
Journal of
Mathematical

Inequalities

Volume 8, Number 3 (2014), 537–544 doi:10.7153/jmi-08-40

BARROW’S INEQUALITY AND SIGNED ANGLE BISECTORS

BRANKO MALEŠEVIĆ AND MAJA PETROVIĆ

(Communicated by J. Pečarić)

Abstract. In this paper we give one extension of BARROW’s type inequality in the plane of the
triangle �ABC introduce signed angle bisectors.

1. Introduction

Let triangle �ABC be given in Euclidean plane. Denote by RA, RB and RC the
distances from the arbitrary point M in the plane of �ABC to the vertices A , B and C
respectively, and denote by �a = |MA′| , �b = |MB′| and �c = |MC′| the length of angle
bisectors of ∠BMC , ∠CMA and ∠AMB from the point M respectively (Fig. 1).

Figure 1: Barrow’s inequality (point M into �ABC)

Barrow’s inequality [2]:

RA +RB +RC � 2(�a + �b + �c) (1)

is true when M is arbitrary point in the interior of triangle �ABC . The equality holds
iff triangle ABC is equilateral and point M is its circumcenter. In this paper we consider
a Barrow’s type inequality when M is arbitrary point in the plane of the triangle �ABC
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introduce signed angle bisectors. Let us notice that inequalities with angle bisectors
recently are considered in papers [1], [6], [7], [15].

Inequality of Erdös-Mordell [4]:

RA +RB +RC � 2(ra + rb + rc) (2)

is a consequence of inequality of Barrow, where ra , rb and rc are distances of interior
point M of triangle to the sides BC , CA and AB respectively.

Let us notice that topic of the Erdös-Mordell inequality is current, as it has been
shown in recent papers. V. Pambuccian proved that, in the plane of absolute geometry,
the Erdös-Mordell inequality is an equivalent to non-positive curvature [12]. In the
paper [11] is given an extension of the Erdös-Mordell inequality on the interior of the
Erdös-Mordell curve. In relation to the Erdös-Mordell inequality N. Dergiades in the
paper [3] proved one extension of the Erdös-Mordell type inequality

RA +RB +RC �
(

c
b

+
b
c

)
r′a +

( c
a

+
a
c

)
r′b +

(
a
b

+
b
a

)
r′c (3)

where r′a , r′b and r′c are signed distances of arbitrary point M in the plane triangle to
the sides BC , CA and AB respectively.

2. The main results

Proof of Barrow’s inequality in the paper of Z. Lu [10] is based on the next theo-
rem.

STATEMENT 1. Let p, q, r � 0 and α + β + γ = π . Then we have the inequality

p+q+ r � 2
√

qr cosα +2
√

pr cosβ +2
√

pq cosγ. (4)

Peculiarity of Barrow’s and Lu’s proofs are, that is, primarily algebraic. In Lu’s
proof, Barrow’s inequality follows from positivity of quadratic function f (x) = x2 −
2
(√

r cosβ +
√

q cosγ
)
x+q+r−2

√
qr cosα in the point x =

√
p with an appropriate

geometric interpretation for p , q , r and α , β , γ (for details see [10]).
In this paper we also give one algebraic proof with geometric interpretation for

points outside of the triangle �ABC . The following theorems are true.

STATEMENT 2. Let p, q, r � 0 and α = β + γ . Then we have the inequality

p+q+ r � −2
√

qr cosα +2
√

pr cosβ +2
√

pq cosγ. (5)

Proof. Let us consider the quadratic function

g(x) = x2 −2
(√

r cosβ +
√

q cosγ
)
x+q+ r+2

√
qr cosα. (6)
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Then a quarter of the discriminant is

1
4

δ =
(√

r cosβ +
√

q cosγ
)2− (q+ r+2

√
qr cosα) . (7)

Based on α = β + γ we have cosα = cos(β + γ) = cosβ cosγ − sinβ sinγ and hence

1
4

δ = rcos2 β +qcos2 γ +2
√

rq cosβ cosγ −q− r−2
√

rq cosα

= rcos2 β +qcos2 γ +2
√

rq cosβ cosγ −q− r−2
√

rq cos(β + γ)

= −r sin2 β −qsin2 γ +2
√

rq cosβ cosγ −2
√

rq cosβ cosγ +2
√

rq sinβ sinγ.

Using previous identity we obtained

δ = −4
(√

r sinβ −√
q sinγ

)2
< 0,

hence g(x) � 0. Finally, letting x =
√

p we obtained (5). �

REMARK 1. Let us emphasize that for term A = p+q+ r+2
√

qr cosα −2
√

pr
cosβ −2

√
pq cosγ , when γ = α −β , follows inequality

A =
(√

r−√
p cosβ +

√
q cosα

)2 +(
√

p sinβ −√
q sinα)2 � 0,

analogously using the Lagrange’s complete square identity from [8], [9]. Therefore we
have second proof of inequality (5).

