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Abstract. In this paper, we investigate the Schur m-power convexity of the generalized hamy
symmetric function

F∗
n (x,r) = ∑

i1+i2+···+in=r
(xi1

1 xi2
2 · · · xin

n )
1
r

for x ∈ R
n
+ and r ∈ N with 1 � r � n , which generalizes some known results.

1. Introduction

Let R+ := (0,∞) . For x = (x1,x2, · · · ,xn) ∈ R
n
+ , let

An(x) =
1
n

n

∑
i=1

xi, and Gn(x) =

(
n

∏
i=1

xi

) 1
n

. (1.1)

denote the classical arithmetic and geometric means, respectively.
The classical arithmetic and geometric mean inequality states that:

Gn(x) � An(x). (1.2)

A large number of proofs, generalizations and refinements of inequality (1.2) were
given in [2, 3, 11, 14, 15].

The Hamy symmetric function [2, 7, 11] is defined by

Fn(x,r) = Fn(x1,x2, · · · ,xn;r) = ∑
1�i1<i2<···<in�n

(
r

∏
j=1

xi j

) 1
r

, r = 1,2, · · · ,n (1.3)

Its properties and applications can be found in [2].
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In 2006, Guan [7] defined the following generalized Hamy symmetric function

F∗
n (x,r) = ∑

i1+i2+···+in=r

(xi1
1 xi2

2 · · ·xin
n )

1
r , (1.4)

where i1, i2, · · · , in are non-negative integers, r ∈ N .
In 1923, the Schur convex function was introduced in [17] by Schur, and it plays

an important role in the study of analytic inequalities [2-35]. Hereafter, Hard, Little-
wood, Polya, and Wang also investigated the Schur convexity of several functions, and
obtained some important inequalities [12, 23].

Guan [7] proved Hamy symmetric function Fn(x,r) and its generalized Hamy one
F∗

n (x,r) are Schur concave in R
n
+ , and obtained some interesting analytic inequalities.

The notions of Schur geometrical convexity and Schur harmonic convexity were
introduced by Zhang [35] and Anderson et al. [1], respectively. Guan [8] proved the
Hamy symmetric function Fn(x,r) and its generalized one F∗

n (x,r) are geometrically
convex on R

n
+ . Chu and Sun [4] showed that the generalized Hamy symmetric function

F∗
n (x,r) is Schur harmonic convex on R

n
+ .

Recently, Yang [29-31] generalized the notion of Schur convexity to Schur f-
convexity, which contains the Schur geometrical convexity, Schur harmonic convexity
and so on. Moreover, he discussed Schur m-power convexity of Stolarsky means [29],
Gini means [30] and Daróczy means [31].

The purpose of this paper is to discuss the Schur m-power convexity of the gener-
alized Hamy symmetric function F∗

n (x,r) .
Our main results are stated as follows.

THEOREM 1.1. For fixed r ∈ N with 1 � r � n, F∗
n (x,r) is Schur m-power con-

cave on R
n
+ when m � 1 and Schur m-power convex on R

n
+ when m � 1

r .

Taking r = 1, we get

COROLLARY 1.2. For fixed r ∈ N with 1 � r � n, F∗
n (x,1) = ∑n

i=1 xi is Schur
m-power concave on R

n
+ when m � 1 and Schur m-power convex on R

n
+ when m � 1 .

COROLLARY 1.3. For fixed r ∈N with 1 � r � n, the function F∗
n (x,r)

F∗
n (1−x,1) is Schur

m-power concave on (0, 1
2 )n when m � 1 and Schur m-power convex on (0, 1

2 )n when
m � 1

r .

REMARK. Since the Schur m-power convexity contains the Schur convexity, Schur
geometrical convexity and Schur harmonic convexity, respectively, our result general-
izes some known results.
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2. Definitions and Lemmas

We first introduce the following definitions and lemmas.

