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ON EXTENSIONS AND APPLICATIONS OF THE BEESACK

INEQUALITY FOR BOUNDING RIEMANN–STIELTJES INTEGRALS

P. CERONE

(Communicated by A. Aglić Aljinović)

Abstract. A variety of sharp generalisations and extensions of a Beesack inequality are investi-
gated in the current development. A number of applications are examined, including bounding
a renewal integral equation which arises in risk/ruin problems. Sharp and tighter bounds than
existing results for the Čebyšev functional involving Riemann-Stieltjes integrals are also deter-
mined which is of importance in many applications including in providing bounds for perturbed
quadrature rules.

1. Introduction

In 1975, P. R. Beesack [2] showed that, if w,h,v are real valued functions de-
fined on a compact interval [a,b] , where w is of bounded variation with total variation∨b

a (w) , and such that the Riemann-Stieltjes integrals
∫ b
a h(t)dv(t) and

∫ b
a w(t)h(t)dv(t)

both exist, then

m
∫ b

a
h(t)dv(t)+

b∨
a

(w) · sh[a,b] �
∫ b

a
w(t)h(t)dv(t) (1.1)

� m
∫ b

a
h(t)dv(t)+

b∨
a

(w) ·Sh[a,b],

where

sh[a,b] := inf
a�α<β�b

[∫ β

α
h(t)dv(t)

]
, Sh[a,b] := sup

a�α<β�b

[∫ β

α
h(t)dv(t)

]
(1.2)

and
m := inf

t∈[a,b]
{w(t)} . (1.3)

The second of the inequalities above extends a result of R. Darst and H. Pollard
[7] who dealt with the case h(t) = 1, t ∈ [a,b] and v(t) continuous on [a,b] .

The inequality (1.1) provides different bounds than that provided by the following
more traditional lemma stemming from Theorem 7.21 in [1].
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Čebyšev functional, bounds.

c© � � , Zagreb
Paper JMI-08-43

581

http://dx.doi.org/10.7153/jmi-08-43


582 P. CERONE

LEMMA 1. Let h,v : [a,b] → R be such that v is of bounded variation and the
Riemann-Stieltjes integral

∫ b
a h(t)dv(t), exists then

∣∣∣∣
∫ b

a
h(t)dv(t)

∣∣∣∣ � sup
t∈[a,b]

|h(t)| ·
b∨
a

(v) , (1.4)

where
∨b

a (v) is the total variation of v on [a,b] .

In [8], S. S. Dragomir has introduced the following Čebyšev functional for the
Riemann-Stieltjes integral:

T ( f ,g;u) := M ( f ·g;u)−M ( f ;u) ·M (g;u) , (1.5)

where

M (h;u) :=
1

u(b)−u(a)

∫ b

a
h(t)du(t) (1.6)

provided u(b) �= u(a) and the involved Riemann-Stieltjes integrals exist.
It has been shown in [8] that, if f ,g are continuous, m � f (t) � M for each

t ∈ [a,b] and u is of bounded variation, then the error in approximating the Riemann-
Stieltjes integral of the product in terms of the product of integrals, as described in the
definition of the Čebyšev functional (1.5), satisfies the inequality:

|T ( f ,g;u)| � 1
2

(M−m) · 1
|u(b)−u(a)| ‖g−M (g;u)‖∞

b∨
a

(u) , (1.7)

where the constant 1
2 is best possible, ‖·‖∞ is the sup-norm and M (g;u) is as given

in (1.6).
Moreover, if f ,g are continuous, m � f (t) � M for t ∈ [a,b] and u is monotonic

nondecreasing on [a,b] , then:

|T ( f ,g;u)| � 1
2

(M−m)
1

|u(b)−u(a)| ·
∫ b

a
|g(t)−M (g;u)|du(t) (1.8)

and the constant 1
2 here is also sharp.

Finally, if f ,g are Riemann integrable and u is Lipschitzian with the constant
L > 0 then also

|T ( f ,g;u)| � 1
2

(M−m)
L

|u(b)−u(a)| ·
∫ b

a
|g(t)−M (g;u)|du(t). (1.9)

The constant 1
2 is also best possible in (1.9) (see [9] and [10]).

The main aim of the present paper is to develop further inequalities stemming
from (1.1) of Beesack to provide bounds for Riemann- Stieltjes integrals. The develop-
ments are demonstrated in a variety of applications including in procuring bounds for
a renewal equation arising in risk/ruin problems in the actuarial arena and in providing
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novel bounds for the Čebyšev functional involving Riemann-Stieltjes integrals. Procur-
ing bounds for the Čebyšev functional is an important problem since it plays a crucial
role in perturbed quadrature rules (see [11] for example). The main development is
provided by Theorem 5 which is applied, in the final section to the Čebyšev functional
to produce sharp and tighter bounds than exist in the literature.

