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Abstract. Let A = (ai j) be an n×n complex matrix with eigenvalues λ1 ,λ2 , · · · ,λn . We deter-

mine the new upper bounds of
n
∑
j=1

|λ j |2 , which will sharpen Schur, Eberlein, Kress and Huang’s

inequalities. We also exhibit new methods to locate the eigenvalues of a given complex matrix,
which are more exact than those existing in previous literature. Numerical examples are provided
to show the effectiveness of our results.

1. Introduction

Let A be an n× n complex matrix with eigenvalues λ1 ,λ2 , · · · ,λn , Cn×n stands
for the set of all n×n complex matrices. For any A ∈ Cn×n , we denote the conjugate
transpose of A by A∗ , the Euclidean norm of A by ‖A‖ , the trace of A by trA . And
we write [A,B] = AB−BA .

The estimation of
n
∑
j=1

|λ j|2 plays an important role in location of eigenvalues. In

1909, Schur [1] first put forward the following well-known inequality:

n

∑
j=1

|λ j|2 � ψ1 = ‖A‖2. (1.1)

In [3], Eberlein sharpened Schur’s above inequality, especially for non-normal matrix,
where he gave the following bound:

n

∑
j=1

|λ j|2 � ψ2 = ‖A‖2− ‖[A,A∗]‖2

6‖A‖2 . (1.2)

Kress et al. showed another different bound (see [4]):

n

∑
j=1

|λ j|2 � ψ3 = (‖A‖4− 1
2
‖[A,A∗]‖2)

1
2 . (1.3)
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In [5], Huang and Wang obtained a tighter upper bound for ∑n
j=1 |λ j|2 , that is

n

∑
j=1

|λ j|2 � ψ4 =

((
‖A‖2− |trA|2

n

)2

− 1
2
‖[A,A∗]‖2

) 1
2

+
|trA|2

n
. (1.4)

In this paper, we will continuewith the topic of exploring upper bounds for
n
∑
j=1

|λ j|2

and the localization of eigenvalues of a given matrix, but the difference is the process of
dealing with the problems. The paper is structured as follows. In Section 2, a new up-

per bound for
n
∑
j=1

|λ j|2 is provided, which is more precise than ψ4 . We also derive five

new determinant inequalities. Section 3 is aimed at exploring new methods to locate
eigenvalues of a given matrix. We prove that all eigenvalues of a given complex matrix
can be located in only one closed disk, which are more precise than those existing in
[1, 5–7]. Furthermore, we use rectangle regions to locate all eigenvalues of a given
complex matrix. The paper ends with several numerical examples, and they will show
the validity of our results in Section 4.

2. New upper bounds for
n
∑
j=1

|λ j|2 and determinant inequalities

THEOREM 2.1. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn ,

M =
[

Ak×k Bk×(n−k)
C(n−k)×k D(n−k)×(n−k)

]
and M(x) =

[
Ak×k xBk×(n−k)

x−1C(n−k)×k D(n−k)×(n−k)

]
,

where Ak×k is k×k principal submatrix of M (1 � k � n−1) and x is one of non-zero
real numbers. Then

n

∑
j=1

|λ j|2 � min
x�=0

min
1�k�n−1

fM(k,x), (2.1)

where

fM(k,x) =
(

(ΔM(k,x))2 − 1
2
‖[M(x),M(x)∗]‖2

) 1
2

+
|trM|2

n
, (2.2)

ΔM(k,x) = ‖M‖2− ((1− x2)‖Bk×(n−k)‖2 +(1− x−2)‖C(n−k)×k‖2)− |trM|2
n

. (2.3)

Proof. Since

M(x) =
[

Ak×k xBk×(n−k)
x−1C(n−k)×k D(n−k)×(n−k)

]

=
[

xIk 0
0 In−k

][
Ak×k Bk×(n−k)

C(n−k)×k D(n−k)×(n−k)

