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Abstract. Let Pϕ (n,b,λ) denote the class of normalized univalent functions f (z) = z+a2z2 +
..., which are defined in the unit disk Δ and satisfying 1+[(λDn+2 f (z)+(1−λ)Dn+1 f (z))/(λ
Dn+1 f (z)+ (1−λ)Dn f (z))− 1]/b ≺ ϕ(z) , where ϕ(z) is the function with positive real part,
Dn f denotes the sălăgean operator, n � 0 , 0 � λ � 1 , b ∈ C . In this paper, for the class
Pϕ (n,b,λ) , the Fekete-Szegö inequalities are completely solved. A more general class
K (β ,n,λ ,g(z)) related Pϕ (n,b,λ) is also considered with same subject, which extends the
earlier corresponding results for the class of strongly close-to-convex functions of order β .

1. Introduction

Let A be the class of functions of the form

f (z) = z+
∞

∑
k=2

akz
k, (1.1)

which are analytic univalent in the open unit disk � = {z : |z| < 1} and normalized
by the conditions f (0) = 0, f ′(0) = 1. It is well-known that f (z) ∈ A , |a3 − a2

2| �
1. If f and g are analytic in � , we say that f is subordinate to g , written f (z) ≺
g(z) , provided there exists a analytic function ω(z) defined on � with ω(0) = 0 and
|ω(z)| < 1 satisfying f (z) = g(ω(z)) .

For f (z) ∈ A , Sălăgean [20] defined the following operator:

D0 f (z) = f (z), D1 f (z) = Df (z) = z f ′(z), ...,Dn f (z) = D(Dn−1 f (z)),

where n ∈ N = {1,2, ...}. We note that

Dn f (z) = z+
∞

∑
k=2

knakz
k, n ∈ N0 = {0}∪N. (1.2)

Let S∗ , C and K denote the usual starlike function, convex function and close-
to-convex function, respectively. Ma and Minda [12] unified various subclasses of
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starlike and convex functions for which either one of the quantities z f ′(z)/ f (z) or
1+ z f ′′(z)/ f ′(z) is subordinate to a more general superordinate function. The classes
S∗(ϕ) and C(ϕ) of Ma-Minda starlike and Ma-Minda convex functions, are respec-
tively characterized by z f ′(z)/ f (z) ≺ ϕ(z) and 1+ z f ′′(z)/ f ′(z) ≺ ϕ(z) , where func-
tion ϕ with positive real part in � , ϕ(0) = 0, ϕ ′(0) > 1. The coefficient functional
ρμ( f ) = a3−μa2

2 on the normalized analytic functions f in � plays an important role
in function theorem. The problem of maximizing the absolute value of the functional
ρμ( f ) is called the Fekete-Szegö problem. A classical theorem of Fekete-Szegö (see
[5]) states that for f ∈ A given by (1.1),

|a3− μa2
2| �

⎧⎪⎪⎨
⎪⎪⎩

3−4μ , i f μ � 0,

1+2exp
(−2μ

1−μ

)
, i f 0 � μ < 1,

4μ −3, i f μ � 1.

Later, Pfluger [17] considered the problem when μ is complex. In the case of C,S∗
and K , the above inequalities can be improved [9, 10]. Actually, many authors have
considered the Fekete-Szegö problem for various subclasses of A , the upper bound
for |a3−μa2

2| was investigated by many different authors (see [3, 6, 19, 22]). Recently,
some results on this subject were improved (see [2, 4, 8, 13, 14, 15, 16, 21, 23]).

We denote by P a class of analytic function in � with p(0) = 0 and ℜp(z) > 0.
Here we assume that ϕ ∈ P , satisfying ϕ(0) = 0, ϕ ′(0) > 0, and ϕ(�) is symmetric
with respect to the real axis. Also, ϕ(z) has a series expansion of the form

ϕ(z) = 1+A1z+A2z
2 +A3z

3 + ...,(A1 > 0). (1.3)

With the aid of salagean operator, we introduce the class Pϕ(n,b,λ ) as follows:
A function f ∈ A is said to be in the class Pϕ(n,b,λ ) if and only if

1+
1
b

(
λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1 f (z)+ (1−λ )Dn f (z)

−1

)
≺ ϕ(z), z ∈ Δ, (1.4)

where b is nonzero complex number, ϕ is defined as (1.3), n � 0, 0 � λ � 1.

By giving specific values to the parameters b , λ and ϕ , we obtain the following
important subclasses studied by various authors in earlier works, for instance,

Pϕ (0,1,0)≡ S∗(ϕ), Pϕ(0,1,1) ≡C(ϕ),

and
P 1+Az

1+Bz
(0,1,0) ≡ S∗[A,B], P 1+Az

1+Bz
(0,1,1)≡C[A,B],

where −1 � A < B � 1. The S∗(ϕ) , C(ϕ) were introduced by Ma-Minda [12]. The
S∗[A,B] , C[A,B] were defined by Janowski [7].