2. The results and extensions of Beesack

The following result obtained in Cerone and Dragomir [5] may be stated.

THEOREM 1. Let f ,g,u : [a,b] → R be such that f is of bounded variation and
the Riemann-Stieltjes integrals

∫ b
a f (t)g(t)du(t) ,

∫ b
a f (t)du(t) and

∫ b
a g(t)du(t) ex-

ist. Then

b∨
a

( f ) · inf
a�α<β�b

∫ β

α
[g(t)−M (g;u)]du(t) (2.1)

�
∫ b

a
f (t)g(t)du(t)− 1

u(b)−u(a)
·
∫ b

a
f (t)du(t) ·

∫ b

a
g(t)du(t)

�
b∨
a

( f ) · sup
a�α<β�b

∫ β

α
[g(t)−M (g;u)]du(t) ,

provided u(b) �= u(a) and M (g;u) is as given in (1.6).

The following result involving weighted integrals was also obtained in [5] which
is procured from (2.1) by taking u(t) =

∫ t
a w(s)ds .

COROLLARY 1. Let f ,g,w : [a,b]→R be such that f is of bounded variation and
the Riemann integrals

∫ b
a f (t)g(t)w(t)dt,

∫ b
a f (t)w(t)dt and

∫ b
a g(t)w(t)dt exist.

Then

b∨
a

( f ) · inf
a�α<β�b

[∫ β

α
g(t)w(t)dt−

∫ β
α w(s)ds∫ b
a w(s)ds

·
∫ b

a
g(t)w(t)dt

]
(2.2)

�
∫ b

a
f (t)g(t)w(t)dt− 1∫ b

a w(s)ds
·
∫ b

a
f (t)w(t)dt ·

∫ b

a
g(t)w(t)dt

�
b∨
a

( f ) · sup
a�α<β�b

[∫ β

α
g(t)w(t)dt−

∫ β
α w(s)ds∫ b
a w(s)ds

·
∫ b

a
g(t)w(t)dt

]
,

provided
∫ b
a w(s)ds �= 0.
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REMARK 1. Taking w(t) = 1, t ∈ [a,b] , in (2.2) or u(t) = t in (2.1):

b∨
a

( f ) · inf
a�α<β�b

[∫ β

α
g(t)dt− β −α

b−a
·
∫ b

a
g(t)dt

]
(2.3)

�
∫ b

a
f (t)g(t)dt− 1∫ b

a w(s)ds
·
∫ b

a
f (t)dt ·

∫ b

a
g(t)dt

�
b∨
a

( f ) · sup
a�α<β�b

[∫ β

α
g(t)dt− β −α

b−a
·
∫ b

a
g(t)dt

]
,

provided f is of bounded variation and the involved Riemann integrals exist.

REMARK 2. It is worthwhile recalling that the Čebyšev functional T ( f ,g;u) as
given in (1.5) satisfies the following identities

T ( f ,g;u) = M [( f − γ) · (g−M (g;u));u] = M [( f −M ( f ;u)) · (g− δ );u] (2.4)

where γ and δ can take on any finite real number including zero. The result (2.4) for
the Riemann integral is the well known Sonin identity. In particular Theorem 1 may be
reformulated as:

THEOREM 2. Let f ,g,u : [a,b] → R be such that f is of bounded variation and
the Riemann-Stieltjes integrals

∫ b
a f (t)g(t)du(t) ,

∫ b
a f (t)du(t) and

∫ b
a g(t)du(t) ex-

ist. Then

m
∫ b

a
g(t)du(t)+

b∨
a

( f ) · sg[a,b] (2.5)

�
∫ b

a
f (t)g(t)du(t)− 1

u(b)−u(a)

∫ b

a
f (t)du(t) ·

∫ b

a
g(t)du(t)

� m
∫ b

a
g(t)du(t)+

b∨
a

( f ) ·Sg[a,b],

provided u(b) �= u(a) and M (g;u) is as given in (1.6) with m, sg[a,b] and Sg[a,b]
are as given in (1.2) and (1.3).

