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A NEW INEQUALITY FOR A POINT IN THE PLANE OF A TRIANGLE

JIAN LIU

(Communicated by L. Yang)

Abstract. In this paper, a new geometric inequality for a point in the plane of a triangle is proved
by using mathematical software Maple. Also, a general inequality with one parameter and other
three similar interesting inequalities checked by the computer are put forward as conjectures.

1. Introduction

For a given triangle ABC , let a,b,c denote the side lengths BC,CA , AB respec-
tively. Let P be a point in the plane of the triangle. Denote the distances from P to
the vertices A,B,C by R1,R2,R3 and the distances from P to the sides BC,CA,AB by
r1,r2,r3, respectively.

In my recent paper [4], the author gave the following two inequalities:
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The equalities in (1.1) and (1.2), hold if and only if P is the circumcenter and the
Lhuilier-Lemoine point (for this point see e.g. [5, p. 278]) of �ABC, respectively.

The author also proved the unified generalization:
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where λ is a real number such that −2 � λ � 2.
In the literature, there are few inequalities involving the segments R1,R2,R3,r1,r2,r3

and side lengths a,b,c (see e.g. the monographs [1] and [6]). In this paper, we shall
establish a new inequality similar to (1.1) and (1.2), which is stated as follows:

THEOREM 1. For any point P in the plane of the triangle ABC, the following
inequality holds:
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Equality holds only when b = c, a �= √
3c and the barycentric coordinates of P with

respect to triangle ABC is (2c2/(3c2−a2),1,1) or any permutation thereof.
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The equality condition of the above theorem shows that inequality (1.4) is sharp,
and means the following interesting fact: If triangle ABC is an isosceles triangle with
120◦ top-angle, then inequality (1.4) is strict.

The aim of this paper is to prove Theorem 1. Our proof is based on a great number
of calculations. We have to use mathematical software (we used Maple 15). In the last
section, we shall also present several related interesting conjectures.

2. Preliminaries

In order to prove Theorem 1, we first give several lemmas.

LEMMA 1. Let z > 0 , m � 0 and n � 0 be real numbers and let

M1 ≡ 44555m4−125593m3z−798340m2z2 +1415488mz3+19044344z4,

M2 ≡ 26979m6 +152952m5z−421680m4z2 −5325584m3z3 −10605706m2z4,

+41740408mz5 +300352248z6,

M3 ≡ 722046m5−797331m4z−17119560m3z2−26912392m2z3 +223896576mz4

+1396689296z5,

M4 ≡ 474139m4−1231480m3z−4724964m2z2 +11167712mz3+98418928z4,

M5 ≡ 26979m7 +198312zm6 +48348z2m5−3964592z3m4−14665190z4m3

−2975032z5m2 +131398056z6m+498482560z7,

M6 ≡ 897006m5 +970953m4z−12745032m3z2−50438152m2z3

+8937856mz4 +592608848z5,

then the following inequalities strictly hold:

Mi > 0, (2.1)

where i = 1,2, · · · ,6 .

Proof. We now prove inequality M1 > 0. Since

M1 = 44555

(
m4 − 125593

44555
m3z− 798340

44555
m2z2 +

1415488
44555
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44555
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)

= 44555
[
m4− (2.81 . . .)zm3− (17.91 . . .)z2m2 +(31.76 . . .)z3m+(427.43 . . .)z4] ,

to prove M1 > 0 we only need to prove that

m4−3zm3−18z2m2 +31z3m+427z4 > 0. (2.2)

Because of the homogeneity, we may assume that z = 1 and prove f (m) > 0, where

f (m) = m4 −3m3−18m2 +31m+427
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and m > 0. Then

f ′(m) = 4m3−9m2−36m+31,

f ′′(m) = 12m2−18m−36.

Solving f ′(m) = 0 we obtain

m1 ≈−2.526 . . . , m2 ≈ 0.764 . . . , m3 ≈ 4.011 . . . ,

and

f ′′(m1) ≈ 86.072 . . . > 0, f ′′(m2) ≈−42.747 . . . < 0, f ′′(m3) ≈ 84.925 . . . > 0.

Hence f (m) is strictly increasing on interval (0,m2) and (m3,+∞) , and is decreasing
on (m2,m3) . The minimal value of f (m) on interval (0,+∞) is equal to f (m2) ≈
326.994 · · ·. So, we have f (m) � f (m2) > 0 for m > 0 and inequality M1 > 0 is
proved.

