space of continuous even functions on R satisfying lim±∞

f (r) = 0
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DEFINITION 2.1. The Hankel transform Hα is defined on L1(dτα) according to
Schwartz [7], by

∀s ∈ [0,+∞[, Hα ( f )(s) =
∫ +∞

0
f (r) jα (rs)dτα (r).

Then it is known that the Hankel transform is a bounded linear operator from
L1(dτα ) into C0,e(R) . Moreover, for every f ∈ Se(R) , we have the following inversion
formula

f = Hα (Hα( f )) , (2.3)

and for every m ∈ N we have

∀s ∈ [0,+∞[, Hα ((Id− �α)m( f )) (s) = (1+ s2)mHα( f )(s). (2.4)

PROPOSITION 2.2. For every nonnegative integer k , we have

�k
α

(
e−t.2

)
(s) = (−4t)kk!Lα

k (ts2)e−ts2 , (2.5)

where Lα
k denote the classical Laguerre polynomial [8].

Proof. By a standard calculus we know that for every positive real number t , we
have

Hα (e−t.2)(s) =
e−

s2
4t

(2t)α+1 . (2.6)

Let m be an integer, then by relations (2.3) and (2.4), we have

Hα

(
(1+ .2)mHα (e−t.2)

)
(s) = (Id− �α)m(e−t.2)(s)

=
m

∑
k=0

(−1)kCk
m�k

α(e−t.2)(s) (2.7)

On the other hand by relation (2.6), we get

Hα

(
(1+ .2)mHα(e−t.2)

)
(s) =

1
22α+1tα+1Γ(α +1)

m

∑
k=0

Ck
m

∫ +∞

0
r2k+2α+1e−

r2
4t jα(rs)dr,

and by change of variables u =
r

2
√

t
, we deduce that

Hα

(
(1+ .2)mHα(e−t.2)

)
(s) =

2
Γ(α +1)

m

∑
k=0

Ck
m22ktk

∫ +∞

0
u2k+2α+1e−u2

jα (2
√

tus)du

=
1

Γ(α +1)

m

∑
k=0

Ck
m22ktk

∫ +∞

0
vk+αe−v jα (2

√
vts2)dv
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Using now the integral representation of Laguerre polynomials [8], we obtain

Hα

(
(1+ .2)mHα(e−t.2)

)
(s) =

m

∑
k=0

Ck
m22ktkLα

k (ts2)k!e−ts2 (2.8)

Combining relations (2.7) and (2.8), we deduce that

m

∑
k=0

Ck
m(−1)k�k

α(e−t.2)(s) =
m

∑
k=0

Ck
m22ktkLα

k (ts2)k!e−ts2 ,

and by the classical Pascal’s inversion formula, we conclude finally that for every inte-
ger k , and for every positive real number t , we have

∀s ∈ [0,+∞[, �k
α

(
e−t.2

)
(s) = (−4t)kk!Lα

k (ts2)e−ts2 . �

3. The spherical mean operator

Nessibi et al. [5] showed that for every (s,y) ∈C×Cn , the function ϕ(s,y) defined
on R×Rn by

ϕ(s,y)(r,x) = R
(
cos(s.)e−i〈y|.〉

)
(r,x), (3.1)

is the unique infinitely differentiable function on R×Rn , even with respect to the first
variable, satisfying the following system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x j

(r,x1, ...,xn) = −iy ju(r,x1, ...,xn), 1 � j � n,

Δ n−1
2

u(r,x1, ...,xn) = −s2u(r,x1, ...,xn),

u(0, ...,0) = 1,

∂u
∂ r

(0,x1, ...,xn) = 0, (x1, . . . ,xn) ∈ Rn,

(3.2)

where Δ n−1
2

= � n−1
2

−Δ and Δ denotes as usual the Laplacian operator given by Δ =
n

∑
j=1

∂ 2

∂x2
j

. Now we consider the following notations.