STATEMENT 3. Let p, q, r � 0 and α = β + γ . Then we have the inequality

p+q+ r � 2
√

qr cosα −2
√

pr cosβ −2
√

pq cosγ. (8)

Proof. Let us consider the term A = p+q+r−2
√

qr cosα +2
√

pr cosβ +2
√

pq
cosγ , for γ = α −β . Notice that for the term A , by the Lagrange’s complete square
identity, the following two representations are true.

1◦. If
π
2

� α < π , then cosα � 0, and therefore

A =
(√

r+
√

p cosβ +
√

q cosα
)2 +(

√
p sinβ +

√
q sinα)2 −4

√
qr cosα � 0. (9)

2◦. If 0 < α <
π
2

, then cosα > 0. From α = β + γ follows cosβ > 0, and therefore

A =
(√

r−√
p cosβ−√

q cosα
)2+(

√
p sinβ +

√
q sinα)2+4

√
pr cosβ � 0. (10)

�

Let us introduce the division of the plane of triangle �ABC to following areas
λ0 = (+,+,+) , λ1 = (−,+,+) , λ2 = (+,−,+) , λ3 = (+,+,−) , λ4 = (+,−,−) ,
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λ5 = (−,+,−) , λ6 = (−,−,+) , (Fig. 2), via signes of homogenous barycentric coor-
dinates of a point as given in the paper [14]

(
see also the Section 7.2 in [5]

)
. Then λ0 is

the interior area of the triangle �ABC . Let us notice that (λ0 ∪λ1)∪ (BC) is the inte-
rior area of the angle ∠A , and λ4 is the interior area of the opposite angle. Analogously
(λ0 ∪λ2)∪ (AC) is the interior area of the angle ∠B , λ5 is the interior area of the op-
posite angle and (λ0∪λ3)∪(AB) is the interior area of the angle ∠C , λ6 is the interior
area of the opposite angle.

Figure 2: The division of the plane by the sidelines of the triangle �ABC

The following auxiliary statement is true.

LEMMA 0. Let B and C be fixed points in the plane and let M be arbitrary point
in the plane. For � length of angle bisector of ∠BMC from point M following formulas
are true :

� =
2RBRC

RB +RC
cos

αM

2
=

√
RBRC

RB +RC

√
(RB +RC)2−|BC|2, (11)

where RB = |MB| , RC = |MC| and αM = ∠BMC. Especially, for p line throughout
points B and C is true :

� =

⎧⎨
⎩

0 : M ∈ [BC],
2RBRC

RB +RC
: M ∈ p\[BC].

(12)

In further considerations let p = RA , q = RB , r = RC . Then, Z. Lu, in the paper
[10], proved the following Barrow’s type inequality.

THEOREM 0. [10] In the area λ0 the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
�a +

(√
RC√
RA

+
√

RA√
RC

)
�b +

(√
RA√
RB

+
√

RB√
RA

)
�c. (13)

REMARK 2. Barrow’s inequality is a consequence of the previous inequality.

From previous Lemma follows next auxiliary statement.
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LEMMA 1. (i) If M = A, i.e. RA = 0 then :

RB +RC �
(√

RC√
RB

+
√

RB√
RC

)
�a. (14)

(ii) If M = B, i.e. RB = 0 then :

RA +RC �
(√

RC√
RA

+
√

RA√
RC

)
�b. (15)

(iii) If M = C, i.e. RC = 0 then :

RA +RB �
(√

RB√
RA

+
√

RA√
RB

)
�c. (16)

Denote with cl closure of a plane set. The following theorem is true.

THEOREM 1. In the area cl (λ1)\{B,C} the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
(−�a)+

(√
RC√
RA

+
√

RA√
RC

)
�b +

(√
RA√
RB

+
√

RB√
RA

)
�c. (17)

Proof. Let M∈ cl (λ1)\{B,C} , then αM = βM +γM i.e.
αM

2
=

βM

2
+

γM

2
(Fig. 3).

Figure 3: Extension of the Barrow’s inequality for the point M ∈ cl (λ1)\{B,C}
Based on the Statement 2, the following inequality holds

RA+RB+RC � −2
√

RBRC cos
αM

2
+2

√
RARC cos

βM

2
+2

√
RARB cos

γM

2
. (18)

Based on Lemma 0 from previous inequality we obtained

RA +RB +RC �−RB +RC√
RBRC

�a +
RA +RC√

RARC
�b +

RA +RB√
RARB

�c

=
(√

RC√
RB

+
√

RB√
RC

)
(−�a)+

(√
RC√
RA

+
√

RA√
RC

)
�b +

(√
RA√
RB

+
√

RB√
RA

)
�c.