In the same way, it is easy to prove the rest strict inequalities M2 > 0, M3 > 0,
M4 > 0, M5 > 0 and M6 > 0 (We omit details). �

LEMMA 2. The polynomial inequality

a3x
3 +a2x

2 +a1x+a0 � 0 (2.3)

with real coefficients a3 , a2 , a1 , a0 (a3 > 0) holds for all positive real numbers x
if, and only if, one of the following conditions is valid: (i) a0,a1,a2 � 0; (ii) a0 = 0 ,
a2

2−4a1a3 � 0 ; (iii) a0 > 0 , D3 � 0, where

D3 = −27(a0a3)2 +18a0a1a2a3 +(a1a2)2 −4a3
2a0−4a3

1a3. (2.4)

REMARK 1. According to [8, p. 159], the above lemma is due to L. Yang. In [12,
pp. 53–54], Yang et al also give similar conclusions for quartic polynomials. These are
applications of their “Decision Theorems” for polynomials, see [10] and [12].

LEMMA 3. Let x > 0 , m � 0 and n � 0 be real numbers, then

M7 ≡ k3m
3 + k2m

2 + k1m+ k0 � 0, (2.5)

where

k3 = 30154336x6+3944992x5n+211832x4n2−7544x3n3 +226x2n4 +318xn5 +21n6,

k2 = n(3575640x6 +311800x5n−4706x4n2−3416x3n3−140x2n4 +16xn5 +n6),
k1 = 4(61868x4 +3814x3n−251x2n2−60xn3−3n4)x2n2,

k0 = 12(832x2 +72xn+3n2)x4n3.
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Proof. Clearly, (2.5) holds trivially when m = 0. If m > 0, note that

211832x4n2−7544x3n3 +226x2n4 = 2x2n2(105916x2−3772xn+113n2) > 0,

hence k3 > 0. Also, with the help of famous mathematical software Maple (we used
Maple 15 in this paper), it is easy to obtain the following identity:

−27(k0k3)2 +18k0k1k2k3 +(k1k2)2 −4k3
2k0−4k3

1k3 = −32x6n6K, (2.6)

where

K = 16336114274326065782272x18+8986077908883635241472x17n

+2603480913174237230208x16n2 +509413174070696601216x15n3

+75511383737236675264x14n4 +9290808982908622880x13n5

+1024729896824019240x12n6 +105857417733128296x11n7

+10270144842212106x10n8 +919660264355296x9n9

+75176103555384x8n10 +5516130039344x7n11

+350793644578x6n12 +18830450220x5n13 +854524830x4n14

+32314324x3n15 +962017x2n16 +21840xn17 +360n18.

Obviously, we have K > 0, thus the left hand of (2.6) is nonpositive. Hence, inequality
M7 � 0 holds for m > 0 by Lemma 2 and the proof of Lemma 3 is completed. �

LEMMA 4. For any triangle ABC with sides a,b,c, we have

Q0 ≡ 2(b− c)2(b+ c)2a12− (b− c)2(b+ c)2(b2 + c2)a10− (3b4 +4b2c2

−3c4)(3b4−4b2c2 −3c4)a8 +(b2 + c2)(15b8−13b6c2 +16b4c4

−13b2c6 +15c8)a6 +(−9b12 +2b10c2 +3b8c4 +40b6c6 +3b4c8

+2b2c10−9c12)a4 +(b2 + c2)(2b12−5b10c2−18b8c4

+46b6c6−18b4c8 −5b2c10 +2c12)a2

+2b2c2(b− c)4(b+ c)4(b4 +3b2c2 + c4) � 0, (2.7)

with equality holding if and only if a : b : c = 1 : 1 :
√

3 .

Next, we shall prove inequality (2.7) by using the method of so-called “Difference
Substitution”. The proof of Lemma 2 in [4] is just proved by using this method (for
more examples, see e.g. [2], [7], [9], [11]).

Proof. Let b+c−a= 2x , c+a−b= 2y , a+b−c= 2z , then a = y+z , b = z+x ,
c = x+ y , and (2.7) becomes the following equivalent inequality:

Q0 ≡ 2(z− y)2(z+2x+ y)2(y+ z)12− (z− y)2(z+2x+ y)2[(z+ x)2 +(x+ y)2]
·(y+ z)10− [3(z+ x)4 +4(z+ x)2(x+ y)2−3(x+ y)4]
[3(z+ x)4−4(z+ x)2(x+ y)2−3(x+ y)4](y+ z)8 +[(z+ x)2 +(x+ y)2]
·[15(z+ x)8−13(z+ x)6(x+ y)2 +16(z+ x)4(x+ y)4−13(z+ x)2(x+ y)6.