By taking b = 1, ϕ(z) = ( 1+z
1−z)

β (0 � β � 1) , we want to extend the Pϕ(n,b,λ )
to a more general class K (β ,n,λ ,g(z)) .
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A function f ∈ A is said to be in the class K (β ,n,λ ,g(z)) if and only if∣∣∣∣∣arg
(

λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1g(z)+ (1−λ )Dng(z)

)∣∣∣∣∣� π
2

β , z ∈ Δ, (1.5)

where n � 0, 0 � λ � 1, 0 � β � 1, g(z) = z+b2z2 +b3z3 + ... ∈ S∗ .
We note that K (β ,0,0,g(z)) ≡ K (β ) , where K (β ) is the class of strongly

close-to-convex functions of order β defined by Koepf [11] and Abdel-Gawad [1].
Koepf [11] considered the Fekete-Szegö problem for K (β ) with some particular val-
ues of μ . Later, Abdel-Gawad [1] improved the results for any μ ∈ R without μ = 1.

In this paper, we concentrate on the Fekete-Szegö problem for the subclass
Pϕ(n,b,λ ) , which is discussed with four different cases as: (i) μ is special num-
ber, b ∈ C . (ii) μ ∈ C , b ∈ C . (iii) b > 0, μ ∈ R . (IV) μ ∈ R , b ∈ C . Also, a more
general class K (β ,n,λ ,g(z)) is considered on the same subject, which extends the
corresponding earlier results for the class K (β ) of strongly close-to-convex functions
of order β .

2. Main results

In order to derive our main results, we have to recall here the following Lemmas.

LEMMA 1. ([10]) Let g ∈ S∗ with g(z) = z+b2z2 +b3z3 + ... , then for real μ ,

|b3− μb2
2| � max{1, |3−4μ |}.

The result is sharp.

LEMMA 2. ([18]) Let p ∈ P with p(z) = 1+ c1z+ c2z2 + ..., then |cn| � 2 for
n � 1 . If |c1|= 2 then p(z) ≡ p1(z) = (1+ γ1z)/(1− γ1z) with γ1 = c1/2 . Conversely,
if p(z) ≡ p1(z) for some |γ1| = 1 , then c1 = 2γ1 and |c1| = 2 . Furthermore we have

∣∣∣c2 − c2
1

2

∣∣∣� 2− |c1|2
2

.

If |c1| < 2 and |c2− c2
1
2 | = 2− |c1|2

2 , then p(z) ≡ p2(z) , where

p2(z) =
1+ z γ2z+γ1

1+γ1γ2z

1− z γ2z+γ1
1+γ1γ2z

and γ1 = c1/2 , γ2 = 2c2−c2
1

4−|c1|2 . Conversely if p(z) = p2(z) for some |γ1|< 1 and |γ2|= 1 ,

then γ1 = c1/2 , γ2 = 2c2−c2
1

4−|c1|2 and |c2− c2
1
2 | = 2− |c1|2

2 .
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THEOREM 1. Let n � 0 , 0 � λ � 1, and Let b be nonzero complex number. If
f (z) ∈ Pϕ (n,b,λ ) , where ϕ(z) = 1+A1z+A2z2 + . . .+Anzn+ ... ,(A1 > 0) , then

|a2| � 1
2n

1
1+ λ

|b|A1, (2.1)

|a3| � 1
2
.

1
1+2λ

1
3n |b|A1 max

{
1,
∣∣∣bA1 +

A2

A1

∣∣∣}, (2.2)

∣∣∣∣∣a3−
2.4n−1.(1+ λ )2.(bA1 + A2

A1
−1)

3n(1+2λ )bA1
a2

2

∣∣∣∣∣� A1|b|
(2+4λ )3n . (2.3)

These results are sharp.

Proof. Let f (z) ∈ Pϕ(n,b,λ ) . Then there is a function w(z) , such that

1+
1
b

(
λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1 f (z)+ (1−λ )Dn f (z)

−1

)
= ϕ(w(z)), z ∈ Δ.

Define the function p(z) by

p(z) =
1+w(z)
1−w(z)

= 1+ r1z+ r2z
2 + ...≺ 1+ z

1− z
, z ∈ Δ. (2.4)

We can note that p(0) = 1 and p(z) is a function with positive real part. In fact, using
the (2.4), it is easy to know that

w(z) =
p(z)−1
p(z)+1

=
1
2

(
r1z+

(
r2 − r2

1

2

)
z2 + ...

)
,

So

1+
1
b

(
λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1 f (z)+ (1−λ )Dn f (z)

−1

)
= ϕ(w(z))

= 1+
1
2
A1r1z+

(1
2
A1

(
r2 − r2

1

2

)
+

1
4
A2r

2
1

)
z2 + ... (2.5)

Actually, a computation shows that

1+
1
b

(
λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1 f (z)+ (1−λ )Dn f (z)

−1

)

= 1+
1
b
2n(1+ λ )a2z+

1
b
[(2+4λ ).3na3− (1+ λ )24na2

2]z
2 + ... (2.6)

The equations (2.5) and (2.6) yield

1
b
2n(1+ λ )a2 =

1
2
A1r1,

1
b
[(2+4λ ).3na3− (1+ λ )24na2

2] =
1
2
A1

(
r2 − r2

1

2

)
+

1
4
A2r

2
1.