Proof. We observe that the following identity holds (see also [8])

[u(b)−u(a)]T ( f ,g;u) =
∫ b

a
[ f (t)−M ( f ;u)]g(t)du(t) . (2.6)

Since f is of bounded variation, it follows that f is bounded below and if we
denote by m the infimum of f on [a,b] , then on applying the Beesack inequality for
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the choices w(t) = f (t)−M ( f ;u) , h(t) = g(t) and v(t) = u(t) , t ∈ [a,b] , we can
write that:

(m−M ( f ;u))
∫ b

a
g(t)du(t)+

b∨
a

( f ) inf
a�α<β�b

[∫ β

α
g(t)dv(t)

]
(2.7)

� [u(b)−u(a)]T ( f ,g;u)

� (m−M ( f ;u))
∫ b

a
g(t)du(t)+

b∨
a

( f ) sup
a�α<β�b

[∫ β

α
g(t)dv(t)

]
.

It may be readily seen that M ( f ;u)
∫ b
a g(t)du(t) may be removed throughout

given the identity (2.6). The result (2.5) then readily follows on using the fact that for
any constant κ ,

∨b
a ( f −κ) =

∨b
a ( f ) and the Sonin identity given in (2.4) together with

the definitions of sg[a,b] and Sg[a,b]. �

REMARK 3. It may be noticed that the result (2.1) may be rewritten in the follow-
ing form

b∨
a

( f ) · sg(·)−M (g;u)[a,b] (2.8)

�
∫ b

a
f (t)g(t)du(t)− 1

u(b)−u(a)
·
∫ b

a
f (t)du(t) ·

∫ b

a
g(t)du(t)

�
b∨
a

( f ) ·Sg(·)−M (g;u)[a,b],

provided u(b) �= u(a) and M (g;u) is as given in (1.6) with sg[a,b] and Sg[a,b] are as
given in (1.6). This seems like a straight forward application of the Beesack inequality
(1.1) however we see that the infimum of f (·) is not present since the integral mean of
g(t)−M (g;u) is equal to zero.

It is not obvious in general to ascertain which of the two forms (2.1) [or equiva-
lently (2.5)] and (2.8) produces tighter bounds. We now turn our attention to procuring
extensions of Beesack’s inequality but first we represent the Beesack results (1.1) and
(1.2) in the following form.

THEOREM 3. (Beesack, 1975 [2]) Let w,h,v real valued functions defined on a
compact interval [a,b] , where w is of bounded variation with total variation

∨b
a (w) ,

and such that the Riemann-Stieltjes integrals
∫ b
a h(t)dv(t) and

∫ b
a w(t)h(t)dv(t) both

exist, then

b∨
a

(w) · sh[a,b] �
∫ b

a
(w(t)−m)h(t)dv �

b∨
a

(w) ·Sh[a,b], (2.9)

where m = inft∈[a,b] {w(t)} , sh[a,b] and Sh[a,b] are as given in (1.2).
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A number of complimentary results to Theorem 3 that do not seem to have been
presented in the literature will now be investigated.

THEOREM 4. Let the conditions of Theorem 3 continue to hold. Namely, w,h,v
are real valued functions defined on a compact interval [a,b] , where w is of bounded
variation with total variation

∨b
a (w) and such that the Riemann-Stieltjes integrals∫ b

a h(t)dv(t) and
∫ b
a w(t)h(t)dv(t) both exist, then

b∨
a

(w) · sh[a,b] �
∫ b

a
(M−w(t))h(t)dv �

b∨
a

(w) ·Sh[a,b], (2.10)

where sh[a,b] and Sh[a,b] are as given in (1.2) and

M := sup
t∈[a,b]

{w(t)} . (2.11)

Proof. Straight forward from Theorem 3 since inft∈[a,b] {M−w(t)} = 0 and

b∨
a

(M−w(t)) =
b∨
a

(w) . �

REMARK 4. The Beesack result (2.9) or equivalently (1.1) produce upper and
lower bounds for

∫ b
a w(t)h(t)dv(t) in terms of sh[a,b] and Sh[a,b] given by (1.2)

and m , the infimum of w(t) . It should be noted that (2.9) may be obtained by a
simple rearrangement of (1.1) or using the facts that inft∈[a,b] {w(t)−m} = 0 and∨b

a (w(t)−m) =
∨b

a (w) .The result (2.10) consist of M , the supremum of w(t) , sh[a,b]
and Sh[a,b] . It may easily be seen that (2.10) may be rewritten in the form

M
∫ b

a
h(t)dv(t)−

b∨
a

(w) ·Sh[a,b] �
∫ b

a
w(t)h(t)dv(t) (2.12)

� M
∫ b

a
h(t)dv(t)−

b∨
a

(w) · sh[a,b].