+15(x+ y)8](y+ z)6 +[−9(z+ x)12 +2(z+ x)10(x+ y)2
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+3(z+ x)8(x+ y)4 +40(z+ x)6(x+ y)6 +3(z+ x)4(x+ y)8 +2(z+ x)2(x+ y)10

−9(x+ y)12](y+ z)4 +[(z+ x)2 +(x+ y)2]
[2(z+ x)12−5(z+ x)10(x+ y)2−18(z+ x)8(x+ y)4 +46(z+ x)6(x+ y)6

−18(z+ x)4(x+ y)8−5(z+ x)2(x+ y)10 +2(x+ y)12](y+ z)2

+2(z+ x)2(x+ y)2(z− y)4(z+2x+ y)4 · [(z+ x)4 +3(z+ x)2(x+ y)2 +(x+ y)4]
� 0, (2.8)

which involves three positive numbers.
Due to the symmetry of Q0 with respect to the variables y and z , we assume that

y � z without loss of generality, then we only need to consider three cases: x � y � z ,
y � x � z and y � z � x to prove inequality Q0 � 0.

Case 1. The positive numbers x,y,z satisfy x � y � z .
In this case, we put {

y = z+m, (m � 0)
x = z+m+n (n � 0). (2.9)

Substituting (2.9) into (2.8) and using Maple software for the calculations, one obtains

Q0 = n3(d14n
11 +d13n

10 +d12n
9 +d11n

8 +d10n
7 +d9n

6 +d8n
5 +d7n

4

+d6n
3 +d5n

2 +d4n+d3)+d2n
2 +d1n+d0, (2.10)

where

d14 = 8(m+2z)2,

d13 = 56(3m+4z)(m+2z)2,

d12 = 1660m4 +10496m3z+27024m2z2 +30144mz3 +12160z4,

d11 = 16(3m+4z)(213m4+1206m3z+3400m2z2 +4024mz3 +1648z4),
d10 = 43836m6 +323376m5z+1306352m4z2 +3049856m3z3 +3904512m2z4

+2530816mz5+650240z6,

d9 = 16(3m+4z)(2883m6+17763m5z+74418m4z2 +192716m3z3 +266152m2z4

+179808mz5 +46912z6),
d8 = 331680m8 +2448000m7z+11690928m6z2 +42245312m5z3

+100168288m4z4 +144960256m3z5 +122984960m2z6 +56190976mz7

+10670080z8,

d7 = 32(3m+4z)(6387m8+36702m7z+160686m6z2 +669496m5z3

+1818332m4z4 +2863040m3z5 +2552320m2z6 +1199360mz7

+230912z8),
d6 = 878524m10 +5846976m9z+23354272m8z2 +109841984m7z3

+443794464m6z4 +1155031168m5z5 +1879849600m4z6

+1922064384m3z7 +1204111360m2z8 +423141376mz9

+63938560z10,
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d5 = 16(3m+4z)(20226m10+98298m9z+213333m8z2 +1355640m7z3

+8138010m6z4 +25189976m5z5 +44522488m4z6 +47605504m3z7

+30632832m2z8 +10952192mz9+1674752z10),
d4 = 814460m12 +4722544m11z+4398128m10z2 +4979008m9z3

+276578448m8z4 +1678945152m7z5 +4940702656m6z6

+8819303168m5z7 +10247248384m4z8 +7844782080m3z9

+3834327040m2z10 +1088012288mz11+136675328z12,

d3 = 8(3m+4z)(20951m12+89110m11z−251186m10z2−1596680m9z3

+2830976m8z4 +38088688m7z5 +128061856m6z6 +240383552m5z7

+286529664m4z8 +222837760m3z9 +110180352m2z10 +31576064mz11

+4005888z12),
d2 = 215832m14 +1223616m13z−3373440m12z2−42604672m11z3

−84845648m10z4 +333923264m9z5 +2402817984m8z6 +7052985344m7z7

+12845485568m6z8 +15931738112m5z9 +13794775040m4z10

+8259960832m3z11 +3274604544m2z12 +775815168mz13

+83361792z14,

d1 = 32(3m+4z)(m+2z)(5m2+12mz+8z2)(120m7 +288m6z−1763m5z2

−9416m4z3−18604m3z4 −18768m2z5 −9696mz6

−2048z7)(m2 −4mz−8z2)(m+ z)2,

d0 = 32(9m2 +20mz+12z2)(m+2z)2(5m2 +12mz+8z2)2

·(m2 −4mz−8z2)2(m+ z)4.