(2.7)
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Taking into account (2.7) and Lemma 2, we obtain

|a2| =
∣∣∣ 1
2n+1

1
1+ λ

bA1r1

∣∣∣� 1
2n

1
1+ λ

|b|A1, (2.8)

and

|a3| =
∣∣∣1
4
.
b
3n .

1
1+2λ

A1

[
r2 +

(1
2
bA1 +

1
2

A2

A1
− 1

2

)
r2
1

]∣∣∣
=
∣∣∣1
4
.
b
3n .

1
1+2λ

A1

[
r2 − 1

2
r2
1 +

r2
1

2
(bA1 +

A2

A1
)
]∣∣∣

� 1
4
.
|b|
3n .

1
1+2λ

A1

[
|r2− 1

2
r2
1|+

|r2
1|
2

|bA1 +
A2

A1
|
]

� 1
4
.
|b|
3n .

1
1+2λ

A1

[
2− 1

2
|r1|2 +

|r1|2
2

|bA1 +
A2

A1
|
]

=
1
4
.
|b|
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2[|bA1 +

A2

A1
|−1]

]
� 1

2
.

1
1+2λ

1
3n |b|A1 max

{
1, |bA1 +

A2

A1
|
}

.

Furthermore,∣∣∣∣∣a3−
2.4n−1.(1+ λ )2.(bA1 + A2

A1
−1)

3n(1+2λ )bA1
a2

2

∣∣∣∣∣=
∣∣∣1
4
.
b
3n .

1
1+2λ

A1r2

∣∣∣� A1|b|
(2+4λ )3n . (2.9)

An examination of the proof shows the first equality holds if c1 = 2. Equivalently, we
have p(z) = p1(z) = (1+ z)/(1− z) . Therefore, the extremal function in Pϕ(n,b,λ )
is defined by

1+
1
b

(
λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1 f (z)+ (1−λ )Dn f (z)

−1

)
= ϕ

( p1(z)−1
p1(z)+1

)
. (2.10)

Next, in (2.2), for first case, the equality holds if c1 = 0, c2 = 2. Equivalently, we have
p(z) = p2(z) = 1+z2

1−z2
. Therefore, the extremal functions in Pϕ(n,b,λ ) is given by

1+
1
b

(
λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1 f (z)+ (1−λ )Dn f (z)

−1

)
= ϕ

( p2(z)−1
p2(z)+1

)
. (2.11)

In (2.2), for the second case, the equality holds if c1 = 2, c2 = 2. Therefore, the
extremal function in Pϕ(n,b,λ ) is given by (2.10).

Finally, in (2.3), the equality holds. Obtained extremal function for (2.1) is also
valid for (2.3).

In fact, Theorem 1 gives a special case of Fekete-Szegö problem with

μ =
2.4n−1.(1+ λ )2.(bA1 + A2

A1
−1)

3n(1+2λ )bA1
,
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which obtain the naturally and simple estimate. Thus the proof is completed. �

Now, we consider the Fekete-Szegö problem with complex μ .

THEOREM 2. Let n � 0 , 0 � λ � 1 and Let b be a nonzero complex number. If
f (z) ∈ Pϕ (n,b,λ ) , then for any complex μ ,

|a3− μa2
2| �

⎧⎪⎪⎨
⎪⎪⎩

1
2
.
|b|
3n .

1
1+2λ

A1, U � 1,

1
2
.
|b|
3n .

1
1+2λ

A1U , U > 1.

where ϕ(z) = 1+A1z+A2z2 + ... ,(A1 > 0) , U =
∣∣∣bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

∣∣∣.
The results are sharp.

Proof. Following (2.7), we have

a3− μa2
2 =

1
4
.
b
3n .

1
1+2λ

A1

[
r2 +

(1
2
bA1 +

1
2

A2

A1
− 1

2

)
r2
1

]
− μ

1
(1+ λ )2

b2A2
1r

2
1

4n+1

=
1
4
.
b
3n .

1
1+2λ

A1

[
r2 +

(1
2
bA1 +

1
2

A2

A1
− 1

2

)
r2
1 −
(3

4

)n 1+2λ
(1+ λ )2 μbA1r

2
1

]

=
1
4
.
b
3n .

1
1+2λ

A1

[
r2 − 1

2
r2
1 +

1
2
r2
1

(
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

)]
.

Again, using the Lemma 2, it has

|a3− μa2
2| � 1

4
.
|b|
3n .

1
1+2λ

A1

∣∣∣r2 − 1
2
r2
1 +

1
2
r2
1

(
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

)∣∣∣
� 1

4
.
|b|
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[∣∣∣bA1 +
A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

∣∣∣−1
]]

� 1
2
.
|b|
3n .

1
1+2λ

A1 max
{

1,
∣∣∣bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

∣∣∣}.

Equality holds for each μ with the first case if fonctions in (2.11) and the second case
if functions in (2.10). Thus the proof is completed. �

Next, we want to consider the Fekete-Szegö problem with real μ and real b .