The following corollary to Theorem 1 uses both Beesack’s inequality (1.1) or
equivalently (2.9) and its extension using (2.10) or equivalently (2.12).

COROLLARY 2. Let f ,g,u : [a,b] → R be such that f is of bounded variation
and the Riemann-Stieltjes integrals

∫ b
a f (t)g(t)du(t) ,

∫ b
a f (t)du(t) and

∫ b
a g(t)du(t)

exist. Then

|[u(b)−u(a)]T ( f ,g;u)| �
∨b

a ( f )
2

· (Sg(·)−M (g;u)[a,b]− sg(·)−M (g;u)[a,b]
)

(2.13)

provided u(b) �= u(a) , T ( f ,g;u) is given by (1.5), M (g;u) by (1.6) and sh[a,b] and
Sh[a,b] are as given in.(1.2).
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Proof. From the Sonin identity (2.4) with γ = M+m
2 where m � f (t) � M for

t ∈ [a,b] we have

[u(b)−u(a)]T ( f ,g;u) =
∫ b

a

(
f (t)− M +m

2

)
(g(t)−M (g;u))du(t) . (2.14)

For the choices w(t) = f (t)− M+m
2 , h(t) = g(t)−M (g;u) and v(t) = u(t) , t ∈

[a,b] , and applying the Beesack inequality (1.1) or equivalently (2.9) gives

b∨
a

( f ) · sg(·)−M (g;u)[a,b] � [u(b)−u(a)]T ( f ,g;u) (2.15)

�
b∨
a

( f ) ·Sg(·)−M (g;u)[a,b],

where we have used the facts that inft∈[a,b] {w(t)} = −M−m
2 ,

∨b
a (w) =

∨b
a ( f ) and∫ b

a (g(t)−M (g;u))du(t) = 0.
Similarly, using (2.10) or equivalently (2.12) which uses supt∈[a,b] {w(t)} = M−m

2
produces

−
b∨
a

( f ) ·Sg(·)−M (g;u)[a,b] � [u(b)−u(a)]T ( f ,g;u) (2.16)

� −
b∨
a

( f ) · sg(·)−M (g;u)[a,b].

Here again the supremum of w(t) does not appear since
∫ b
a (g(t)−M (g;u))du(t)= 0.

Combining the results (2.15) and (2.16) gives

−
b∨
a

( f )
(
Sg(·)−M (g;u)[a,b]− sg(·)−M (g;u)[a,b]

)

� 2[u(b)−u(a)]T ( f ,g;u) �
b∨
a

( f )
(
Sg(·)−M (g;u)[a,b]− sg(·)−M (g;u)[a,b]

)
and so the proof is complete. �

REMARK 5. The Corollary provides a symetric bound for the Čebyšev functional
for the Riemann-Stieltjes integral as defined in (1.5). This was made possible via the
extension of Beesack’s inequality and the Sonin identity. It could also have been ob-
tained directly from (2.1). If we have L � A �U then −U−L

2 � A− U+L
2 � U−L

2 and so∣∣A− U+L
2

∣∣ � U−L
2 where we have the obvious correspondences U = Sg(·)−M (g;u)[a,b] ,

L = sg(·)−M (g;u)[a,b] and A = [u(b)−u(a)]T ( f ,g;u)∨b
a( f )

. The extra step required here is that∣∣A− U+L
2

∣∣ = |A| which is effectively Sonin’s identity. The difference between the
bounds of the corollary and theorem are the same.
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COROLLARY 3. With the assumptions of Theorem 3 and Theorem 4 the following
results hold:

M
∫ b

a
h(t)dv(t)−

b∨
a

(w) ·Sh[a,b] �
∫ b

a
w(t)h(t)dv(t) (2.17)

� m
∫ b

a
h(t)dv(t)+

b∨
a

(w) ·Sh[a,b],

and

m
∫ b

a
h(t)dv(t)+

b∨
a

(w) · sh[a,b] �
∫ b

a
w(t)h(t)dv(t) (2.18)

� M
∫ b

a
h(t)dv(t)−

b∨
a

(w) · sh[a,b].