Noting that z > 0, m � 0 and n � 0, hence d14,d13, · · · ,d4 obviously are all positive.
Also, by the identity

89110m11z−251186m10z2 −1596680m9z3 +2830976m8z4 +38088688m7z5

= 2zm7M1

and the strict inequality M1 > 0 of Lemma 1, we see that d3 > 0. So, it remains to
prove that

d2n
2 +d1n+d0 � 0. (2.11)

We shall first show that d2 > 0. It is sufficient to prove that

215832m14 +1223616m13z−3373440m12z2 −42604672m11z3 −84845648m10z4

+333923264m9z5 +2402817984m8z6 > 0,

which is equivalent to
8m8M2 > 0.

(where M2 is defined as in Lemma 1). Thus, d2 > 0 holds true. Since also d0 �
0, we need to prove that the quadratic discriminant of the left hand side of (2.11) is
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nonnegative, namely

F1 ≡ d2
1 −4d2d0 � 0.

But, the calculations gives

F1 = −1024(m+2z)2(5m2 +12mz+8z2)2(m2 −4mz−8z2)2(m+ z)6Q1, (2.12)

where

Q1 = 113211m14 +722046m13z−797331m12z2 −17119560m11z3 −26912392m10z4

+223896576m9z5 +1396689296m8z6 +4056610560m7z7 +7476201472m6z8

+9465608192m5z9 +8408941568m4z10 +5184184320m3z11

+2121891840m2z12 +520159232mz13+57933824z14.

Note that

722046m13z−797331m12z2 −17119560m11z3 −26912392m10z4 +223896576m9z5

+1396689296m8z6 = zm8M3

and strict inequality M3 > 0 of Lemma 1, we conclude that Q1 > 0. Hence, F1 � 0 is
valid and then inequality Q0 � 0 is proved in the first case.

Since inequality d3 > 0 holds strictly, from (2.10) we see that the equality in
Q0 � 0 holds if and only if n = 0 and d2n2 +d1n+d0 = 0, namely n = 0 and d0 = 0.
From (2.9) and n = 0, we have m = x− z and x = y . Again, d0 = 0 means that

m2−4mz−8z2 = 0.

Hence,

(x− z)2−4(x− z)z−8z2 = 0,

which is equivalent to

x2−6zx−3z2 = 0.

Then it is easy to get that x : z = (3+2
√

3) : 1 . Therefore, we conclude that the equality
in (2.8) holds if and only if x : y : z = (3+2

√
3) : (3+2

√
3) : 1 in the first case.

Case 2. The positive numbers x,y,z satisfy y � x � z .
In this case, we put {

x = z+m, (m � 0)
y = z+m+n. (n � 0) (2.13)

Substituting (2.13) into (2.8), we obtain that

Q0 = n3(e14n
11 + e13n

10 + e12n
9 + e11n

8 + e10n
7 + e9n

6 + e8n
5 + e7n

4

+e6n
3 + e5n

2 + e4n+ e3)+ e2n
2 + e1n+ e0, (2.14)
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where

