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Abstract. In this paper, we prove that the function x → log (x/sinp(x))/ log (sinhp(x)/x) (p ∈
[2,∞)) is strictly increasing on (0,πp/2) , where πp/2 =

∫ 1
0 (1− t p)−1/pdt , and sinp(x) and

sinhp(x) denote the generalized trigonometric sine and generalized hyperbolic sine functions,
respectively. As application, a conjecture due to Klén, Vuorinen and Zhang [J. Math. Anal.
Appl. 409 (2014), 521–529] is proved, and the best positive constants α and β such that(

sinhp(x)
x

)α
<

x
sinp(x)

<

(
sinhp(x)

x

)β

are determined.

1. Introduction

It is well known from basic calculus that

π
2

=
∫ 1

0

1√
1− t2

dt

and

arcsin(x) =
∫ x

0

1√
1− t2

dt, 0 � x � 1.

Since the function arcsin(x) is a differentiable function on [0,1] and t → 1/
√

1− t2 is
strictly increasing on [0,1) , we can define sin on [0,π/2] as the inverse function of
arcsin. By standard extension procedures we can define the sin function on (−∞,∞) .

For p > 1, let

Fp(x) =
∫ x

0
(1− t p)−1/pdt, x ∈ [0,1],

πp

2
=

∫ 1

0
(1− t p)−1/pdt.
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Then Fp : [0,1]→ [0,πp/2] is an increasing homeomorphism, denoted by arcsinp . Thus
its inverse

sinp = F−1
p

is defined on the interval [0,πp/2] . By the similar extension as the sine function, we
can get a differentiable function sinp defined on R . We call sinp the generalized
trigonometric sine function.

Similarly, the generalized inverse hyperbolic sine function

arcsinhp(x) =

{∫ x
0 (1+ t p)−1/p, x ∈ [0,∞),

−arcsinhp(−x), x ∈ (−∞,0)
, p > 1

generalized the classical inverse hyperbolic sine function. The inverse of arcsinhp is
named the generalized hyperbolic sine function and denoted by sinhp .

Recently, the generalized trigonometric and hyperbolic functions have been found
many important applications in differential equations, the theory of operator, approx-
imation theory and other related fields [5, 10, 12]. In particular, many remarkable
properties and inequalities can be found in the literatures [2–9, 11, 14].

Klén, Vuorinen and Zhang [9] generalized some classical inequalities for trigono-
metric and hyperbolic functions, such as Mitrinović-Adamović inequality and Lazare-
vić’s inequality. Moreover, they also raised the following conjecture.

CONJECTURE 1.1. For p ∈ [2,∞) , the function

f (x) =
log(x/sinp(x))
log(sinhp(x)/x)

is strictly increasing on (0,πp/2) .

The main purpose of this paper is to give a positive answer to the Conjecture 1.1.
Our main result is the following Theorem 1.1.

THEOREM 1.1. If p ∈ [2,∞) , then the function

f (x) =
log(x/sinp(x))
log(sinhp(x)/x)

is strictly increasing from (0,πp/2) onto (1, log(πp/2)/ log[2sinhp(πp/2)/πp]) . In
particular, inequality

(
sinhp(x)

x

)α
<

x
sinp(x)

<

(
sinhp(x)

x

)β
(1.1)

holds for all x ∈ (0,πp/2) with the best possible constants α = 1 and β = log(πp/2)/
log[2sinhp(πp/2)/πp] .

REMARK 1.1. If p = 2, then Theorem 1.1 reduces to Theorem 1.1 in [13].
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2. Lemmas

In order to establish our main results we need some basic knowledge and Lemmas,
which we present in this section.

The generalized cosine function cosp , generalized tangent function tanp , gener-
alized hyperbolic cosine function coshp and generalized hyperbolic tangent function
tanhp are defined as

cosp(x) ≡ d
dx

sinp(x), tanp(x) ≡ sinp(x)
cosp(x)

, x ∈ (0,πp/2),

coshp(x) ≡ d
dx

sinhp(x), tanhp(x) ≡ sinhp(x)
coshp(x)

, x ∈ [0,∞),

respectively. And the following formulas can be found in [8, 9]:

cosp(x) = (1− sinp(x)
p)1/p, x ∈ (0,πp/2),

d
dx

cosp(x) = −cosp(x)
2−psinp(x)

p−1, x ∈ (0,πp/2),

d
dx

tanp(x) = 1+ tanp(x)
p, x ∈ (0,πp/2),

coshp(x) = (1+ sinhp(x)
p)1/p, x ∈ [0,∞),

d
dx

coshp(x) = coshp(x)
2−psinhp(x)

p−1, x ∈ [0,∞),

d
dx

tanhp(x) = 1− tanhp(x)
p, x ∈ [0,∞).