][
x−1Ik 0

0 In−k

]
,



INEQUALITIES OF SCHUR, EBERLEIN, KRESS AND HUANG 527

where Ik is a k× k unit matrix, M(x) is similar to M , and then λ1 , λ2 , · · · ,λn are
eigenvalues of M(x) . We let N = M(x)− trM

n I , where I is an n×n unit matrix, then
λ j − trM

n ( j = 1,2, · · · ,n) are eigenvalues of N .
By (1.3), we educe that

n

∑
j=1

∣∣∣∣λ j − trM
n

∣∣∣∣
2

�
(
‖N‖4− 1

2
‖[N,N∗]‖2

) 1
2

. (2.4)

We note that
n

∑
j=1

∣∣∣∣λ j − trM
n

∣∣∣∣
2

=
n

∑
j=1

|λ j|2− |trM|2
n

, (2.5)

‖N‖4 =
(

tr

((
M(x)− trM

n
I

)(
M(x)− trM

n
I

)∗))2

=
(
‖M‖2− ((1− x2)‖Bk×(n−k)‖2 +(1− x−2)‖C(n−k)×k‖2)− |trM|2

n

)2

= (ΔM(k,x))2 , (2.6)

and

[N,N∗] =
[
M(x)− trM

n
I,M(x)∗ − trM

n
I

]
= [M(x),M(x)∗ ] . (2.7)

Combining (2.4)–(2.7), we can conclude the inequality (2.1). �
Now we consider some special cases of the above the theorem. If choosing x = 1

in (2.1), we can get (1.4), i.e., fM(k,1) = ψ4 , and then fM(k,x) � ψ4 . Therefore
Theorem 2.1 is superior to (1.4). It sharpens up Schur, Eberlein, Kress and Huang’s

inequalities. Further, if we choosing choose x =
√

‖C(n−k)×k‖
‖Bk×(n−k)‖ = δ �= 0 in (2.1), then we

will get a new estimate for
n
∑
j=1

|λ j|2 and five determinant inequalities.

COROLLARY 2.1. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn ,

M =
[

Ak×k Bk×(n−k)
C(n−k)×k D(n−k)×(n−k)

]
and Mk =

[
Ak×k δBk×(n−k)

δ−1C(n−k)×k D(n−k)×(n−k)

]
,

where Ak×k is k× k principal submatrix of M (1 � k � n−1) . Then

n

∑
j=1

|λ j|2 � ψ5 = min
1�k�n−1

(
(ΔM(k))2 − 1

2
‖[Mk,M

∗
k ]‖2

) 1
2

+
|trM|2

n
, (2.8)

where

ΔM(k) = ‖M‖2− (‖Bk×(n−k)‖−‖C(n−k)×k‖
)2− |trM|2

n
. (2.9)
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THEOREM 2.2. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , M(x) be defined
as Theorem 2.1. If M is non-singular, then

|detM| �
(ψ j

n

) n
2
, ( j = 1,2, · · · ,5). (2.10)

Proof. We note that |detM|= | n
∏
j=1

λ j|=
⎛
⎝
(

n
∏
j=1

|λ j|2
) 1

n
⎞
⎠

n
2

�

⎛
⎝

n
∑
j=1

|λ j |2

n

⎞
⎠

n
2

, com-

bining (1.1)–(1.4) and Corollary 2.1, we can conclude (2.10). �

3. The new localization of eigenvalues of n×n complex matrices

In 1931, Geršgorin gave a well-known theorem, which is called Geršgorin disk
theorem. It specifically states that for a given complex matrix A = (ai j) ∈ Cn×n , all

its eigenvalues λ1 ,λ2 , · · · ,λn are included in set Γ (A) =
n∪

i=1
Γi(A) , where Γi(A) = {z ∈

C : |z−aii| � ri(A)} and ri(A) =
n
∑

j=1, j �=i
|ai j| . That is, all eigenvalues of a given n×n

complex matrix must be located in the union of the following n disks:

|λ −aii| �
n

∑
j=1, j �=i

|ai j|, i = 1,2, · · · ,n. (3.1)

However, from Geršgorin’s theorem we can know that all eigenvalues of a given
matrix are located in the union (called the Geršgorin set) of many subsets, it means that
there is a problem with Geršgorin’s theorem, that is, it still needs people to determine
the position (small disk) of the eigenvalues of a given matrix further. In addition, it will
also encounter a problem that two or more similar matrices have the same eigenvalues.
According to Geršgorin’s theorem, there will be much more Geršgorin sets containing
these eigenvalues and it will be a difficult matter to find out which is the smallest region
and an explicit and calculable numerical formula to express such set.