e14 = 8m2,

e13 = 8m(21m2 +40mz+12z2),
e12 = 1660m4 +6288m3z+7616m2z2 +3072mz3 +288z4,

e11 = 10224m5 +56496m4z+117424m3z2 +110784m2z3 +46048mz4 +6912z5,

e10 = 43836m6 +307248m5z+882528m4z2 +1302592m3z3 +1037712m2z4

+433216mz5 +79872z6,

e9 = 138384m7 +1128400m6z+4013792m5z2 +7938368m4z3 +9417344m3z4

+6825024m2z5 +2904704mz6+583680z7,

e8 = 331680m8 +2955744m7z+12078064m6z2 +29285888m5z3

+46051584m4z4 +48593024m3z5 +34148928m2z6 +14757632mz7

+2983424z8,

e7 = 613152m9 +5683968m8z+25007456m7z2 +69441728m6z3

+135212128m5z4 +191616768m4z5 +195930368m3z6 +136946688m2z7

+58090496mz8+11165696z9,

e6 = 878524m10 +8135056m9z+35959792m8z2 +106287680m7z3

+244394592m6z4 +452478848m5z5 +644409536m4z6 +657908224m3z7

+444869120m2z8 +176879616mz9+31178752z10,

e5 = 970848m11 +8689040m10z+35269728m9z2 +98093952m8z3

+255429984m7z4 +645808640m6z5 +1312540672m5z6

+1893031168m4z7 +1836905472m3z8 +1140426752m2z9

+409944064mz10+65011712z11,

e4 = 814460m12 +6876208m11z+22233088m10z2 +38445888m9z3

+104126592m8z4 +521140864m7z5 +1736656832m6z6 +3542442752m5z7

+4657004544m4z8 +4011388928m3z9 +2203160576m2z10

+703381504mz11+99680256z12,

e3 = 502824m13 +3954256m12z+7586224m11z2−19703680m10z3 −75599424m9z4

+178683392m8z5 +1574702848m7z6 +4532252160m6z7 +7674584064m5z8

+8514465792m4z9 +6309117952m3z10 +3028811776m2z11 +856096768mz12

+108527616z13,

e2 = 215832m14 +1586496m13z+386784m12z2 −31716736m11z3

−117321520m10z4 −23800256m9z5 +1051184448m8z6 +3987860480m7z7

+8187181568m6z8 +11028666368m5z9 +10226913280m4z10

+6519652352m3z11 +2745139200m2z12 +690094080mz13+78643200z14,

e1 = 32(3m+4z)(m+2z)(5m2+12mz+8z2)(m2 −4mz−8z2)(120m7 +396m6z

−961m5z2 −7096m4z3 −15348m3z4 −16560m2z5

−9120mz6−2048z7)(m+ z)2,
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e0 = 32(9m2 +20mz+12z2)(m+2z)2(5m2 +12mz+8z2)2(m2−4mz−8z2)2(m+ z)4.

Since m � 0, n � 0 and z > 0, we see that e14,e13, . . . ,e4 are all positive. Moreover,
by the identity:

7586224m11z2−19703680m10z3 −75599424m9z4 +178683392m8z5

+1574702848m7z6 = 16m7z2M4

and inequality M4 > 0 of Lemma 1 we also know that e3 > 0. Thus, by (2.14), to prove
Q0 � 0 it remains to prove that

e2n
2 + e1n+ e0 � 0. (2.15)

Note that

215832m14 +1586496m13z+386784m12z2 −31716736m11z3 −117321520m10z4

−23800256m9z5 +1051184448m8z6 +3987860480m7z7 = 8m7M5

and inequality M5 > 0 of Lemma 1, we see that e2 > 0. Since also e0 � 0, to prove
(2.15) we only need to prove that

F2 ≡ e2
1−4e2e0 � 0.

With the help of Maple software, it is easy to obtain the following identity:

F2 = −1024(m+2z)2(5m2 +12mz+8z2)2(m2−4mz−8z2)2(m+ z)6Q2, (2.16)

where

Q2 = 113211m14 +897006m13z+970953m12z2 −12745032m11z3 −50438152m10z4

+8937856m9z5 +592608848m8z6 +2197773056m7z7 +4551321088m6z8

+6234726400m5z9 +5903295488m4z10 +3854295040m3z11

+1666842624m2z12 +431685632mz13+50855936z14.

Also, by the following identity

897006m13z+970953m12z2 −12745032m11z3−50438152m10z4 +8937856m9z5

+592608848m8z6 = zm8M6

and inequality M6 > 0 of Lemma 1 we see that Q2 > 0 holds strictly. Hence F2 �
0 and (2.15) are proved. This completes the proof of Q0 � 0 in the second case.
Furthermore, it is easy to know that (as done in the above case) the equality condition
of (2.8) is the same as that of the first case, namely the equality holds if and only if
x : y : z = (3+2

√
3) : (3+2

√
3) : 1 .

Case 3. The positive numbers x,y,z satisfy y � z � x .
In this case, we put {

z = x+m, (m � 0)
y = x+m+n. (n � 0) (2.17)
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Substituting it into (2.8), we obtain

Q0 = f12n
12 + f11n

11 + f10n
10 + f9n

9 + f8n
8 + f7n

7 + f6n
6

+ f5n
5 + f4n

4 + f3n
3 + f2n

2 + f1n+ f0 +8n7M7, (2.18)