Proof. Taking the lower bound from (2.12) and the upper bound from (1.1) pro-
duces (2.17). Similarly, taking the lower bound from (1.1) and the upper bound from
(2.12) produces (2.18). �

REMARK 6. It should be noticed that each of the bounds for (1.1), (2.12), (2.17)
and (2.18) consists of three parameters from a choice of four namely m,M,sh and Sh.
Further, equation (2.17) may be written in the equivalent form∣∣∣∣

∫ b

a

(
w(t)− M +m

2

)
h(t)dv(t)

∣∣∣∣ �
b∨
a

(w) ·Sh[a,b]− M−m
2

∫ b

a
h(t)dv(t) , (2.19)

and equation (2.18) as∣∣∣∣
∫ b

a

(
w(t)− M +m

2

)
h(t)dv(t)

∣∣∣∣ � M−m
2

∫ b

a
h(t)dv(t)−

b∨
a

(w) · sh[a,b]. (2.20)

These two results with the specialisation h(t) = 1 recapture those obtained by a
different method in [3], equations (2.7) and (2.8).

We are now in a position to present the main result of the paper.

THEOREM 5. Let w,h,v real valued functions defined on a compact interval [a,b] ,
where w is of bounded variation with total variation

∨b
a (w) , and such that the Riemann-

Stieltjes integrals
∫ b
a h(t)dv(t) and

∫ b
a w(t)h(t)dv(t) both exist, then∣∣∣∣

∫ b

a

(
w(t)− M +m

2

)
h(t)dv(t)

∣∣∣∣ (2.21)

� 1
2

b∨
a

(w) · (Sh− sh)−
∣∣∣∣∣M−m

2

∫ b

a
h(t)dv(t)− 1

2

b∨
a

(w) · (Sh + sh)

∣∣∣∣∣
� 1

2

b∨
a

(w) · (Sh− sh)
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where sh = sh[a,b] and Sh = Sh[a,b] are as given in (1.2) and M and m are the supre-
mum and the infimum of w(t) for t ∈ [a,b] . The constant 1

2 is best possible and the
inequalities are sharp.

Proof. The proof follows simply by obtaining the maximum of the lower bounds
and minimum of the two upper bounds in (2.17) and (2.18). Alternatively, finding the
minimum of the bounds in (2.19) and (2.20) produces, using 2min{X ,Y} = X +Y −
|X −Y | ,

2min

{
Sh

b∨
a

(w)− M−m
2

∫ b

a
h(t)dv(t) ,

M−m
2

∫ b

a
h(t)dv(t)− sh

b∨
a

(w)

}

=
b∨
a

(w) · (Sh− sh)−
∣∣∣∣∣(M−m)

∫ b

a
h(t)dv(t)−

b∨
a

(w) · (Sh + sh)

∣∣∣∣∣ .
Finally, using properties of the modulus, the total variation and the supremum and

infimum give the result as stated. The second coarser upper bound is obvious.
Now, for the sharpness of the inequality. Assume that v(t) = t , t ∈ [a,b] and

h(t) = 1 so that s1 = s1[a,b] = infa�α<β�b

[∫ β
α dt

]
= infa�α<β�b[β −α] = 0 and S1 =

S1[a,b] = supa�α<β�b[β −α] = b−a. With this choice the inequality (2.21) becomes

∣∣∣∣
∫ b

a
(w(t)− M +m

2
)dt

∣∣∣∣ � (b−a)
2

{
b∨
a

(w)−
∣∣∣∣∣(M−m)−

b∨
a

(w)

∣∣∣∣∣
}

(2.22)

� b−a
2

b∨
a

(w) .

Further, if we consider

w0 (t) =
{

0 if t ∈ [a,b),
K if t = b,

where K > 0 then m = 0, M = K ,
∫ b
a w0 (t)dt = 0,

∨b
a (w0)= K producing the quantity

K(b−a)
2 on both sides of (2.22) demonstrating the sharpness. �

REMARK 7. It should be noted that the coarser upper bound in (2.21) may also be
obtained from (2.9) and (2.10). A special case for which h(t) = 1 of this coarser bound
was obtained by [3]. Thus, Theorem 5 is both a generalisation and a refinement of the
result in [3].

3. Application of results to the Renewal equation and other examples

One of the fundamental problems in collective risk theory is the determination of
time to ruin. The time to ruin satisfies the renewal type equation [6] given by

ψ(t) = ψ(0)[F(t)+
∫ t

0
ψ(t− x)dF(x)] (3.1)
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where ψ(t) is nonincreasing and F(t) is nondecreasing.

THEOREM 6. ψ(t) satisfies the following bounds

ψ(0)F(t)
1−ψ(0)F(t)

� ψ(t) � ψ(0)[1− (1−ψ(0))F(t)]. (3.2)

Proof. Consider the Riemann-Stieltjes integral
∫ t
0 ψ(t − x)dF(x) then we have

by making the associations w(t) = ψ(t) , h(t) = 1 and v(t) = F(t) in the Beesack
inequality (1.1) gives

ψ(t)F(t)+
t∨
0

(ψ) sF [0,t] �
∫ t

0
ψ(t− x)dF(x) � ψ(t)F(t)+

t∨
0

(ψ)SF [0,t] (3.3)

where

sF [0, t] = inf
0�α<β�t

[∫ β

α
dF (x)

]
= 0, SF [0,t] = sup

0�α<β�t

[∫ β

α
dF (x)

]
= F(t)

and
m = inf

x∈[0,t]
{ψ(t− x)} = ψ(t).