THEOREM 3. Let n � 0 , 0 � λ � 1 and Let b > 0 . If f (z) ∈ Pϕ(n,b,λ ) , then
for any real μ ,
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(1) If bA1 � 1 , we have |a3− μa2
2|

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

b
3n

1
1+2λ

A1

[
N1−2

(3
4

)n 1+2λ
(1+ λ )2 μbA1

]
, μ < A2

A1
N1,

1
2

b2

3n

1
1+2λ

A2
1,

A2
A1

N1 � μ < (N1−1)N2,

1
2

b
3n

1
1+2λ

A1, (N1 −1)N2 � μ < (N1 +1)N2,

1
2

b
3n

1
1+2λ

A1

[
2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−N1

]
, μ � (N1 +1)N2.

(2) If bA1 < 1 , we have |a3− μa2
2|

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

b
3n

1
1+2λ

A1

[
N1−2

(3
4

)n 1+2λ
(1+ λ )2 μbA1

]
, μ < (N1 −1)N2,

1
2

b
3n

1
1+2λ

A1, (N1 −1)N2 � μ < (N1 +1)N2,

1
2

b
3n

1
1+2λ

A1

[
2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−N1

]
, μ � (N1 +1)N2.

where ϕ(z) = 1+A1z+A2z2 + ...,(A1 > 0,A2 > 0) ,

N1 = bA1 +
A2

A1
, N2 =

4n(1+ λ )2

2A1b3n(1+2λ )
.

For each μ there is a function f ∈ Pϕ (n,b,λ ) such that equality holds.

Proof. It follows from (2.7) that

a3− μa2
2 =

1
4
.
b
3n .

1
1+2λ

A1

[
r2 − 1

2
r2
1 +

1
2
r2
1

(
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

)]
,

(2.12)
As the Lemma 2, we have

|a3− μa2
2| �

1
4
.
b
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[∣∣∣bA1 +
A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

∣∣∣−1
]]

.

(2.13)
Firstly, we want to consider the case with bA1 � 1. Several possible cases need to
further analyze.

Case 1. If μ � 4nA2(1+ λ )2

2A2
1b3n(1+2λ )

, using (2.13), we have

|a3− μa2
2| � 1

4
.
b
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−1

]]

� 1
2

b
3n

1
1+2λ

A1

[
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

]
.



650 L. XIONG, X. FENG AND J. ZHANG

Case 2. If
4nA2(1+ λ )2

2A2
1b3n(1+2λ )

� μ �
(
bA1 +

A2

A1
−1
) 4n(1+ λ )2

2A1b3n(1+2λ )
, using (2.13),

we have

|a3− μa2
2| � 1

4
.
b
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−1

]]

� 1
2

b
3n

1
1+2λ

A1

[
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

]
� 1

2
b2

3n

1
1+2λ

A2
1.

Case 3. If
(
bA1 +

A2

A1
−1
) 4n(1+ λ )2

2A1b3n(1+2λ )
� μ �

(
bA1 +

A2

A1

) 4n(1+ λ )2

2A1b3n(1+2λ )
,

we have

|a3− μa2
2| � 1

4
.
b
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[
bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−1

]]

� 1
2

b
3n

1
1+2λ

A1.

Case 4. If
(
bA1 +

A2

A1

) 4n(1+ λ )2

2A1b3n(1+2λ )
� μ �

(
bA1 +

A2

A1
+1
) 4n(1+ λ )2

2A1b3n(1+2λ )
,

we have

|a3− μa2
2| � 1

4
.
b
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[
2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−bA1− A2

A1
−1
]]

� 1
2

b
3n

1
1+2λ

A1.

Case 5. If μ �
(
bA1 +

A2

A1
+1
) 4n(1+ λ )2

2A1b3n(1+2λ )
, we have

|a3− μa2
2| � 1

4
.
b
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[
2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−bA1− A2

A1
−1
]]

� 1
2

b
3n

1
1+2λ

A1

[
2
(3

4

)n 1+2λ
(1+ λ )2 μbA1−bA1− A2

A1

]
.

Finally, if bA1 < 1, the similar discussions can readily yield the desired results.
If bA1 � 1, equality is attained for the second and third case on choosing c1 = 0,

c2 = 2 in (2.11). Also, equality is attained for the first and fourth case on choosing
c1 = 2, c2 = 2 and c1 = 2i , c2 = −2 in (2.10), respectively.

If bA1 � 1, equality is attained for the second case on choosing c1 = 0, c2 = 2 in
(2.11). Also, equality is attained for the first and third case on choosing c1 = 2, c2 = 2
and c1 = 2i , c2 = −2 in (2.10), respectively. Thus the proof is completed. �

Here, we discuss the Fekete-Szegö problem with complex b and real μ .

THEOREM 4. Let n � 0 , 0 � λ � 1 and Let b be a nonzero complex number. If
f (z) ∈ Pϕ (n,b,λ ) , then for any real μ ,
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(1) If |A2
A1

sinθ | < 1 , we have

|a3−μa2
2|�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|b|2A2
1

4n(1+ λ )2 (ℜ(X1)− μ)+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |, μ � M1,

1
2
.
|b|
3n .