where M7 is defined as in Lemma 3, and

f12 = 1660m4,

f11 = 144(71m+173x)m4,

f10 = 12(3653m2 +13064mx+11108x2)m4,

f9 = 138384m7 +694880m6x+1289968m5x2 +1331072m4x3 +583680x7,

f8 = 331680m8 +2256768m7x+6799744m6x2 +13660160m5x3 +23121168m4x4

+14362880mx7+2983424x8,

f7 = 613152m9 +5466336m8x+23204416m7x2 +65756352m6x3

+139915872m5x4 +220770816m4x5 +168078336m2x7 +66268160mx8

+11165696x9,

f8 = 878524m10 +9931024m9x+54567856m8x2 +195580800m7x3

+501198944m6x4 +929600640m5x5 +1222265024m4x6 +1098245632m3x7

+636337664m2x8 +213067776mx9+31178752x10,

f5 = 970848m11 +13477552m10x+90590112m9x2 +388274880m8x3

+1162263936m7x4 +2502831744m6x5 +3888553344m5x6

+4304334080m4x7 +3299851264m3x8 +1660557312m2x9

+492257280mx10+65011712x11,

f4 = 814460m12 +13461568m11x+106298352m10x2 +526098624m9x3

+1798191840m8x4 +4424602368m7x5 +7967363200m6x6

+10512597504m5x7 +10045245952m4x8 +6761459712m3x9

+3038466048m2x10 +817840128mx11+99680256x12,

f3 = 8(2x+m)(62853m12+1074818m11x+8651516m10x2 +42935256m9x3

+145119808m8x4 +349750432m7x5 +613656256m6x6 +787605120m5x7

+732701696m4x8 +481435648m3x9 +212027392m2x10

+56201216mx11+6782976x12),
f2 = 8(26979m12 +470880m11x+3799470m10x2 +18645688m9x3 +61772264m8x4

+145241216m7x5 +248220320m6x6 +310501248m5x7 +282107520m4x8

+181570560m3x9 +78603264m2x10 +20557824mx11+2457600x12)(2x+m)2,

f1 = 32(3m+4x)(x+m)(5m2+12mx+8x2)(120m4 +567m3x+1020m2x2

+828mx3 +256x4)(2x+m)7,

f0 = 32(9m2 +20mx+12x2)(x+m)2(5m2 +12mx+8x2)2(2x+m)8.
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Clearly, f12, f11, · · · , f0 are all positive for x > 0, m � 0, n � 0. By the identity (2.18)
and the inequality M7 � 0 of Lemma 3, we deduce that Q0 > 0 strictly hold in the third
case.

Combining the arguments of the three cases above, we finish the proof of inequal-
ity (2.8) and know that the equality holds if and only if x : y : z = (3+2

√
3) : (3+2

√
3) :

1 . The inequality (2.7) equivalent with (2.8) is also proved, while the equality holds if
and only if

(b+ c−a) : (c+a−b) : (a+b− c) = (3+2
√

3) : (3+2
√

3) : 1,

wherefrom we easily obtain that a : b : c = 1 : 1 :
√

3. This completes the proof of
Lemma 4. �

By applying barycentric coordinates, the inequality (1.4) in Theorem 1 can be
transformed into a ternary quadratic inequality involving three sides of the triangle. For
general ternary quadratic inequality, we have the following known important result:

LEMMA 5. Let p1 , p2 , p3 , q1 , q2 , q3 be real numbers such that p1 > 0 , p2 > 0 ,
p3 > 0 , 4p2p3−q2

1 > 0 , 4p3p1−q2
2 > 0 , 4p1p2−q2

3 > 0 and

D0 ≡ 4p1p2p3− (q1q2q3 + p1q
2
1 + p2q

2
2 + p3q

2
3) � 0. (2.19)

Then the inequality

p1x
2 + p2y

2 + p3z
2 � q1yz+q2zx+q3xy (2.20)

holds for all real numbers x,y,z. If x,y,z �= 0 , then the equality in (2.20) holds if and
only if D0 = 0 and

(2p1q1 +q2q3)x = (2p2q2 +q3q1)y = (2p3q3 +q1q2)z. (2.21)

For the elementary proofs of Lemma 5, see e.g. [4] and [5].

3. Proof of Theorem 1

We are now in a position to prove our theorem.

Proof. Let (x,y,z) be the barycentric coordinates of point P with respect to tri-
angle ABC (where x,y,z are real numbers such that x+ y+ z �= 0), then we have the
following well known formulas (which have been used by the author in [3], [4] and
[5]):

(x+ y+ z)2R2
1 = (x+ y+ z)(yc2 + zb2)− (yza2 + zxb2 + xyc2) (3.1)

and

r1 =
∣∣∣∣ 2xS
(x+ y+ z)a

∣∣∣∣ , (3.2)
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etc., where S is the area of �ABC . If we denote cyclic sum by ∑ , then inequality (1.4)

can be written as ∑ R2
1−r21

b2+c2 � 3
8 and we have that

∑ R2
1− r2

1

b2 + c2

= ∑ 1
b2 + c2

[
yc2 + zb2

x+ y+ z
− yza2 + zxb2 + xyc2

(x+ y+ z)2

]
− 4S2

(∑x)2 ∑ x2

a2(b2 + c2)

=
1

∑x ∑ yc2 + zb2

b2 + c2 − ∑yza2

(∑x)2 ∑ 1
b2 + c2 −

4S2

(∑x)2 ∑ x2

a2(b2 + c2)
.