For every λ = (λ1, . . . , λn), μ = (μ1, . . . , μn) ∈ C
n , and β = (β1, . . . , βn) ∈ N

n ,
we denote by

• 〈λ |μ〉 =
n

∑
i=1

λiμi, |λ | =
(

n

∑
i=1

|λi|2
) 1

2

and λ β =
n

∏
i=1

λ βi
i .

• |β | =
n

∑
i=1

βi, Imλ = (Imλ1, . . . , Imλn) and Reλ = (Reλ1, . . . , Reλn) .
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In [5], the authors proved that the eigenfunction ϕ(s,y) defined by relation (3.1), is
explicitly given by

∀(r,x) ∈ R×R
n, (s,y) ∈ C×C

n, ϕ(s,y)(r,x) = j n−1
2

(r
√

s2 + |y|2)e−i〈y|x〉. (3.3)

From relations (2.2) and (3.3), it follows that the function ϕ(s,y) satisfies

∀(s,y) ∈ C×C
n, (r,x) ∈ R×R

n,
∣∣ϕ(s,y)(r,x)

∣∣� e(|r|+|x|)(|Ims|+|Imy|),

and therefore, ϕ(s,y) is bounded on R×R
n , if and only if (s,y) belongs to the set Γn+1

defined by
Γn+1 = R×R

n∪{(ir,x), (r,x) ∈ R×R
n, |r| � |x|}, (3.4)

and in this case
sup

(r,x)∈[0,+∞[×Rn

∣∣ϕ(s,y)(r,x)
∣∣= 1. (3.5)

In the following we shall recall some properties related to the spherical mean op-
erator. For this we denote by

• dmn+1 the measure defined on [0,+∞[×Rn , by dmn+1(r,x) =

√
2
π

drdx

(2π)
n
2

.

• Lp(dmn+1) the space of measurable functions f on [0,+∞[×Rn , such that

‖ f‖p,mn+1 =
(∫ +∞

0

∫
Rn

| f (r,x)|p dmn+1(r,x)
) 1

p
< +∞, if p ∈ [1,+∞[,

‖ f‖∞,mn+1 = ess sup
(r,x)∈[0,+∞[×Rn

| f (r,x)| < +∞, if p = +∞.

• dνn+1 the measure defined on [0,+∞[×Rn by dνn+1(r,x) =
rndrdx

(π)
n
2 2n− 1

2 Γ( n+1
2 )

.

• Lp (dνn+1) , p ∈ [1,+∞] the Lebesgue space of measurable functions f on
[0,+∞[×Rn , satisfying

‖ f‖p,νn+1
=
(∫ +∞

0

∫
Rn

| f (r,x)|p dνn+1(r,x)
) 1

p

< +∞, if p ∈ [1,+∞[;

‖ f‖∞,νn+1
= ess sup

(r,x)∈[0,+∞[×Rn
| f (r,x)| < +∞, if p = +∞.

• Γn+1,+ the subset of Γn+1 defined by

Γn+1,+ = [0,+∞[×R
n∪{(is,y) ; (s,y) ∈ [0,+∞[×R

n; s � |y|}.
• BΓn+1,+ the σ -algebra defined on Γn+1,+ by

BΓn+1,+ =
{

θ−1(B) , B ∈ BBor([0,+∞[×R
n)
}
,

where θ is the bijective function defined on the set Γn+1,+ by

θ (s,y) = (
√

s2 + |y|2,y).
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• dγn+1 the measure defined on BΓn+1,+ by

∀ B ∈ BΓn+1,+ , γn+1(B) = νn+1(θ (B)).

• Lp (dγn+1) , p ∈ [1,+∞] the space of measurable functions f on Γn+1,+ , satis-
fying

‖ f‖p,γn+1
=
(∫

Γn+1,+
| f (s,y)|p dγn+1(s,y)

) 1
p

< +∞, if p ∈ [1,+∞[;

‖ f‖∞,γn+1
= ess sup

(s,y)∈Γn+1,+
| f (s,y)| < +∞, if p = +∞.