1
1+2λ

A1, M1 < μ � M2,

|b|2A2
1

4n(1+ λ )2 (μ −ℜ(X1))+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |, μ > M2.

(2) If |A2
A1

sinθ | > 1 , we have

|a3− μa2
2| �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|b|2A2
1

4n(1+ λ )2 (ℜ(X1)− μ)+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |, μ � ℜ(X1),

|b|2A2
1

4n(1+ λ )2 (μ −ℜ(X1))+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |, μ > ℜ(X1).

where ϕ(z) = 1 + A1z + A2z2 + ... , b = |b|e−iθ , X1 = 4n(1+λ )2

2.3n.(1+2λ ) + 4n+1(1+λ )2A2e
iθ

8.3n(1+2λ )A2
1|b|

,

J1 = 4n+1(1+λ )2

8.3n.(1+2λ )|b|A1
, M1 = ℜ(X1)−J1(1−|A2

A1
||sinθ |) , M2 = ℜ(X1)+J1(1−

|A2
A1
||sinθ |) . For each μ there is a function in Pϕ(n,b,λ ) , such that the equality holds.

Proof. Suppose f (z) = z+
∞
∑

k=2
akzk ∈ Pϕ (n,b,λ ) , using (2.7), then we have

| a3 −μa2
2| =

1
4
.
|b|
3n .

1
1+2λ

A1

∣∣∣r2 − 1
2
r2
1 +

1
2
r2
1(bA1 +

A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1)

∣∣∣
� 1

4
.
|b|
3n .

1
1+2λ

A1

[
2+

1
2
|r1|2

[∣∣∣bA1 +
A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

∣∣∣−1
]]

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
1
8
|b|
3n .

1
1+2λ

A1

[∣∣∣bA1 +
A2

A1
−2
(3

4

)n 1+2λ
(1+ λ )2 μbA1

∣∣∣−1
]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
1
8
|b|
3n .

1
1+2λ

A1

[∣∣∣2(3
4

)n 1+2λ
(1+ λ )2 μbA1−bA1− A2

A1

∣∣∣−1
]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
1
8
|b|2
3n .

1
1+2λ

A1

[∣∣∣2(3
4

)n 1+2λ
(1+ λ )2 μA1−A1− A2

bA1

∣∣∣− 1
|b|
]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[∣∣∣μ − 4n(1+ λ )2

2.3n.(1+2λ )
− 4n+1(1+ λ )2A2

8.3n(1+2λ )A2
1

1
b

∣∣∣
− 4n+1(1+ λ )2

8.3n.(1+2λ )|b|A1

]
|r1|2. (2.14)

Taking b = |b|e−iθ ,
4n(1+ λ )2

2.3n.(1+2λ )
+

4n+1(1+ λ )2A2eiθ

8.3n(1+2λ )A2
1|b|

= X1 ,
4n+1(1+ λ )2

8.3n.(1+2λ )|b|A1
= J1 , a direct calculation with (2.14) shows that
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|a3− μa2
2|

�1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
|μ −X1|−J1

]
|r1|2

�1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
|μ −ℜ(X1)− i(Im(X1))|−J1

]
|r1|2

�1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
|μ −ℜ(X1)|+J1

∣∣∣A2

A1

∣∣∣|sinθ |−J1

]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
|μ −ℜ(X1)|−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)]

|r1|2.
(2.15)

Here, for later convenience as well, we set ℜ(X1)−J1(1−|A2
A1
||sinθ |)= M1 , ℜ(X1)

+ J1(1− |A2
A1
||sinθ |) = M2 . Now we make some discussions for several different

cases.
Firstly, if |A2

A1
||sinθ | � 1, we can note that M1 � ℜ(X1) � M2 . Thus, it gives

(i) Let μ � M1 . Then from (2.15) we have

|a3− μa2
2|

� 1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)
− μ

]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [M1− μ ]|r1|2

� 1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n(1+ λ )2 [M1− μ ]

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n(1+ λ )2 [ℜ(X1)− 4n+1(1+ λ )2

8.3n.(1+2λ )|b|A1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)
− μ ]

=
|b|2A2

1

4n(1+ λ )2 (ℜ(X1)− μ)+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |.

(ii) Let M1 < μ � ℜ(X1) , we have

|a3− μa2
2| � 1

2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)
− μ

]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [M1− μ ]|r1|2 � 1
2
.
|b|
3n .

1
1+2λ

A1.

(iii) Let ℜ(X1) < μ � M2 . Then from (2.15) we have

|a3− μa2
2| � 1

2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
μ −ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)]

|r1|2
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=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [μ −M2]|r1|2 � 1
2
.
|b|
3n .

1
1+2λ

A1.

(iiii) Let μ > M2 , we have

|a3− μa2
2| � 1

2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [μ −M2]|r1|2

� 1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n(1+ λ )2 [μ −M2]

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n(1+ λ )2

[
μ−ℜ(X1)− 4n+1(1+ λ )2

8.3n.(1+2λ )|b|A1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)]

=
|b|2A2

1

4n(1+ λ )2 (μ −ℜ(X1))+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |.