Further since ψ(t) is nonincreasing then
∨t

0 (ψ) = ψ(0)−ψ(t) so that we have
from (3.3)

ψ(t)F(t) �
∫ t

0
ψ(t− x)dF(x) � ψ(t)F(t)+ [ψ(0)−ψ(t)]F(t)

from which using (3.1) gives

ψ(0)[F(t)+ ψ(t)F(t)] � ψ(t) � ψ(0)[F(t)+ ψ(0)F(t)]

which may be simplified to give (3.2). The theorem is thus proven. �

REMARK 8. The same result would have been obtained as (3.2) if Theorem 4
were used instead of result (1.1) where M = supx∈[0,t] {ψ (t− x)}= ψ(0) is used rather
than the infimum, m .

REMARK 9. It is important to note that the above bounds produced from using
Beesack related inequalities developed earlier in the paper may also be obtained more
simply from using the nonincreasing property of ψ(t). Further, both the upper and
lower bounds start at ψ(0) however the lower bound tends to zero for large t whereas
the upper bound tends to ψ2(0) . As is well known, improved bounds may be obtained
from substitution of the bounds into the integral in (3.1). This however may become
restrictive depending on the particular distribution function F(t) . These bounds may be
obtained from using any of the results in Section 2, as indeed they have been obtained
previously in the literature. This is the case because of the underlying monotonicity
properties of ψ(t) and F(t) in Theorem 6. It must be remebered however that the
results contained in Theorem 5 are much more general and less restrictive than the
monotonicity properties inherent in the result (3.2).
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EXAMPLE 1. It is well known, see Lucas [12] that
∫ 1

0

x4(1− x)4

1+ x2 dx =
22
7
−π . (3.4)

Since the integrand in (3.4) is positive, bounds may be obtained as 0 < π < 22
7 .

These may be improved upon using the results of Section 2. Let b(x) = x4(1−x)4 then
0 � b(x) � b( 1

2) = 1
256 and

∫ 1
0 b(x)dx = B(5,5) = 1

630 where B(α,β ) is the Euler beta
function. Further let ω(x) = 1

1+x2 so that 1
2 = ω(1) � ω(x) � ω(0) = 1 for 0 � x �

1 and
∨1

0 (ω) =
∫ 1
0

∣∣∣ω ′
(x)

∣∣∣dx = 1
2 . Making the following associations w(t) = ω(t) ,

h(t) = b(t) and ν(t) = t in the Beesack bounds (1.1) we have 1
1260 � 22

7 − π � 1
630

which gives upon rearangement 1979
630 � π � 3959

1260 .

EXAMPLE 2. Consider finding bounds for the following integral∫ 1

0
e−x2

xpdx, p � 1. (3.5)

It may readily be seen that the following bounds hold 0 �
∫ 1
0 e−x2

xpdx � 1−e−1

2 and
e−1

p+1 �
∫ 1
0 e−x2

xpdx � 1
p+1 where we have used the bounds 0 � xp � 1 and e−1 �

e−x2 � 1 for 0 � x � 1.

If we let ω(x) = xe−x2
and h(x) = xp−1 then 0 � ω(x) � e−

1
2√
2

= γ and
∨1

0 (ω) =

2γ − e−1 ,
∫ β

α h(x)dx = (β p−α p)
p so that from (1.2) sh[0,1] = 0 and Sh[0,1] = 1

p . Thus
from (1.1) we have

0 �
∫ 1

0
e−x2

xpdx �
√

2e−
1
2 − e−1

p
,

from (2.12) we have

1√
2p

−
√

2e−
1
2 − e−1

p
�

∫ 1

0
e−x2

xpdx � 1√
2p

and from (2.21) we have

1√
2p

−
√

2e−
1
2 − e−1

p
�

∫ 1

0
e−x2

xpdx �
√

2e−
1
2 − e−1

p
.