• Ce(R×Rn) , the space of continuous functions on R×Rn , even with respect to
the first variable.

• Se (R×Rn) the space of infinitely differentiable functions on R×Rn , rapidly
decreasing together with all their derivatives and even with respect to the first variable.

• Ce[Xn+1] , the vector space of polynomials functions of n + 1 variables, even
with respect to the first variable.

The dual of the spherical mean operator tR is defined according to [5] by

tR(g)(r,x) =
1

(2π)
n
2

∫
Rn

g(
√

r2 + |x− y|2,y)dy, (3.6)

whenever the integral of the right-hand side is well defined, where dy denotes the
Lebesgue measure on Rn . As shown in [5] the spherical mean operator R and its dual
tR satisfy the following harmonic analysis results.

LEMMA 3.1. i) For every function f ∈ L1(dνn+1) , the function tR( f ) belongs to
L1(dmn+1) and we have

‖tR( f )‖1,mn+1 � ‖ f‖1,νn+1 . (3.7)

ii) For every bounded function f ∈ Ce(R×Rn) , and for every function g ∈ L1(dνn+1) ,
we have∫ +∞

0

∫
Rn

R( f )(r,x)g(r,x)dνn+1(r,x) =
∫ +∞

0

∫
Rn

f (r,x)tR(g)(r,x)dmn+1(r,x), (3.8)

The Fourier transform F associated with the spherical mean operator is defined
for every measurable function f ∈ L1(dνn+1) , by [5]

∀(s,y) ∈ Γn+1, F ( f )(s,y) =
∫ +∞

0

∫
Rn

f (r,x)ϕ(s,y)(r,x)dνn+1(r,x), (3.9)

where Γn+1 is the subset of C×Cn given by relation (3.4).

PROPOSITION 3.2. i) For every nonnegative measurable function g on Γn+1,+ ,
we have∫

Γn+1,+
g(μ ,λ )dγn+1(μ ,λ ) =

1

2
n−1
2 Γ( n+1

2 )(2π)
n
2

(∫ +∞

0

∫
Rn

g(μ ,λ )(μ2+|λ |2) n−1
2 μ dμ dλ

+
∫

Rn

∫ |λ |

0
g(iμ ,λ )(|λ |2− μ2)

n−1
2 μ dμ dλ

)
.
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ii) For every nonnegative measurable function f on [0,+∞[×Rn (respectively inte-
grable on [0,+∞[×Rn with respect to the measure dνn+1 ), f oθ is a measurable non-
negative function on Γn+1,+ , (respectively integrable on Γn+1,+ with respect to the
measure dγn+1) and we have∫

Γn+1,+
( f ◦θ )(μ ,λ )dγn+1(μ ,λ ) =

∫ +∞

0

∫
Rn

f (r,x)dνn+1(r,x). (3.10)

From relation (3.10), we deduce that the Fourier transform F defined by relation
(3.9) satisfies the following relation

∀(s,y) ∈ Γn+1, F ( f ) (s,y) = F̃ ( f )◦θ (s,y), (3.11)

where F̃ is the integral transform defined on L1(dνn+1) by

∀(s,y) ∈ R×R
n, F̃ ( f ) (s,y) =

∫ +∞

0

∫
Rn

f (r,x) j n−1
2

(rs)e−i〈y|x〉dνn+1(r,x).

On the other hand it is known by using in particular relation (3.5), that the Fourier
transform F associated with the spherical mean operator, is a linear bounded operator
from L1(dνn+1) into L∞(dγn+1) and that for every f ∈ L1(dνn+1) , we have

‖F ( f )‖∞,γn+1 � ‖ f‖1,νn+1 .

Furthermore, the Fourier transform F satisfies the following inversion formula
and Plancherel theorem:

THEOREM 3.3. (Inversion formula) Let f ∈L1(dνn+1) such that F ( f )∈L1(dγn+1) ,
then for almost every (r,x) ∈ [0,+∞[×Rn , we have

f (r,x) =
∫

Γn+1,+

F ( f )(s,y)ϕ(s,y)(r,x)dγn+1(s,y).