We note that Y. X. Gu proposed a new method which uses only one closed disk
to locate all eigenvalues of a given n×n complex matrix (see [6]). He proved that all
eigenvalues of a given n×n complex matrix A can be included in the following disk:

∣∣∣∣λ − trA
n

∣∣∣∣�
(

n−1
n

(
‖A‖2− |trA|2

n

)) 1
2

. (3.2)

It is obvious that Gu’s method can avoid the troubles that present in Geršgorin’s.
Furthermore, we also note that L. M. Zou and Y. Y. Jiang gave the following more

precise disk to locate all eigenvalues of a given n×n complex matrix M (see [7]):

∣∣∣∣λ − trM
n

∣∣∣∣� min
1�k�n−1

(
n−1

n

) 1
2
(
‖M‖2− |trM|2

n
− (‖Bk×(n−k)‖−‖C(n−k)×k‖)2

) 1
2

.

(3.3)
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In this section, we should sharpen Y. X. Gu, L. M. Zou and Y. Y. Jiang’s results.
It means that we should put forward much smaller disks to contain all eigenvalues of a
given n×n complex matrix. In addition, we also use rectangle regions to contain all of
the eigenvalues of a given n×n complex matrix.

In [8], authors gave the following

LEMMA 3.1. If z1,z2, · · · ,zn are complex numbers, then∣∣∣∣∣zi − 1
n

n

∑
j=1

z j

∣∣∣∣∣
2

� n−1
n

⎛
⎝ n

∑
j=1

|z j|2 − 1
n

∣∣∣∣∣
n

∑
j=1

z j

∣∣∣∣∣
2
⎞
⎠ (i = 1,2, · · · ,n).

Lemma 3.1 shows that for any n complex numbers, they can be included in disk

∣∣∣∣∣z− 1
n

n

∑
j=1

z j

∣∣∣∣∣�
(

n−1
n

) 1
2

⎛
⎝ n

∑
j=1

|z j|2− 1
n

∣∣∣∣∣
n

∑
j=1

z j

∣∣∣∣∣
2
⎞
⎠

1
2

.

THEOREM 3.1. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , fM(k,x) be de-
fined as Theorem 2.1. Then all eigenvalues of M are included in the following disk:

∣∣∣∣λ − trM
n

∣∣∣∣� min
x�=0

min
1�k�n−1

(
n−1

n

) 1
2
(

fM(k,x)− |trM|2
n

) 1
2

(3.4)

Proof. If we let z j = λ j( j = 1,2, · · · ,n) in Lemma 3.1 and combining Theorem
2.1, we have∣∣∣∣∣λ − 1

n

n

∑
j=1

λ j

∣∣∣∣∣
2

� n−1
n

⎛
⎝ n

∑
j=1

|λ j|2− 1
n

∣∣∣∣∣
n

∑
j=1

λ j

∣∣∣∣∣
2
⎞
⎠

� n−1
n

⎛
⎝min

x�=0
min

1�k�n−1
fM(k,x)− 1

n

∣∣∣∣∣
n

∑
j=1

λ j

∣∣∣∣∣
2
⎞
⎠

� n−1
n

(
min
x�=0

min
1�k�n−1

fM(k,x)− |trM|2
n

)

� min
x�=0

min
1�k�n−1

(
n−1

n

)(
fM(k,x)− |trM|2

n

)
.