Further, using the equivalent form of Heron’s area formula:

16S2 = 2∑b2c2−∑a4, (3.3)

we see that inequality (1.4) is equivalent to

8(abc)2∑x∑(c2 +a2)(a2 +b2)(yc2 + zb2)−8(abc)2∑(c2 +a2)(a2 +b2)∑yza2

−2
(
2∑b2c2 −∑a4)∑b2c2(c2 +a2)(a2 +b2)x2

−3(abc)2(b2 + c2)(c2 +a2)(a2 +b2)
(
∑x

)2 � 0. (3.4)

Expansion and simplification give the following equivalent inequality required to prove:

m1x
2 +m2y

2 +m3z
2 � n1yz+n2zx+n3xy, (3.5)

where

m1 = b2c2
[
2a8−5(b2 + c2)a6 +3(b4 + c4)a4

+(2b2 + c2)(2c2 +b2)(b2 + c2)a2 +2b2c2(b− c)2(b+ c)2] ,

m2 = c2a2
[
2b8−5(a2 + c2)b6 +3(c4 +a4)b4

+(2c2 +a2)(2a2 + c2)(c2 +a2)b2 +2c2a2(a− c)2(c+a)2] ,

m3 = a2b2
[
2c8−5(a2 +b2)c6 +3(a4 +b4)c4

+(2a2 +b2)(2b2 +a2)(a2 +b2)c2 +2a2b2(a−b)2(a+b)2] ,

n1 = 2a2b2c2(c2 +a2)(a2 +b2)(4a2−b2− c2),
n2 = 2a2b2c2(a2 +b2)(b2 + c2)(4b2− c2−a2),
n3 = 2a2b2c2(b2 + c2)(c2 +a2)(4c2−a2−b2).

Next, we shall consider two cases to finish the proof of inequality (3.5).
Case 1. a : b : c = 1 : 1 :

√
3.

In this case, to prove (3.5) we may assume that a = b = 1, c =
√

3, then it is easy
to get that m1 = m2 = 528, m3 = 0, n1 = n2 = 0, n3 = 960, and (3.5) becomes

528(x2 + y2) > 960xy,
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which is an obvious strict inequality for all real numbers x and y .
Case 2. a : b : c �= 1 : 1 :

√
3.

Firstly, by using software Maple we obtain the following identity:

4m2m3−n2
1 = 8b2c2a4Q0, (3.6)

where Q0 is defined as in Lemma 4. By Lemma 4 and the hypothesis, we have strict
inequality Q0 > 0. Thus, the strict inequality 4m2m3 − n2

1 > 0 follows from identity
(3.6) and similar inequalities 4m3m1−n2

2 > 0 and 4m1m2−n2
3 > 0 also hold.

On the other hand, one can check the following identity by using Maple:

4m1m2m3− (n1n2n3 +m1n
2
1 +m2n

2
2 +m3n

2
3)

= 32(abc)4(b+ c)2(c+a)2(a+b)2(b+ c−a)2(c+a−b)2(a+b− c)2

·(a4 +b4 + c4 +3b2c2 +3c2a2 +3a2b2)(b− c)2(c−a)2(a−b)2, (3.7)

which shows the left hand is nonnegative. According to Lemma 5, we have proved
inequality (3.5) in the second case. This completes the proof of (3.5) for any triangle
ABC.