(19)

�
Next two theorems are direct consequence of the Statement 2 by following cyclic

replacements αM �→ βM , βM �→ γM , γM �→ αM and RA �→ RB , RB �→ RC , RC �→ RA

respectively.
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THEOREM 2. In the area cl (λ2)\{A,C} the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
�a +

(√
RC√
RA

+
√

RA√
RC

)
(−�b)+

(√
RA√
RB

+
√

RB√
RA

)
�c. (20)

THEOREM 3. In the area cl (λ3)\{A,B} the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
�a +

(√
RC√
RA

+
√

RA√
RC

)
�b +

(√
RA√
RB

+
√

RB√
RA

)
(−�c) . (21)

The following theorem is true.

THEOREM 4. In the area λ4 the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
�a+

(√
RC√
RA

+
√

RA√
RC

)
(−�b)+

(√
RA√
RB

+
√

RB√
RA

)
(−�c) . (22)

Proof. Let M∈λ4 , then αM = βM + γM i.e.
αM

2
=

βM

2
+

γM

2
. Based on the State-

ment 3 the following inequality is true

RA +RB +RC � 2
√

RBRC cos
αM

2
−2

√
RARC cos

βM

2
−2

√
RARB cos

γM

2
. (23)

Substitutions

�a =| MA′ |= 2
RBRC

RB +RC
cos

αM

2
, (24)

�b =| MB′ |= 2
RARC

RA +RC
cos

βM

2
, (25)

�c =| MC′ |= 2
RARB

RA +RB
cos

γM

2
(26)

in (23) give

RA+RB+RC� RB +RC√
RBRC

�a− RA +RC√
RARC

�b− RA +RB√
RARB

�c

=
(√

RC√
RB

+
√

RB√
RC

)
�a+

(√
RC√
RA

+
√

RA√
RC

)
(−�b)+

(√
RA√
RB

+
√

RB√
RA

)
(−�c) .

(27)

�
Next two theorems are direct consequence of the Statement 3 by following cyclic

replacements αM �→ βM , βM �→ γM , γM �→ αM and RA �→ RB , RB �→ RC , RC �→ RA

respectively.

THEOREM 5. In the area λ5 the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
(−�a)+

(√
RC√
RA

+
√

RA√
RC

)
�b+

(√
RA√
RB

+
√

RB√
RA

)
(−�c) . (28)
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THEOREM 6. In the area λ6 the following inequality is true :

RA+RB+RC �
(√

RC√
RB

+
√

RB√
RC

)
(−�a)+

(√
RC√
RA

+
√

RA√
RC

)
(−�b)+

(√
RA√
RB

+
√

RB√
RA

)
�c. (29)

Now, we give definition of the signed angle bisector for the point M in the plane of
the triangle �ABC . Let be A fixed vertex and let p be line through vertices B and C .
Denote d= |MA1| distance of the point M to the line p and let �= |MA′| be length of
the bisector of the angle ∠BMC . If d′ be signed distance of the point M to the line
p related to the vertex A [13] (p. 308.), then d′ =+d if M and A with same side of
line p , otherwise d′=−d . Let us define signed angle bisector �′ analogously �′=+�
if M and A with same side of line p , otherwise �′ =−� (Fig. 4). In the case M∈p
then d′=0 and then �′ given by formula (12).

d′a =+da d′a = −da d′a = +da

�′a = +�a �′a = −�a �′a =+�a

Figure 4: Signed distances and signed angle bisectors

Let us denote μ1=cl(λ1)\{B,C}, μ2=cl(λ2)\{A,C}, μ3=cl(λ3)\{A,B}, μ4=
λ4, μ5=λ5 and μ6=λ6 . Then

⋃6
i=1 μi∪{A,B,C} is a complete division of the plane of

the triangle �ABC. Finally, analogously to Dergiades extension of the Erdös-Mordell
inequality [3], from previous theorems, an extension of Barrow’s type inequality (13)
is obtained by the following theorem.

STATEMENT 4. For the point M∈
6⋃

i=1

μi the following inequality is true :

RA +RB +RC �
(√

RC√
RB

+
√

RB√
RC

)
�′a+

(√
RC√
RA

+
√

RA√
RC

)
�′b+

(√
RA√
RB

+
√

RB√
RA

)
�′c ; (30)

otherwise for points M=A, M=B, M=C following inequalities (14) , (15) , (16) are
true respectively.



544 B. MALEŠEVIĆ AND M. PETROVIĆ

RE F ER EN C ES

[1] G. W. I. S. AMARASINGHE,On the standard lengths of Angle Bisectors and Angle Bisector Theorem,
Global Journal of Advanced Research on Classical and Modern Geometries, 1, 1 (2012), 15–27.

[2] D. F. BARROW, L. J. MORDELL, Solution of Problem 3740, Amer. Math. Monthly, 44, (1937), 252–
254.

[3] N. DERGIADES, Signed distances and the Erdös-Mordell inequality, Forum Geom., 4, (2004), 67–68.
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