Moreover, if |A2
A1
||sinθ | > 1, we can note that M2 � ℜ(X1) � M1 . Thus, it gives

(i) Let μ � M2 . Then from (2.15), we have

|a3− μa2
2| � 1

2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)
− μ

]
|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [M1− μ ]|r1|2

� 1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n(1+ λ )2

[
ℜ(X1)− 4n+1(1+ λ )2

8.3n.(1+2λ )|b|A1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)
−μ
]

=
|b|2A2

1

4n(1+ λ )2 (ℜ(X1)− μ)+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |.

(ii) Let M2 < μ � ℜ(X1) . Then

|a3− μa2
2| � 1

2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)
− μ

]
|r1|2

� |b|2A2
1

4n(1+ λ )2 (ℜ(X1)− μ)+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |.

(iii) Let ℜ(X1) < μ � M1 . Then we have

|a3− μa2
2| � 1

2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
μ −ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)]

|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [μ −M2]|r1|2

� |b|2A2
1

4n(1+ λ )2 (μ −ℜ(X1))+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |.
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(iiii) Let μ > M1 . Then we have

|a3− μa2
2|

� 1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2

[
μ −ℜ(X1)−J1

(
1−
∣∣∣A2

A1

∣∣∣|sinθ |
)]

|r1|2

=
1
2
.
|b|
3n .

1
1+2λ

A1 +
|b|2A2

1

4n+1(1+ λ )2 [μ −M2]|r1|2

� |b|2A2
1

4n(1+ λ )2 (μ −ℜ(X1))+
1
2
.
|b|
3n .

1
1+2λ

|A2||sinθ |.

Thus the proof is completed. �

Motivated essentially by the earlier works of Abdel-Gawad [1], Koepf [11], we
extend the corresponding results by investigating the class K (β ,n,λ ,g(z)) in the next
Theorem.

THEOREM 5. If f (z) = z+
∞
∑

k=2
akzk ∈ K (β ,n,λ ,g(z)) , then for 0 � β � 1 , 0 �

λ � 1 , μ ∈ R, we have
|a3− μa2

2| �⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ(x0)|μ=W1 +(W1− μ)
[ β
2n(1+ λ )

+1
]2

, i f μ � W1,

Λ(x0), i f W1 � μ � W2
(β+1)(μ−W2)

W2
Θ(1,1)+

β+1
W2

(W2
β+2
β+1

−μ).Λ(x0)|μ=W2 , i f W2 � μ � W2
β+2
β+1 ,

Θ(1,1)+
(

μ −W2
β +2
β +1

)[ β
2n(1+ λ )

+1
]2

, i f μ � W2
β+2
β+1 .

where

W1 =
8n+1(1+ λ )3−2.4n+1(1+ λ )2(1−β )

4β .3n+1(1+2λ )+2.6n+1(1+ λ )(1+2λ )
, W2 =

1
2

(4
3

)n+1
.
(1+ λ )2

1+2λ
,

Λ(x0) = 1− μ +
β

3n+1(1+2λ )

(
2− 1

2
x2
0

)
+

β 2[(1+ λ )24n+1−2.3n+1(1+2λ )μ ]
2.12n+1(1+ λ )2(1+2λ )

x2
0

+β
4n+1(1+ λ )2−2.3n+1(1+2λ )μ

6n+1(1+ λ )(1+2λ )
x0,

Θ(1,1) =
2n+3β (1+ λ )−4β −8.3n(1+2λ )(β +1)+4n+1(1+ λ )2(β +2)

2.3n+1(1+2λ )(β +1)

+
1
3

+
2β

3n+1(1+2λ )
.
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x0 =
2n+1(1+ λ )[4n+1(1+ λ )2−2.3n+1(1+2λ )μ ]

4n+1(1+ λ )2(1−β )+2β .3n+1(1+2λ )μ
.

For each μ there are functions in K (β ,n,λ ,g(z)) such that equality holds in all cases.

Proof. If f (z) = z+
∞
∑

k=2
akzk ∈ K (β ,n,λ ,g(z)) , then there are analytic functions

g(z) and h(z) , such that

λDn+2 f (z)+ (1−λ )Dn+1 f (z)
λDn+1g(z)+ (1−λ )Dng(z)

= (h(z))β , (2.16)

where g(z) = z + b2z2 + b3z3 + ... ∈ S∗ , h(z) = 1 + c1z + c2z2 + ... ∈ P . Equating
coefficients of the power series in the relation with (2.16) we find that

2n+1(1+ λ )a2 = c1β +2n(1+ λ )b2, (2.17)

and

3n+1(2λ +1)a3 =
β (β −1)

2
c2
1 +2n(1+ λ )b2c1β + βc2 +3n(2λ +1)b3. (2.18)

From (2.17) and (2.18), it follows that

a3− μa2
2 =

1
3
(b3 − 3

4
μb2

2)+ β
( 2n(1+ λ )

3n+1(1+2λ )
− μ

2n+1(1+ λ )