We note that the first two set of bounds have the same difference of B :=
√

2e−
1
2 −e−1

p

and the last has a difference of 2B− 1√
2p

= B−( 1√
2p

−B) , where the term in the bracket

is positive and so the bound interval is smaller for p � 1. The largest difference in the
bounds occurs at p = 1 giving a maximum difference of the bound intervals of 0.2172
which represents an improvement of 44%. It may be noticed that the last set of in-
equalities chooses the maximum of the minimums and the minimum of the maximums
of the previous two sets of inequalities.
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4. Bounds for the Čebyšev functional involving the Riemann-Stieltjes integral

In Section 2, some results from [8] bounding the Čebyšev functional involving
Riemann-Stieltjes integrals as defined in (1.5), were presented for f ,g,u real valued
functions defined on a compact interval [a,b] and f of bounded variation.

The following provides tighter bounds for the Čebyšev functional using the further
developments of Beesack type results derived in Section 2. It should be noted that
m � f (t) � M since f is of bounded variation and the result below does not include
these bounds explicitly other than through the total variation

∨b
a ( f ) .

COROLLARY 4. Let f ,g,u : [a,b] → R be such that f is of bounded variation
and the Riemann-Stieltjes integrals

∫ b
a f (t)g(t)du(t) ,

∫ b
a f (t)du(t) and

∫ b
a g(t)du(t)

exist. Then

|[u(b)−u(a)]T ( f ,g;u)| (4.1)

�
∨b

a ( f )
2

{(
Sg(·)−M (g;u)− sg(·)−M (g;u)

)− ∣∣Sg(·)−M (g;u) + sg(·)−M (g;u)
∣∣}

�
∨b

a ( f )
2

· (Sg(·)−M (g;u)[a,b]− sg(·)−M (g;u)[a,b]
)

provided u(b) �= u(a) , T ( f ,g;u) is given by (1.5), M (g;u) by (1.6) and sh = sh[a,b]
and Sh = Sh[a,b] are as given (1.2).

Proof. From the Sonin identity (2.4) with γ = M+m
2 where m � f (t) � M for

t ∈ [a,b] we have

[u(b)−u(a)]T ( f ,g;u) =
∫ b

a

(
f (t)− M +m

2

)
(g(t)−M (g;u))du(t) . (4.2)

For the choices w(t) = f (t)− M+m
2 , h(t) = g(t)−M (g;u) and v(t) = u(t) , t ∈

[a,b] , in (2.21) of Theorem 5 produces

|[u(b)−u(a)]T ( f ,g;u)|

� 1
2

b∨
a

( f ) · (Sg(·)−M (g;u)− sg(·)−M (g;u)
)

−
∣∣∣∣∣M−m

2

∫ b

a
(g(t)−M (g;u))du(t)− 1

2

b∨
a

( f ) · (Sg(·)−M (g;u) + sg(·)−M (g;u))

∣∣∣∣∣
which simplifies to (4.1) on noting that the integral is zero.

The obvious coarser upper bound (4.1) which was also obtained in Corollary 2 is
equivalent to Theorem 1. The proof is thus complete. �

The following lemma provides a further identity for the Čebyšev functional involv-
ing Riemann-Stieltjes integrals for a previous more restrictive version in which P′(t)
was assumed to be continuous, see [4].
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LEMMA 2. Let f ,g,P : [a,b]→ R be such that f and P are of bounded variation
and the Riemann-Stieltjes integrals

∫ b
a f (t)g(t)dP(t) ,

∫ b
a f (t)dP(t) and

∫ b
a g(t)dP(t)

exist. Then the following identy holds

T ( f ,g;P) =
1

P2(b)

∫ b

a
Ψ(t)d f (t) (4.3)

where T ( f ,g;P) is as defined by (1.5),

M (h;P) =
∫ b
a h(t)dP(t)

P(b)
(4.4)

with, for t ∈ [a,b] ,
Ψ(t) = P(t)G(b)−P(b)G(t) (4.5)

and,

P(t) =
∫ t

a
dP(x) , G(t) =

∫ t

a
g(x)dP(x) . (4.6)

Proof. Firstly it may be noticed that Ψ(a) = Ψ(b) = 0 and so integration by
parts from (4.3) produces on using properties of the Riemann-Stieltjes integral (see for
example [1])

1
P2(b)

∫ b

a
Ψ(t)d f (t) = − 1

P2(b)

∫ b

a
f (t)dΨ(t) (4.7)

= − 1
P2(b)

∫ b

a
f (t){G(b)−P(b)g(t)}dP(t)

=
1

P(b)

∫ b

a
f (t)g(t)dP(t)− G(b)

P(b)
· 1
P(b)

∫ b

a
f (t)dP(t)

= T ( f ,g;P) ,

where we have used the fact that

G(b)
P(b)

= M (g;P) . �

The following theorem provides sharp bounds for the the Čebyšev functional using
developments from Section 2.