REMARK 3.4. The same inversion formula holds also for the transform F̃ , in-
deed for every f ∈ L1(dνn+1) , such that F̃ belongs to L1(dνn+1) , we have for almost
every (r,x) ∈ [0,+∞[×Rn ,

f (r,x) =
∫ ∞

0

∫
Rn

F̃ ( f )(s,y) j n−1
2

(rs)ei〈y|x〉dνn+1(s,y).

THEOREM 3.5. (Plancherel) The Fourier transform F can be extended to an
isometric isomorphism from L2(dνn+1) onto L2(dγn+1) .

DEFINITION 3.6. For every t > 0, the Gauss kernel gt , associated with the spher-
ical mean operator, is defined on R×Rn , by

gt(r,x) =
e−

r2+|x|2
4t

(2t)n+ 1
2

=
∫

Γn+1,+

e−t(s2+2|y|2)ϕ(s,y)(r,x)dγn+1(s,y)

=
∫ +∞

0

∫
Rn

e−t(s2+|y|2) j n−1
2

(rs)ei〈y|x〉dνn+1(s,y). (3.12)
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PROPOSITION 3.7. Let t be a positive real number, and let R be a polynomial
function even with respect to the first variable, given by R(r,x) = ∑

(k,p)∈N×Nn

k+|p|�m

akpr
2kxp .

Then, for every (s,y) ∈ R×Rn , we have

F (Rgt)(s,y) = ∑
(k,p)∈N×Nn

k+|p|�m

akpi
|p|4kk!

√
t
2k+|p|

L
n−1

2
k

(
t(s2 + |y|2))Hp(

√
ty)e−t(s2+2|y|2),

where L
n−1

2
k is the Laguerre polynomial and Hp is the Hermite polynomial of n vari-

ables.

Proof. We know that the function Rgt belongs to the space Se (R×Rn) , hence
F (Rgt) is well defined. Let (k, p) ∈ N×Nn , then by relations (2.5) and (3.2), we have
for every (s,y) ∈ R×Rn ,

F̃
(
r2kxpgt

)
(s,y) = (−1)k(−i)|p|�k

n−1
2

(
∂ pF̃ (gt)

∂yp

)
(s,y)

= (−1)k(−i)|p|�k
n−1
2

(
e−t.2

)
(s)

(
∂ pe−t|.|2

∂yp

)
(y)

= i|p|4kk!
√

t
2k+|p|

L
n−1
2

k (ts2)Hp(
√

ty)e−t(s2+|y|2).

Therefore by relation (3.11), we get

F (Rgt)(s,y) = ∑
(k,p)∈N×Nn

k+|p|�m

akpi
|p|4kk!

√
t
2k+|p|

L
n−1
2

k

(
t(s2 + |y|2))Hp(

√
ty)e−t(s2+2|y|2).

�

4. Miyachi’s theorem associated with the spherical mean operator

According to relation (3.6), we establish the following lemma

LEMMA 4.1. For every b > 0 , we have

∀(r,x) ∈ R×R
n, tR

(
e−b|(.,.)|2

)
(r,x) =

e−b(r2+ |x|2
2 )(

2
√

b
)n . (4.1)

LEMMA 4.2. Let h be an entire function on C×Cn . If f satisfies

|h(z0,z)| � CeB((Rez0)2+2(Rez)2), and
∫

R×Rn
log+ |h(r,x)|drdx < +∞,

for some positive constants C and B, then h is constant.
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Proof. The proof is identical to the proof given in [4]. �

LEMMA 4.3. Let p ∈ [1,+∞] and let a be a positive real number. Then for every

function g ∈ Lp(dνn+1) , the function ea(.2+ |.|2
2 ) tR

(
e−a|(.,.)|2g

)
belongs to the space

Lp(dmn+1) , and there is a positive constant C , such that for every g ∈ Lp(dνn+1) , we
have ∥∥∥∥ea(.2+ |.|2