So, we can deduce (3.4). �

COROLLARY 3.1. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , Mk be defined
as Corollary 2.1. Then all eigenvalues of M are included in the following two disks
respectively:

∣∣∣∣λ − trM
n

∣∣∣∣�
(

n−1
n

) 1
2
((

‖M‖2− |trM|2
n

)2

− 1
2
‖[M,M∗]‖2

) 1
4

, (3.5)
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∣∣∣∣λ − trM
n

∣∣∣∣� min
1�k�n−1

(
n−1

n

) 1
2
(

(ΔM(k))2− 1
2
‖[Mk,M

∗
k ]‖2

) 1
4

. (3.6)

where ΔM(k) be defined as (2.9).

Obviously, the radiuses of disks (3.5) and (3.6) are smaller than that in (3.2) and
(3.3) respectively. So if we use (3.5) and (3.6) to estimate the eigenvalues of a given
n×n complex matrix, then (3.5) and (3.6) is superior to (3.2) and (3.3), respectively.

THEOREM 3.2. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , fM(k,x) be de-
fined as Theorem 2.1. Then all eigenvalues of M are included in the following disk:

∣∣∣∣λ − trM
n

∣∣∣∣� min
x�=0

min
1�k�n−1

(
n−1
2n

) 1
2
(

fM(k,x)− |trM|2
n

+
∣∣∣∣trM2 − tr2M

n

∣∣∣∣
) 1

2

. (3.7)

Proof. Let z j = Re(eiθ λ j) , where θ = arg
(

λp− trM
n

)
, j = 1,2, · · · ,n . By Lemma

3.1, for any 1 � p � n , we educe that

∣∣∣∣∣zp− 1
n

n

∑
j=1

Re(eiθ λ j)

∣∣∣∣∣�
(

n−1
n

) 1
2

⎛
⎝ n

∑
j=1

(
Re(eiθ λ j)

)2 − 1
n

(
n

∑
j=1

Re(eiθ λ j)

)2
⎞
⎠

1
2

.

(3.8)
We note that the following equalities are hold:∣∣∣∣∣zp− 1

n

n

∑
j=1

Re(eiθ λ j)

∣∣∣∣∣=
∣∣∣∣Re(eiθ λp)−Re(eiθ trM

n
)
∣∣∣∣

=
∣∣∣∣Re

(
eiθ
(

λp− trM
n

))∣∣∣∣=
∣∣∣∣λp− trM

n

∣∣∣∣ ,
(3.9)

n

∑
j=1

(
Re(eiθ λ j)

)2
=

1
2

n

∑
j=1

(√
2cosθReλ j −

√
2sinθ Imλ j

)2

=
1
2

n

∑
j=1

(
|λ j|2 +Re(e2iθ λ 2

j )
)

=
1
2

n

∑
j=1

|λ j|2 +
1
2
Re(e2iθ trM2),

(3.10)

and

1
n

(
n

∑
j=1

Re(eiθ λ j)

)2

=
1
2n

(√
2cosθRe(trM)−

√
2sinθ Im(trM)

)2

=
1
2n

(|trM|2 + cos2θRe(tr2M)− sin2θ Im(tr2M)
)

=
1
2n

|trM|2 +
1
2n

Re(e2iθ tr2M).

(3.11)
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Combining (3.8)–(3.11), we deduce that

∣∣∣∣λp− trM
n

∣∣∣∣�
(

n−1
2n

) 1
2
(

n

∑
j=1

|λ j|2 +Re(e2iθ trM2)− 1
n

(
|trM|2 +Re(e2iθ tr2M)

)) 1
2

�
(

n−1
2n

) 1
2
(

n

∑
j=1

|λ j|2 − |trM|2
n

+
∣∣∣∣trM2 − tr2M

n

∣∣∣∣
) 1

2

.

Furthermore, applying Theorem 2.1, we have

∣∣∣∣λp− trM
n

∣∣∣∣�
(

n−1
2n

) 1
2
(

fM(k,x)− |trM|2
n

+
∣∣∣∣trM2 − tr2M

n

∣∣∣∣
) 1

2

.