We now discuss the equality conditions of (1.4). By means of Lemma 5 and iden-
tity (3.7), we know that the equality in (3.5) occurs if and only if

(b− c)2(c−a)2(a−b)2 = 0, (3.8)

and
(2m1n1 +n2n3)x = (2m2n2 +n3n1)y = (2m3n3 +n1n2)z. (3.9)

Again, it is easy to check the following identities:

2m1n1 +n2n3 = 8a2b4c4(c2 +a2)(a2 +b2)t1, (3.10)

2m2n2 +n3n1 = 8b2c4a4(a2 +b2)(b2 + c2)t2, (3.11)

2m3n3 +n1n2 = 8c2a4b4(b2 + c2)(c2 +a2)t3, (3.12)

where

t1 = 4a10−11(b2 + c2)a8 +(9b4 +6b2c2 +9c4)a6 +(b2 + c2)(b4 +7b2c2 + c4)a4

−(3b4 +2b2c2 +3c4)(b− c)2(b+ c)2a2−b2c2(b2 + c2)(b− c)2(b+ c)2,

t2 = 4b10−11(c2 +a2)b8 +(9c4 +6c2a2 +9a4)b6 +(c2 +a2)(c4 +7c2a2 +a4)b4

−(3c4 +2c2a2 +3a4)(c−a)2(c+a)2b2− c2a2(c2 +a2)(c−a)2(c+a)2,

t3 = 4c10 +11(a2 +b2)c8 +(9a4 +6a2b2 +9b4)c6 +(a2 +b2)(a4 +7a2b2 +b4)c4

−(3a4 +2a2b2 +3b4)(a−b)2(a+b)2c2−a2b2(a2 +b2)(a−b)2(a+b)2.

Thus, it follows from (3.9) that

xt1
a2(b2 + c2)

=
yt2

b2(c2 +a2)
=

zt3
c2(a2 +b2)

. (3.13)
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By (3.8) we conclude that triangle ABC is isosceles. If b = c , then it is easy to get

t1 = 2a4(c2 +2a2)(a2−3c2)2, (3.14)

t2 = t3 = −2c2a2(a2−3c2)(c2 +2a2)(c2 +a2). (3.15)

Furthermore, if a2 �= 3c2 then it follows from (3.13), (3.14) and (3.15) that

x(3c2−a2) = 2c2y = 2c2z. (3.16)

When b = c and a2 = 3c2 , it is easily known that inequality (3.5) holds strictly. There-
fore, the equality of (3.5) holds if and only if b = c , a2 �= 3c2 and (3.16) is valid or
any permutation thereof. Moreover, (3.16) shows that the barycentric coordinates of
P is (2c2/(3c2 − a2),1,1) , hence we know that the statements of the theorem for the
equality condition is true. This completes the proof of Theorem 1. �

4. Several conjectures

In this section, we present several interesting open problems (conjectures).
It is known that the inequality (1.4) can not be generalized as the form (1.3). How-

ever, from another point of view, we propose the following generalization with one
parameter:

CONJECTURE 1. Let 0 < λ < 1 be a real number, then for any point P in the
plane of �ABC the following inequality

R2
1− r2

1

b2 + c2 + λa2 +
R2

2− r2
2

c2 +a2 + λb2 +
R2

3− r2
3

a2 +b2 + λc2 � 3
4(λ +2)

(4.1)

holds.

REMARK 2. If we take λ = 1, then (4.1) becomes

R2
1 +R2

2 +R2
3− r2

1 − r2
2 − r2

3 � 1
4
(a2 +b2 + c2), (4.2)

which can be derived by R2
2 + R2

3 − 2r2
1 � 1

2a2 (appeared in [4]). Therefore, if Con-
jecture 1 is true, then (4.1) would be valid for 0 � λ � 1 by inequalities (1.4) and
(4.2).

The author also found three inequalities similar to our main result which could not
be proved for the moment. We introduce them as follows:

CONJECTURE 2. For any interior point P of �ABC, we have

R1 − r1

b+ c
+

R2− r2

c+a
+

R3− r3

a+b
�

√
3

4
, (4.3)

with equality holding if and only if �ABC is equilateral and P is its center.
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CONJECTURE 3. For any point P in the plane of �ABC, the following inequality

2R2
1− r2

2 − r2
3

(b+ c)2 +
2R2

2− r2
3 − r2

1

(c+a)2 +
2R2

3− r2
1 − r2

2

(a+b)2 � 3
8

(4.4)

holds.

CONJECTURE 4. For any point P in the plane of �ABC, the following inequality

R2
2 +R2

3− r2
2 − r2

3

(b+ c)2 +
R2

3 +R2
1− r2

3 − r2
1

(c+a)2 +
R2

1 +R2
2− r2

1 − r2
2

(a+b)2 � 3
8

(4.5)

holds.

REMARK 3. The author has known that the equality conditions of (4.4) and (4.5)
are both special (�ABC may not be equilateral). We tried to prove (4.4) and (4.5) by
using the method which proves Theorem 1, but failed when we proved the correspond-
ing inequalities which are similar to that of Lemma 4.
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