)
b2c1

+
β

3n+1(1+2λ )

{
c2 +

[β [(1+ λ )24n+1−2.3n+1(1+2λ )μ ]
2(1+ λ )2.4n+1 − 1

2

]
c2
1

}
. (2.19)

Suppose

W1 =
8n+1(1+ λ )3−2.4n+1(1+ λ )2(1−β )

4β .3n+1(1+2λ )+2.6n+1(1+ λ )(1+2λ )
, W2 =

1
2

(4
3

)n+1
.
(1+ λ )2

1+2λ
,

where 0 � β � 1, 0 � λ � 1. We next consider the different cases for μ .
Firstly, let W1 � μ � W2 , with the aid of Lemma 1 and Lemma 2, we obtain

|a3− μa2
2|

�1
3

∣∣∣b3− 3
4

μb2
2

∣∣∣+ β
3n+1(1+2λ )

∣∣∣c2 − 1
2
c2
1

∣∣∣
+

β 2[(1+ λ )24n+1−2.3n+1(1+2λ )μ ]
2.12n+1(1+ λ )2(1+2λ )

|c2
1|+ β

4n+1(1+ λ )2−2.3n+1(1+2λ )μ
6n+1(1+ λ )(1+2λ )

|c1|

�1− μ +
β

3n+1(1+2λ )

(
2− 1

2
|c1|2

)
+

β 2[(1+ λ )24n+1−2.3n+1(1+2λ )μ ]
2.12n+1(1+ λ )2(1+2λ )

|c1|2

+ β
4n+1(1+ λ )2−2.3n+1(1+2λ )μ

6n+1(1+ λ )(1+2λ )
|c1| = Λ(x) say, with x = |c1|. (2.20)
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Now, we take Λ′(x) = 0, it gives the stable point

x0 =
2n+1(1+ λ )[4n+1(1+ λ )2−2.3n+1(1+2λ )μ ]

4n+1(1+ λ )2(1−β )+2β .3n+1(1+2λ )μ
,

moreover,

Λ′′(x) =
β 2[(1+ λ )2.4n+1−2.3n+1(1+2λ )μ ]−4n+1(1+ λ )2β

12n+1(1+2λ )(1+ λ )2 < 0,

it implies that max{Λ(x) : x = |c1|} = Λ(x0). So (2.20) gives the desired estimate on
|a3− μa2

2| .
In fact, since x = |c1|� 2, it follows that μ �W1. Furthermore, equality is attained

for this case by choosing c1 = x0,c2 = 2,b2 = 2,b3 = 3 in (2.19).
Let, now μ � W1 , then

|a3− μa2
2| � |a3−W1a

2
2|+(W1− μ)|a2|2. (2.21)

Using the result already proved in first case with μ = W1 , we have |a3 −W1a2
2| �

Λ(x0)|μ=W1 . Also, applying (2.17) we get |a2| � β
2n(1+λ ) +1. Thus (2.21) shows that

|a3− μa2
2| � Λ(x0)|μ=W1 +(W1− μ)

[ β
2n(1+ λ )

+1
]2

. (2.22)

The equality for (2.22) is attained when c1 = x0|μ=W1 , c2 = 2, b2 = 2, b3 = 3 in (2.19).

Let, now W2 � μ � W2
β+2
β+1 . Then a computation shows that

a3−μa2
2 =
(β +1

W2
μ−β −1

)(
a3−W2

β +2
β +1

a2
2

)
+

β +1
W2

(
W2

β +2
β +1

−μ
)(

a3−W2a
2
2

)
.

It yields

|a3−μa2
2|=

(β +1
W2

μ−β −1
)∣∣∣a3−W2

β +2
β +1

a2
2

∣∣∣+ β +1
W2

(
W2

β +2
β +1

−μ
)
|a3−W2a

2
2|.

(2.23)
We deal first with the case μ = W2

β+2
β+1 . Since g ∈ S∗ , so there is a function p(z) =

1+ p1z+ p2z2 + ... ∈ P , satisfying zg′(z) = g(z)p(z) , where b2 = p1 , 2b3 = p2
1 + p2.

Thus we have

a3−W2
β +2
β +1

a2
2

=
1
6

(
p2− 1

2
p2

1

)
+
[1
4
− 1

6

(4
3

)n (1+ λ )2

1+2λ )
β +2
β +1

]
p2

1 +
β

3n+1(1+2λ )
(c2 − 1

2
c2
1)

+
−β 2

2.3n+1(β +1)(1+2λ )
c2
1 + β

[ 2n(1+ λ )
3n+1(1+2λ )

− 1
2

(2
3

)n+1 1+ λ
1+2λ

β +2
β +1

]
p1c1,

(2.24)
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moreover,

∣∣∣a3−W2
β +2
β +1

a2
2

∣∣∣
�1

6

∣∣∣p2− 1
2

p2
1

∣∣∣+ [1
6

(4
3

)n (1+ λ )2

1+2λ )
β +2
β +1

− 1
4

]
|p2

1|+
β

3n+1(1+2λ )