And then we know that (3.7) is hold as 1 � k � n−1 and x �= 0. The proof process is
completed. �

COROLLARY 3.2. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , Mk be defined
as Corollary 2.1. Then all eigenvalues of M are included in the following two disks
respectively:

∣∣∣∣λ − trM
n

∣∣∣∣�
(

n−1
2n

) 1
2

⎛
⎝
((

‖M‖2− |trM|2
n

)2

− 1
2
‖[M,M∗]‖2

) 1
2

+
∣∣∣∣trM2 − tr2M

n

∣∣∣∣
⎞
⎠

1
2

,

(3.12)∣∣∣∣λ − trM
n

∣∣∣∣� min
1�k�n−1

(
n−1
2n

) 1
2
((

(ΔM(k))2 − 1
2
‖[Mk,M

∗
k ]‖2

) 1
2

+
∣∣∣∣trM2 − tr2M

n

∣∣∣∣
) 1

2

.

(3.13)

We note that the following∣∣∣∣trM2 − tr2M
n

∣∣∣∣=
∣∣∣∣∣

n

∑
j=1

λ 2
j −

tr2M
n

∣∣∣∣∣=
∣∣∣∣∣

n

∑
j=1

(
λ j − trM

n

)2
∣∣∣∣∣

�
n

∑
j=1

∣∣∣∣λ j − trM
n

∣∣∣∣
2

=
n

∑
j=1

|λ j|2− |trM|2
n

.

Combing Theorem 2.1, we deduce (3.12) and (3.13) is superior to (3.5) and (3.6), re-
spectively.

COROLLARY 3.3. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , fM(k,x) be de-
fined as Theorem 2.1. Then the spectral radius ρ(M) meet the following inequality:

ρ(M) � min
x�=0

min
1�k�n−1

(
n−1
2n

) 1
2
(

fM(k,x)− |trM|2
n

+
∣∣∣∣trM2 − tr2M

n

∣∣∣∣
) 1

2

+
|trM|

n
.

(3.14)
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THEOREM 3.3. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , fM(k,x) be de-
fined as Theorem 2.1. Let m be an integer satisfying rank(M) � m � n. Then all its
eigenvalues are included in the following disk:∣∣∣∣λ − trM

m

∣∣∣∣� min
x�=0

min
1�k�n−1

(
m−1
2m

) 1
2
(

fM(k,x)− |trM|2
m

+
∣∣∣∣trM2 − tr2M

m

∣∣∣∣
) 1

2

. (3.15)

The proof is similar to that of Theorem 3.2 and hence we omit it here. We note
that fM(k,x) � ψ4 , and therefore our result (3.15) is superior to [5, Theorem 2.1].

THEOREM 3.4. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , fM(k,x) be de-
fined as Theorem 2.1. Then all the eigenvalues of M are located in the following rect-
angle region:[

Re(trM)
n

−α,
Re(trM)

n
+ α

]
×
[
Im(trM)

n
−β ,

Im(trM)
n

+ β
]
,

where

α = min
x�=0

min
1�k�n−1

(
n−1

n

) 1
2
(

1
2

(
fM(k,x)+Re(trM2)

)− (Re(trM))2

n

) 1
2

,

β = min
x�=0

min
1�k�n−1

(
n−1

n

) 1
2
(

1
2

(
fM(k,x)−Re(trM2)

)− (Im(trM))2

n

) 1
2

.

Proof. Let z j = Reλ j and z j = Imλ j in Lemma 3.1 respectively, we have

∣∣∣∣Reλ j − Re(trM)
n

∣∣∣∣�
(

n−1
n

) 1
2
(

n

∑
j=1

(Reλ j)2− (Re(trM))2

n

) 1
2

,

∣∣∣∣Imλ j − Im(trM)
n

∣∣∣∣�
(

n−1
n

) 1
2
(

n

∑
j=1

(Imλ j)2− (Im(trM))2

n

) 1
2

.

We note that
n

∑
j=1

(Reλ j)2 =
1
2

(
n

∑
j=1

|λ j|2 +Re(trM2)

)
,

n

∑
j=1

(Imλ j)2 =
1
2

(
n

∑
j=1

|λ j|2 −Re(trM2)

)
.

