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SOME REMARKS ON (s5,m)-CONVEXITY IN THE SECOND SENSE

NOHA EFTEKHARI

(Communicated by G. Toader)

Abstract. The aim of this work is to establish several inequalities for functions whose first deriva-
tive in absolute value are (s,m)-convex in the second sense. Some estimates to the left hand side
of the Hermite-Hadamard type inequality for (s,m)-convex functions in the second sense are
given.

1. Introduction

Let f: [a,b] — R be a convex function, the following double inequality is well
known as the Hermite-Hadamard integral inequality:

f(a;—b) L /f ();f()

In 1984 [5], G. Toader defined the class of m-convex functions. This class is
defined in the following way: a function f : [0,5] — R is said to be m-convex, where
m € [0,1], if for every x,y € [0,b] and ¢ € [0,1] we have

flx+m(1—1)y) <1f(x) +m(l =1)f(y).

In 1993 [4], V. Mihesan introduced the class of (o,m)-convex functions as the
following: a function f: [0,5] — R is said to be (o, m)-convex, where (a,m) € [0, 1]?,
if for every x,y € [0,b] and ¢ € [0,1] we have

flx+m(1=1)y) <t f(x)+m(1=1%)f(y).

For recent results and generalizations and new inequalities concerning (¢, m)-convex
functions, see [2, 6].

In 1978 [3], W. W. Breckner introduced the class of s-convex functions in the
second sense, in the following way: a function f : [0,e0) — R is said to be s-convex in
the second sense if for all x,y € [0,0), ¢ € [0, 1] and for some fixed s € (0, 1], we have

flex+ (1 =0)y) < fx)+ (1 =1)°f(y).

Now, we combine two definitions of m-convexity and s-convexity in the second sense
and obtain the class of (s,m)-convex functions in the second sense as the following.
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DEFINITION 1.1. A function f :[0,h] — R is said to be (s,m)-convex in the
second sense, where (s,m) € (0,1]?, if for every x,y € [0,b] and ¢ € [0, 1] we have

flex+m(L—1)y) <2°f(x) +m(1—1)"f(y).
The aim of this work is to establish some upper bounds to the left hand side of the

Hermite-Hadamard type inequality for (s,m)-convex functions in the second sense.

2. Main results

In order to prove new theorems, we need Lemma 1 in [1] by setting x = #7

which implies the following lemma.

LEMMA 2.1. Let f:1— R, I CR be a differentiable function on I°. If f' €
L'[a,b], where a,b € I with a < b, then the following equality holds:

f<a;b> - bia/ahf(x)dx
:b;“ Olt [f’ (;“Zibﬂl_t)a) —f (ta;b—k(l—t)b)] dr.

The following results may be stated:

THEOREM 2.1. Let f: [a,b] — R, [a,b] C [0,e0) be a differentiable function on
(a,b) such that f' € L'[a,b]. If |f'| is (s,m)-convex in the second sense on [a,b] for
(s,m) € (0,1]?, then the following inequality holds:

(57) el e
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Proof. By Lemma 2.1, it follows that
a+b 1 b
‘f( >_b—a/af(x)dx‘
_ 1
boa t[f’(taT—H?—k(l—t)a) f’(ta;b—f—(l—t)b)Hdt. 1)
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Since |f’| is (s,m)-convex in the second sense on [a,b], for any 7 € [0,1], we obtain
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Now (1), (2) and (3) imply

(457) 5 1
e
() =l () e (7 G)
~(st=2) Pl () (Gl ()] o

THEOREM 2.2. Suppose that all the assumptions of Theorem 2.1 are satisfied.
Then the following inequality holds:
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5b+(1—%)a and [f'] is (s,m)-convex in the
[0,1], one can get the following inequalities:

Proof. Since t(“52) + (1 —1t)a =
second sense on [a,b], then for any ¢ €

(50 a-na)| < (5) reen (-3 11 (2). @
(e Fra-o) < (§) @i (-5 | (). ©

so (1), (4) and (5) imply
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THEOREM 2.3. Let f: [a,b] — R, [a,b] C [0,c0) be a differentiable function on
(a,b) such that f' € L'[a,b]. If |f'|9 is (s,m)-convex in the second sense on [a,b) for

b—a

m(2512 —
T2 2(s12) {f( >|+|f’(b)+u<f/
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(s,m) € (0,1]*> and q > 1, then the following inequalities hold:

‘f (““’) o [
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Proof. By applying (2), (3) for |f’|¢ and by using the H6lder’s inequality for ¢ > 1
and p = ﬁ7 it follows that
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Therefore, the inequalities (1), (8), (9) and the following relation imply (6),
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forO<r<1, ay,ap,...,a, 20 and by,bs,...,b, > 0.
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Now, if we use the Holder’s inequality in the following way and by applying the

inequalities (1), (10), then it follows (7),
f (t (a—;b) +(1 —t)a)

L) ) 4
(L) ([ (222 o) o)
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THEOREM 2.4. Suppose that all the assumptions of Theorem 2.3 are satisfied.
Then the following inequalities hold:
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Proof. By applying (4), (5) for | f'|? and by using the Holder’s inequality for ¢ > 1
and p = %, we obtain
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) <1’%); [/01 <(%> [f ()| +m (1 _ %)
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and similarly
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Therefore, the inequalities (1), (10),(13), (14) imply (11).
Now, the inequalities (1), (10) and (4), (5) for |f’|¢ and by using the Holder’s

inequality in the following way, imply (12)
b
f (z (a; ) +(1 —t)a)
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3. Applications to special means
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We consider the means for arbitrary positive numbers o, 3 (o # f3) as follows:

o
(1) The arithmetic mean:  A(ct, ) = ;ﬂ,

(2) The generalized log-mean:

Berl —_oPt!

Lolap) = [(p+1>(13—a)

r7 peR\{-1,0}.
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Now by using the results of Section 2, we give some applications to special means of
real numbers.

PROPOSITION 3.1. Let a,b € (0,), a < b and s € (0,1). Then it follows that

b—a)s| 1

A’(a,b) — Li(a,b)| < —=
| (a7 ) S(a7 )| 2(5"’2) s_|_1

A(as_l,bs_l)—f—As_l(a,b) ,

and
(b—a)2*+1)s

TP T LA

|A%(a,) — Li(a, b)| < 5

Proof. The assertions follow from Theorem 2.1 and Theorem 2.2, for m =1 ap-
plied to the s-convex function f(x) = x*.

PROPOSITION 3.2. Let a,b € (0,), a <b and s € (0,1). Then forall g > 1, it
follows that

1 1
. b—a 2 \a| 1 4
AS I < A.sfl A s—1 7s—1
wao-seol<s(50) (535) | @n+ () @

Proof. The assertion follow from Theorem 2.3, for m = 1 applied to the s-convex
function f(x) =x*.
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