THEOREM 7. Let f ,g,P : [a,b]→ R be such that f and P are of bounded varia-
tion and the Riemann-Stieltjes integrals

∫ b
a f (t)g(t)dP(t) ,

∫ b
a f (t)dP(t) and∫ b

a g(t)dP(t) exist. Then∣∣∣∣P2(b) ·T ( f ,g;P)− ΨM + Ψm

2
( f (b)− f (a))

∣∣∣∣ (4.8)

� 1
2

b∨
a

(Ψ) · (S− s)−
∣∣∣∣∣ΨM −Ψm

2
( f (b)− f (a))− 1

2

b∨
a

(Ψ) · (S+ s)

∣∣∣∣∣
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where S = supa�α<β�b [ f (β )− f (α)] , s = infa�α<β�b [ f (β )− f (α)] and Ψm � Ψ(t)
� ΨM for t ∈ [a,b] , with ΨM = supt∈[a,b] {Ψ(t)} , Ψm = inft∈[a,b] {Ψ(t)} .

Proof. From Lemma 2 and specifically identity (4.3) we have

P2(b) ·T ( f ,g;P)− ΨM + Ψm

2
( f (b)− f (a)) =

∫ b

a

[
Ψ(t)− ΨM + Ψm

2

]
d f (t) . (4.9)

For the choices w(t) = Ψ(t), h(t) = 1 and v(t) = f (t) , t ∈ [a,b] , in (2.21) of
Theorem 5 produces from (4.9)∣∣∣∣

∫ b

a

[
Ψ(t)− ΨM + Ψm

2

]
d f (t)

∣∣∣∣
� 1

2

b∨
a

(Ψ) · (S− s)−
∣∣∣∣∣ΨM −Ψm

2
( f (b)− f (a))− 1

2

b∨
a

(Ψ) · (S+ s)

∣∣∣∣∣
where

s = inf
a�α<β�b

[∫ β

α
d f (t)

]
= inf

a�α<β�b
[ f (β )− f (α)] ,

S = sup
a�α<β�b

[∫ β

α
d f (t)

]
= sup

a�α<β�b
[ f (β )− f (α)]

and so the result as stated follows. �

COROLLARY 5. Let the conditions of Theorem 5 continue to hold with the further
addition that f is increasing then∣∣∣∣P2(b) ·T ( f ,g;P)− ΨM + Ψm

2
( f (b)− f (a))

∣∣∣∣ (4.10)

=
∣∣∣∣
∫ b

a

[
Ψ(t)− ΨM + Ψm

2

]
d f (t)

∣∣∣∣
� f (b)− f (a)

2

{
2

b∨
a

(Ψ)− (ΨM −Ψm)

}
,

where Ψm � Ψ(t) � ΨM , for t ∈ [a,b] .

Proof. For f increasing we have S = supa�α<β�b [ f (β )− f (α)] = f (b)− f (a)
and s = infa�α<β�b [ f (β )− f (α)] = 0 and hence the result follows on using properties
of the modulus. �

REMARK 10. Using the identity (4.9) then switching the roles of Ψ and f will
produce complimentary reults to Theorem 7 and Corollary 5.

Acknowledgement. The work for this paper was initiated while on sabbatical at
The University of Melbourne. Some of the work for this article was undertaken while
at Victoria University, Melbourne Australia. I would also like to thank Sever Dragomir
for his helpful discussions and comments.



EXTENSIONS OF BEESACK BOUNDS 595

RE F ER EN C ES

[1] T. M. APOSTOL, Mathematical Analysis, Addison-Wesley Publishing Comp., Reading, Mas-
sachusetts, 2nd Ed., 1975.

[2] P. R. BEESACK, Bounds for Riemann-Stieltjes integrals, Rocky Mountain J. Math., 5 (1) (1975), 75–
78.

[3] N. BARNETT AND S. S. DRAGOMIR, The Beesack-Darst-Pollard inequalities and approximations of
the Riemann-Stieltjes integral, Applied mathematics Letters, 22 (2009), 58–63.

[4] P. CERONE, On an Identity for the Chebychev Functional and Some Ramifications, J. Ineq.
Pure and Applied Math., 3 (1) (2002), Art. 4, online http://www.emis.de/journals/JIPAM/

article157.html?sid=157.
[5] P. CERONE AND S. S. DRAGOMIR, Bounding the Čebyšev functional for the Riemann-Stieltjes inte-
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