2 ) tR
(
e−a|(.,.)|2g

)∥∥∥∥
p,mn+1

� C‖g‖p,νn+1. (4.2)

Proof. • If p∈]1,+∞[ . Let q be the conjugate component of p , then by relations
(3.6), (3.7), (3.8) and (4.1) and by using Hölder’s inequality we get∫ +∞

0

∫
Rn

eap(r2+ |x|2
2 )
∣∣∣tR(e−a|(.,.)|2g)(r,x)

∣∣∣p dmn+1(r,x)

=
1

(2π)
np
2

∫ +∞

0

∫
Rn

eap(r2+ |x|2
2 )
∣∣∣∣∫

Rn
e−a(r2+|x−y|2+|y|2)g(

√
r2+|x−y|2,y)dy

∣∣∣∣p dmn+1(r,x)

� 1

(2π)
n
2

∫ +∞

0

∫
Rn

eap(r2+ |x|2
2 )
(∫

Rn
|g(
√

r2 + |x− y|2,y)|pdy

)
×
(

tR
(
e−aq|(.,.)|2

)
(r,x)

) p
q
dmn+1(r,x)

=
1

2n(p− 1
2 )π n

2 (aq)
np
2q

∫ +∞

0

∫
Rn

(∫
Rn

|g(
√

r2 + |x− y|2,y)|pdy

)
dmn+1(r,x)

and therefore∫ +∞

0

∫
Rn

eap(r2+ |x|2
2 )
∣∣∣tR(e−a|(.,.)|2g)(r,x)

∣∣∣p dmn+1(r,x) =
‖tR (|g|p)‖1,mn+1

2n(p−1)(aq)
np
2q

�
‖g‖p

p,νn+1

2n(p−1)(aq)
np
2q

.

Hence, the function ea(.2+ |.|2
2 ) tR

(
e−a|(.,.)|2g

)
belongs to the space Lp(dmn+1) , and we

have ∥∥∥∥ea(.2+ |.|2
2 ) tR

(
e−a|(.,.)|2g

)∥∥∥∥
p,mn+1

� 1

(4aq)
n
2q
‖g‖p,νn+1.

• If p = 1, then by the same way, we get∫ +∞

0

∫
Rn

ea(r2+ |x|2
2 )
∣∣∣tR(e−a|(.,.)|2g)(r,x)

∣∣∣dmn+1(r,x)

=
1

(2π)
n
2

∫ +∞

0

∫
Rn

∣∣∣∣∫
Rn

e
−a|y√2− x√

2
|2
g(
√

r2 + |x− y|2,y)dy

∣∣∣∣dmn+1(r,x)

� 1

(2π)
n
2

∫ +∞

0

∫
Rn

(∫
Rn

∣∣∣∣g(
√

r2 + |x− y|2,y)
∣∣∣∣dy

)
dmn+1(r,x)

=
∥∥tR (|g|)(r,x)∥∥1,mn+1

� ‖g‖1,νn+1.
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Hence, ∥∥∥∥ea(.2+ |.|2
2 ) tR

(
e−a|(.,.)|2g

)∥∥∥∥
1,mn+1

� ‖g‖1,νn+1.

• If p = +∞ , then for every (r,x) ∈ [0,+∞[×R
n , we have∣∣∣∣ea(r2+ |x|2

2 ) tR
(
e−a|(.,.)|2g

)
(r,x)

∣∣∣∣
=

ea(r2+ |x|2
2 )

(2π)
n
2

∣∣∣∣∫
Rn

e−a(r2+|x−y|2+|y|2)g(
√

r2 + |x− y|2,y)dy

∣∣∣∣
�

‖g‖∞,νn+1

(2π)
n
2

∫
Rn

e
−a|y√2− x√

2
|2
dy =

‖g‖∞,νn+1

(2
√

a)n .