We deduce that∣∣∣∣Reλ j − Re(trM)
n

∣∣∣∣�
(

n−1
n

) 1
2
(

1
2

(
n

∑
j=1

|λ j|2 +Re(trM2)

)
− (Re(trM))2

n

) 1
2

,

∣∣∣∣Imλ j − Im(trM)
n

∣∣∣∣�
(

n−1
n

) 1
2
(

1
2

(
n

∑
j=1

|λ j|2 −Re(trM2)

)
− (Im(trM))2

n

) 1
2

.
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Combining Theorem 2.1, we can conclude Theorem 3.4. �

COROLLARY 3.4. Let M ∈ Cn×n with eigenvalues λ1 ,λ2 , · · · ,λn , Mk be defined
as Corollary 2.1. Then all eigenvalues of are included in the following rectangle re-
gions:[

Re(trM)
n

−α j,
Re(trM)

n
+ α j

]
×
[
Im(trM)

n
−β j,

Im(trM)
n

+ β j

]
, ( j = 1,2) (3.16)

where

α1 =
(

n−1
n

) 1
2
(

1
2

(
η +Re(trM2)

)− (Re(trM))2

n

) 1
2

,

β1 =
(

n−1
n

) 1
2
(

1
2

(
η −Re(trM2)

)− (Im(trM))2

n

) 1
2

,

α2 = min
1�k�n−1

(
n−1

n

) 1
2
(

1
2

(
ϕ +Re(trM2)

)− (Re(trM))2

n

) 1
2

,

β2 = min
1�k�n−1

(
n−1

n

) 1
2
(

1
2

(
ϕ −Re(trM2)

)− (Im(trM))2

n

) 1
2

.

where

η =

((
‖M‖2− |trM|2

n

)2

− 1
2
‖[M,M∗]‖2

) 1
2

+
|trM|2

n
,

ϕ = min
1�k�n−1

(
(ΔM(k))2 − 1

2
‖[Mk,M

∗
k ]‖2

) 1
2

+
|trM|2

n
.

where ΔM(k) be defined as (2.9).

4. Numerical examples

In this section, we give some numerical examples to show the effectiveness of our
results.

EXAMPLE 4.1. Let

M =

⎡
⎣26 5 15

3 80 17
1 7 10

⎤
⎦

By (1.1), we have ψ1 = 7.7740e+003.
By (1.2), we get ψ2 = 7.7336e+003.
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By (1.3), we get ψ3 = 7.7132e+003.
By (1.4), we have ψ4 = 7.6275e+003.
By Corollary 2.1, we get ψ5 = 7.5137e+003.
As a result it can be easily seen that our result ψ5 � ψ j( j = 1,2,3,4) .

EXAMPLE 4.2. Let

M =

⎡
⎣ 2 5+ i 1

7 −i 9
12 3 2− i

⎤
⎦

If using Gerschgorin’s disk theorem to estimate the eigenvalues of M , then we know
that all eigenvalues of M are located in the following set:

{λ : |λ −2|� 6.0990}∪{λ : |λ − (−i)|� 16}∪{λ : |λ − (2− i)|� 15}.
If we use (3.2) to estimate the eigenvalues of M , then we know that all eigenvalues

of M are located in disk
∣∣λ − 4−2i

3

∣∣� 14.4530.
If we use (3.3) to estimate the eigenvalues of M , then we know that all eigenvalues

of M are located in disk
∣∣λ − 4−2i

3

∣∣� 12.5886.
If we use a series of our results to estimate the eigenvalues of M , we have the

following:
By (3.5), we have

∣∣λ − 4−2i
3

∣∣� 13.0795.
By (3.6), we have

∣∣λ − 4−2i
3

∣∣� 12.4702.
By (3.12), we have

∣∣λ − 4−2i
3

∣∣� 11.6532.
By (3.13), we have

∣∣λ − 4−2i
3

∣∣� 10.1039.
As a result it can be easily seen that our result (3.13) is superior to others.
By (3.16), we know that all eigenvalues of are located in the following rectangles

[−10.3087,12.9753]× [−6.6280,5.2946] , [−9.7711,12.4377]× [−5.4945,4.1611].
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