∣∣∣c2− 1
2
c2
1

∣∣∣
+

β 2

2.3n+1(β +1)(1+2λ )
|c2

1|+ β
[1
2

(2
3

)n+1 1+ λ
1+2λ

β +2
β +1

− 2n(1+ λ )
3n+1(1+2λ )

]
|p1c1|

�1
6

(
2− 1

2
|p1|2

)
+
[1
6

(4
3

)n (1+ λ )2

1+2λ )
β +2
β +1

− 1
4

]
|p1|2 +

β
3n+1(1+2λ )

(
2− 1

2
|c1|2

)

+
β 2

2.3n+1(β +1)(1+2λ )
|c1|2 + β

2n+1(1+ λ )
2.3n+1(1+2λ )(β +1)

|p1c1|,

=
1
3

+
2β

3n+1(1+2λ )
− 2.3n(1+2λ )(β +1)−4n(1+ λ )2(β +2)

6.3n(1+2λ )(β +1)
|p1|2

− β
2.3n+1(β +1)(1+2λ )

|c1|2 + β
2n+1(1+ λ )

2.3n+1(1+2λ )(β +1)
|p1c1|.

Letting p1 = 2reiθ , c1 = 2Reiϕ , where 0 � θ � 2π , 0 � ϕ � 2π , 0 � r � 1, and
0 � R � 1. Following the above inequality, we have

∣∣∣a3−W2
β +2
β +1

a2
2

∣∣∣� 1
3

+
2β

3n+1(1+2λ )
−4r2 2.3n(1+2λ )(β +1)−4n(1+ λ )2(β +2)

6.3n(1+2λ )(β +1)

−4R2 β
2.3n+1(β +1)(1+2λ )

+4Rrβ
2n+1(1+ λ )

2.3n+1(1+2λ )(β +1)
= Θ(R,r).

Letting n , β and λ fixed and differentiating Θ(R,r) partially with n � 0, 0 � β � 1,
and 0 � λ � 1, we have

ΘRR.Θrr −Θ2
Rr =

128β .3n(1+2λ )(β +1)−128β .4n(1+ λ )2(β +1)
12.32n+1(1+2λ )2(1+ β )2 < 0.

Therefore, the maximum of Θ(R,r) occurs on the boundaries, which yields

∣∣∣a3−W2
β +2
β +1

a2
2

∣∣∣� Θ(R,r) � Θ(1,1)

=
1
3
+

2β
3n+1(1+2λ )

+
2n+3β (1+λ )−4β−8.3n(1+2λ )(β+1)+4n+1(1+λ )2(β+2)

2.3n+1(1+2λ )(β+1)
.

(2.25)
Now, applying the first case with μ = W2 , we get |a3−W2a2

2|� Λ(x0)|μ=W2 . It follows
from the (2.23) and (2.25) that

|a3− μa2
2| �

(β +1
W2

μ −β −1
)

Θ(1,1)+
β +1
W2

(
W2

β +2
β +1

− μ
)
.Λ(x0)|μ=W2 .
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Equality is attained on choosing c1 = b2 = 2i , c2 = −2, b3 = −3 in (2.19).
Finally, if μ � W2

β+2
β+1 , then with the aid of the result already proved for μ = W2

and a2 � β
2n(1+λ ) +1, we have

|a3− μa2
2| �

∣∣∣a3−W2
β +2
β +1

a2
2

∣∣∣+ ∣∣∣W2
β +2
β +1

− μ
∣∣∣|a2|2

� Θ(1,1)+
(

μ −W2
β +2
β +1

)[ β
2n(1+ λ )

+1
]2

.

Equality is attained on choosing c1 = b2 = 2i , c2 = −2, b3 = −3 in (2.19). Thus the
proof is completed. �

REMARK.
(1) Setting n = 0, b = 1, λ = 0 in Theorem 1, Theorem 2, Theorem 3 and The-

orem 4, respectively, we obtain the corresponding results on the classes S∗(ϕ) defined
by Ma-Minda [12].

(2) Setting n = 0, b = 1, λ = 1 in Theorem 1, Theorem 2, Theorem 3 and The-
orem 4, respectively, we obtain the corresponding results on the classes C(ϕ) defined
by Ma-Minda [12]

(3) Setting n = 0, b = 1, λ = 0, ϕ(z) = 1+Az
1+Bz (−1 � A < B � 1) in Theorem

1, Theorem 2, Theorem 3 and Theorem 4, respectively, we obtain the corresponding
results on the classes S∗[A,B] defined by Janowski [7].

(4) Setting n = 0, b = 1, λ = 1, ϕ(z) = 1+Az
1+Bz (−1 � A < B � 1) in Theorem

1, Theorem 2, Theorem 3 and Theorem 4, respectively, we obtain the corresponding
results on the classes C[A,B] defined by Janowski [7].

(5) Setting n = 0, b = 1, λ = 0 in Theorem 5, we obtain the results proved by
Abdel-Gawad [1].

(6) Setting n = 0, b = 1, λ = 0, β = 1 in Theorem 5, we obtain the results proved
by Keogh [9].
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