Hence, ∥∥∥∥ea(.2+ |.|2
2 ) tR

(
e−a|(.,.)|2g

)∥∥∥∥
∞,mn+1

�
‖g‖∞,νn+1

(2
√

a)n . �

LEMMA 4.4. Let p,q ∈ [1,+∞] , and let a be a positive real number. If f is a
measurable function on R×Rn , even with respect to the first variable satisfying

ea|(.,.)|2 f ∈ Lp(dνn+1)+Lq(dνn+1),

then F ( f ) is well defined and entire on C×C
n . Moreover, there is a positive constant

C such that, for every (s,y) ∈ C×Cn , we have

|F ( f )(s,y)| � Ce
|Ims|2+2|Imy|2

4a . (4.3)

Proof. Let f1 ∈ Lp(dνn+1) and f2 ∈ Lq(dνn+1) such that

f = e−a|(.,.)|2 f1 + e−a|(.,.)|2 f2,

and let p′ and q′ be respectively the conjugate components of p and q , then by
Hölder’s inequality, we get∫ +∞

0

∫
Rn

| f (r,x)|dνn+1(r,x)

�
∫ +∞

0

∫
Rn

e−a|(r,x)|2(| f1(r,x)|+ | f2(r,x)|)dνn+1(r,x)

�
(∫ +∞

0

∫
Rn

e−ap′|(r,x)|2dνn+1(r,x)
) 1

p′ ‖ f1‖p,νn+1

+
(∫ +∞

0

∫
Rn

e−aq′|(r,x)|2dνn+1(r,x)
) 1

q′ ‖ f2‖q,νn+1

< +∞.
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Then, the function f belongs to the space L1(dνn+1) and F ( f ) is well defined.
According to relation (2.1), we know that for every (r,x) ∈ R×Rn , the function

(s,y) �−→ j n−1
2

(rs)e−i〈y|x〉 is entire on C×Cn . Let K be a compact set of C×Cn and

let b be a positive real number such that for every (s,y)∈K , we have |(s,y)|� b . Then
for every (s,y) ∈ K and by using relation (2.2), we have∣∣∣ f (r,x) j n−1

2
(rs)e−i〈x|y〉

∣∣∣� e|rIms|+|xImy| | f (r,x)|
� e−

a
2 (r2+|x|2)e

1
2a (|Ims|2+|Imy|2) (| f1(r,x)|+ | f2(r,x)|)

� Ce−
a
2 (r2+|x|2) (| f1(r,x)|+ | f2(r,x)|) .

Since, the function (r,x) �−→ e−
a
2 (r2+|x|2) (| f1(r,x)|+ | f2(r,x)|) is integrable over R×

Rn with respect to the measure dνn+1 , this shows that F̃ ( f ) is analytic on C×Cn ,
moreover since F̃ ( f ) is even with respect to the first variable then F ( f ) is also ana-
lytic on C×C

n .
Let (s,y) ∈ C×Cn , then by relations (3.1), (3.8) and (3.9), we have

|F ( f )(s,y)| =
∣∣∣∣∫ +∞

0

∫
Rn

f (r,x)R
(
cos(s.)e−i〈y | .〉

)
(r,x)dνn+1(r,x)

∣∣∣∣
=
∣∣∣∣∫ +∞

0

∫
Rn

tR( f )(r,x)cos(sr)e−i〈y | x〉dmn+1(r,x)
∣∣∣∣

�
∫ +∞

0

∫
Rn

∣∣tR( f )(r,x)
∣∣ er|Ims|e|x||Imy|dmn+1(r,x)

Hence by a basic calculus, we get

|F ( f )(s,y)|
� e

|Ims|2+2|Imy|2
4a

∫ +∞

0

∫
Rn

ea(r2+ |x|2
2 ) ∣∣tR( f )(r,x)

∣∣ e−(
√

ar− |Ims|
2
√

a
)2

e
−(

√
a|x|√
2
− |Imy|√

2a
)2

dmn+1(r,x)