LEMMA 2.1. (See [1, Theorem 1.25]) For −∞ < a < b < ∞ , let f ,g : [a,b]→ R

be continuous on [a,b] , and be differentiable on (a,b) , let g′(x) �= 0 on (a,b) . If
f ′(x)/g′(x) is increasing (decreasing) on (a,b) , then so are

f (x)− f (a)
g(x)−g(a)

and
f (x)− f (b)
g(x)−g(b)

.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

LEMMA 2.2. If p ∈ [2,∞) , then
(1) ξ (x)= [p+2−2(p+1)(p−2)x−(p+1)(p−2)x2]/(p2+2p+2px) is strictly

decreasing in [0,∞);
(2) η(x) = [p+2+2(p+1)(p−2)x−(p+1)(p−2)x2]/(p2+2p−2px) is strictly

increasing in [0,1) .

Proof. Parts (1) and (2) follows easily from

ξ ′(x) = −2[(p+2)(p2− p−1)+ (p+1)(p+2)(p−2)x+(p+1)(p−2)x2]
p(p+2+2x)2

< 0
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and

η ′(x) =
2[(p+2)(p2− p−1)− (p+1)(p+2)(p−2)x+(p+1)(p−2)x2]

p(p+2−2x)2

>
2[(p+2)+ (p+1)(p−2)x2]

p(p+2−2x)2

> 0. �

LEMMA 2.3. If p ∈ [2,∞) , then inequality

log

(
x

sinp(x)

)
<

sinp(x)− xcosp(x)
psinp(x)

holds for all x ∈ (0,πp/2) .

Proof. Let

φ(x) =
sinp(x)− xcosp(x)

psinp(x)
− log

(
x

sinp(x)

)
, x ∈ (0,πp/2), (2.1)

then simple computation leads to

φ(0+) = 0, (2.2)

φ ′(x) =
xcosp(x)2−p sinp(x)p − cosp(x)sinp(x)+ xcosp(x)2

psinp(x)2

− sinp(x)2 − xcosp(x)sinp(x)
xsinp(x)2

=
x2 cosp(x)2[cosp(x)−p sinp(x)p +1]− xcosp(x)sinp(x)

pxsinp(x)2

+
p(xcosp(x)sinp(x)− sinp(x)2)

pxsinp(x)2

=
x2 cosp(x)2−p− xcosp(x)sinp(x)+ p[xcosp(x)sinp(x)− sinp(x)2]

pxsinp(x)2

=
1
px

(
1− x

tanp(x)

)[
1

φ1(x)
− p

]
, (2.3)

where

φ1(x) =
xcosp(x)sinp(x)− sinp(x)2

xcosp(x)sinp(x)− x2 cosp(x)2−p . (2.4)

Letting φ2(x) = xcosp(x)
p−1 sinp(x) − x2 , φ3(x) = xcosp(x)

p−1 sinp(x) − sinp(x)
2

cosp(x)
p−2 , φ4(x) = p2x+2p tanp(x) , φ5(x) = p2x− (p−2)tanp(x)

p+1− (p+1)(p−
2) tanp(x) . Then φ1(x) = φ3(x)/φ2(x) ,

φ2(0) = φ3(0) = 0, (2.5)
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φ ′
2(x) = cosp(x)p−1 sinp(x)− (p−1)xsinp(x)p + xcosp(x)p−2x, (2.6)

φ ′
3(x) =− cosp(x)

p−1 sinp(x)− (p−1)xsinp(x)
p + xcosp(x)

p

+(p−2)sinp(x)ptanp(x), (2.7)

φ ′
2(0) = φ ′

3(0) = 0 (2.8)

φ ′′
2 (x) = −sinp(x)

p
[
2p+ p2 x

tanp(x)

]
, (2.9)

φ ′′
3 (x) = −sinp(x)p

[
p2 x

tanp(x)
− (p−2)tanp(x)p− (p+1)(p−2)

]
, (2.10)

φ ′′
3 (x)

φ ′′
2 (x)

=
φ5(x)
φ4(x)

, φ4(0) = φ5(0) = 0, (2.11)

and

φ ′
5(x)

φ ′
4(x)

=
p+2−2(p+1)(p−2)tanp(x)

p− (p+1)(p−2)tanp(x)
2p

p2 +2p+2ptanp(x)
p . (2.12)

It follows from (2.4)–(2.12) and Lemmas 2.1 and 2.2 (1) that φ1(x) is strictly
decreasing in (0,πp/2) . Then

φ1(x) < φ1(0+) = lim
x→0

φ ′
5(x)

φ ′
4(x)

=
1
p
. (2.13)

From (2.3) and (2.13) we clearly see that φ ′(x) > 0, then from equation (2.2) one
has

φ(x) > 0. (2.14)

.
Therefore, Lemma 2.3 follows from (2.1) and (2.14). �

LEMMA 2.4. If p ∈ [2,∞) , then inequality

log

(
x

sinhp(x)

)
<

sinhp(x)− xcoshp(x)
psinhp(x)

holds for all x ∈ (0,+∞) .