�
2

∑
i=1

e
|Ims|2+2|Imy|2

4a

∫ +∞

0

∫
Rn

ea(r2+ |x|2
2 )
∣∣∣tR(e−a|(.,.)|2 fi

)
(r,x)

∣∣∣
×e

−(
√

ar− |Ims|
2
√

a
)2

e
−(

√
a|x|√
2
− |Imy|√

2a
)2

dmn+1(r,x)

And finally by relation (4.2), we deduce that for every (s,y) ∈ C×Cn ,

|F ( f )(s,y)| � Ce
|Ims|2+2|Imy|2

4a
(‖ f1‖p,νn+1 +‖ f2‖q,νn+1

)
� C′e

|Ims|2+2|Imy|2
4a . �

THEOREM 4.5. (Miyachi for F ) Let a,b and δ be positive real numbers and
let p,q ∈ [1,+∞] . Let f be a measurable function on R×R

n even with respect to the
first variable satisfying

ea|(.,.)|2 f ∈ Lp(dνn+1)+Lq(dνn+1), (4.4)
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and ∫
R×Rn

log+ |F ( f )(r,x)|eb(r2+2|x|2)

δ
drdx < +∞. (4.5)

Then
i) If ab > 1

4 , then f = 0 almost everywhere.
ii) If ab = 1

4 , then f = Cgb with |C| � δ , where gb is the Gauss kernel given in
definition 3.6.

iii) If ab < 1
4 , then for every σ ∈]b,

1
4a

[ , and for every polynomial function R on

R×Rn even with respect to the first variable, the function f = Rgσ satisfies relations
(4.4) and (4.5).

Proof. i) Suppose that ab > 1
4 and let h be the function defined on C×Cn , by

h(z0,z) = e
z20
4a

(
n

∏
i=1

e
z2i
2a

)
F ( f )(z0 ,z),

then by Lemma 4.4, it follows that h is analytic on C×Cn , and by relation (4.3), we
deduce that there is a positive constant C such that

∀(z0,z) ∈ C×C
n, |h(z0,z)| � Ce

(Rez0)2+2|Rez|2
4a .

Now, by using the fact that for every positive real numbers x,y , we have log+(xy) <
log+(x)+ y , we deduce that∫

R×Rn
log+ |h(r,x)|drdx

=
∫

R×Rn
log+ |F ( f )(r,x)|e r2+2|x|2

4a drdx

=
∫

R×Rn
log+

(
|F ( f )(r,x)|eb(r2+2|x|2)

δ
e( 1

4a−b)(r2+2|x|2)δ

)
drdx

�
∫

R×Rn
log+ |F ( f )(r,x)|eb(r2+2|x|2)

δ
drdx+ δ

∫
R×Rn

e( 1
4a−b)(r2+2|x|2)drdx

Since ab > 1
4 , then

∫
R×Rn

log+ |h(r,x)|drdx < +∞ , and therefore h satisfies the as-

sumptions of Lemma 4.2. Hence, h is constant on C×Cn , which means that there is a
constant C such that

∀(r,x) ∈ R×R
n, F ( f )(r,x) = Ce−

r2+2|x|2
4a ,

but in this case, relation (4.5) holds only whenever C = 0, and the result follows then
by Theorem 3.3.
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ii) Suppose that ab = 1
4 , then as showed in the previous case, there is a constant

C such that
∀(r,x) ∈ R×R

n, F ( f )(r,x) = Ce−b(r2+2|x|2),

and similarly, relation (4.5) holds only whenever |C| � δ , and by combining relation
(3.12) with Theorem 3.3 we get the desired result.

iii) Finally suppose that ab < 1
4 . Let σ ∈]b,

1
4a

[ and suppose that f = Rgσ for

some polynomial function R∈Ce[Xn+1] , then by Proposition 3.7, there is a polynomial
function Q ∈ Ce[Xn+1] , such that

F (Rgσ ) = Qe−σ(r2+2|x|2),

and it is easy to verify, that in this case, f and F ( f ) satisfy relations (4.4) and
(4.5). �
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