Proof. Let

ϕ(x) =
sinhp(x)− xcoshp(x)

psinhp(x)
− log

(
x

sinhp(x)

)
, x ∈ (0,+∞), (2.15)

then simple computation leads to

ϕ(0+) = 0, (2.16)



640 Y.-Q. SONG, Y.-M. CHU, B.-Y. LIU AND M.-K. WANG

ϕ ′(x) =
−xcoshp(x)2−p sinhp(x)p− coshp(x)sinhp(x)+ xcoshp(x)2

psinhp(x)2

− sinhp(x)2 − xcoshp(x)sinhp(x)
xsinhp(x)2

=
x2 coshp(x)2[−coshp(x)−p sinhp(x)p +1]− xcoshp(x)sinhp(x)

pxsinhp(x)2

+
p(xcoshp(x)sinhp(x)− sinhp(x)2)

pxsinhp(x)2

=
x2 coshp(x)2−p− xcoshp(x)sinhp(x)+ p[xcoshp(x)sinhp(x)− sinhp(x)2]

pxsinhp(x)2

=
1
px

(
x

tanhp(x)
−1

)[
p− 1

ϕ1(x)

]
, (2.17)

where

ϕ1(x) =
xcoshp(x)sinhp(x)− sinhp(x)2

xcoshp(x)sinhp(x)− x2 coshp(x)2−p . (2.18)

Letting ϕ2(x)= xcoshp(x)
p−1 sinhp(x)−x2 , ϕ3(x)= xcoshp(x)

p−1 sinhp(x)−sinhp(x)
2

coshp(x)
p−2 , ϕ4(x) = p2x + 2p tanhp(x) , ϕ5(x) = p2x + (p− 2)tanhp(x)

p+1 − (p +
1)(p−2) tanhp(x) . Then ϕ1(x) = ϕ3(x)/ϕ2(x) ,

ϕ2(0) = ϕ3(0) = 0, (2.19)

ϕ ′
2(x) = coshp(x)p−1 sinhp(x)+ (p−1)xsinhp(x)p + xcoshp(x)p−2x, (2.20)

ϕ ′
3(x) =− coshp(x)

p−1 sinhp(x)+ (p−1)xsinhp(x)
p + xcoshp(x)

p

− (p−2)sinhp(x)ptanhp(x), (2.21)

ϕ ′
2(0) = ϕ ′

3(0) = 0 (2.22)

ϕ ′′
2 (x) = sinhp(x)

p
[
2p+ p2 x

tanhp(x)

]
, (2.23)

ϕ ′′
3 (x) = sinhp(x)

p
[
p2 x

tanhp(x)
+ (p−2)tanhp(x)

p− (p+1)(p−2)
]
, (2.24)

ϕ ′′
3 (x)

ϕ ′′
2 (x)

=
ϕ5(x)
ϕ4(x)

, ϕ4(0) = ϕ5(0) = 0, (2.25)

and

ϕ ′
5(x)

ϕ ′
4(x)

=
p+2+2(p+1)(p−2)tanhp(x)

p− (p+1)(p−2)tanhp(x)
2p

p2 +2p−2ptanhp(x)p . (2.26)
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It follows from (2.18)–(2.26) and Lemmas 2.1 and 2.2 (2) that ϕ1(x) is strictly
increasing in (0,+∞) . Then

ϕ1(x) > ϕ1(0+) = lim
x→0

ϕ ′
5(x)

ϕ ′
4(x)

=
1
p
. (2.27)

From (2.17) and (2.27) we clearly see that ϕ ′(x) > 0, then from equation (2.16)
one has

ϕ(x) > 0. (2.28)

Therefore, Lemma 2.4 follows from (2.15) and (2.28). �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let f1(x) = log(x/sinp(x)) and f2(x) = log(sinhp(x)/x) .
Then simple computations lead to

f ′1(x) =
sinp(x)− xcosp(x)

xsinp(x)
, f ′2(x) =

xcoshp(x)− sinhp(x)
xsinhp(x)

and

x f2(x)
2 f ′(x)
p

=
sinp(x)− xcosp(x)

psinp(x)
log

(
sinhp(x)

x

)

− xcoshp(x)− sinhp(x)
psinhp(x)

log

(
x

sinp(x)

)
. (3.1)

It follows from Lemmas 2.3 and 2.4 together with (3.1) that f ′(x) > 0 for x ∈
(0,πp/2) . This implies

α ≡ lim
x→0

f (x) < f (x) < f
(πp

2

)
=

log(πp/2)
log[2sinhp(πp/2)/πp]

≡ β .

By l’Hoptial’s rule we have α = 1, and the remaining results are clear. �
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