LEMMA 2.1. ([17,23]) Let x = (x1,x2, · · · ,xn) and y = (y1,y2, · · · ,yn) ∈ R
n be

two n-tuples real numbers. y majorizes x (in symbols x ≺ y ), if ∑k
i=1 x[i] � ∑k

i=1 y[i] ,
(k = 1,2, · · · ,n−1) and ∑n

i=1 x[i] = ∑n
i=1 y[i] , where x[1] � x[2] � · · · � x[n], y[1] � y[2] �

· · · � y[n] are rearrangements of x and y in a descending order.

LEMMA 2.2. ([17,23]) A real-valued function f : Ω ⊂ R
n → R is said to be

Schur convex on Ω if

x ≺ y on Ω ⇒ f (x) � f (y).

f is a Schur concave function on Ω if and only if − f is a Schur convex function.

Recently, Yang present the Schur f-convexity in [29] as follows.

LEMMA 2.3. ([29−31]) Let Ω ⊆ R
n be a set with nonempty interior and f be

a strictly monotone function defined on Ω . Suppose that

f (x) = ( f (x1), f (x2), · · · , f (xn)) and f (y) = ( f (y1), f (y2), · · · , f (yn)).

Then function ϕ : Ω → R is said to be Schur f-convex on Ω if f (x) ≺ f (y) on Ω
implies ψ(x) � ψ(y) .

ψ is said to be Schur m-power concave if −ψ is Schur m-power convex.

LEMMA 2.4. ([29−31]) Let f : R+ → R be defined by f (x) = (xm − 1)/m if
m 	= 0 and f (x) = lnx if m = 0 . Then function ψ : Ω ⊆ R

n
+ → R is said to be Schur

m-power convex on Ω if f (x) ≺ f (y) on Ω implies ψ(x) � ψ(y) .

LEMMA 2.5. ([29−31]) Let ψ : Ω ⊆ R
n
+ → R be continuous on Ω and differ-

entiable in Ω0 . Then ψ is schur m-power convex (Schur m-power concave) on Ω if
and only if ψ is symmetric on Ω and

xm
1 − xm

2

m

(
x1−m
1

∂ϕ
∂x1

− x1−m
2

∂ϕ
∂x2

)
� (�)0 if m 	= 0, (2.1)

(lnx1 − lnx2)
(

x1
∂ϕ
∂x1

− x2
∂ϕ
∂x2

)
� (�)0 if m = 0, (2.2)

hold for any x = (x1,x2, · · · ,xn) ∈ Ω0 with x1 	= x2 , where Ω ⊆ R
n
+ is a symmetric set

with nonempty interior Ω0 .

The following lemma is clearly due to the monotonicity property of the function
xp on (0,∞) , which will be used to prove our main result.
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LEMMA 2.6. For x1,x2 > 0 with x1 	= x2 , let U be defined by

U(p;x1,x2) :=
xp
1 − xp

2

p(x1− x2)
, if p 	= 0 and U(0;x1,x2) :=

lnx1− lnx2

x1− x2
. (2.3)

Then sgn
(

xp
1−xp

2
p(x1−x2)

)
= 1.

REMARK 2.7. Lemma 2.6, we see that

sgn

(
xp
1 − xp

2

p

)
= sgn(x1− x2) if p 	= 0 and sgn(lnx1− lnx2) = sgn(x1− x2).

Then the two discrimination inequalities in Lemma 2.5 are equivalent to

(x1 − x2)
(

x1−m
1

∂ϕ
∂x1

− x1−m
2

∂ϕ
∂x3

)
� (�)0. (2.4)

The valuable suggestion is due to Ming Li.
Next, recall that the complete symmetric function in [9] defined by

Cr(x) = Cr(x1,x2, · · · ,xn) = ∑
i1+i2+···+in=r

xi1
1 xi2

2 · · ·xin
n ,

where i1, i2, · · · , in are non-negative integers, r ∈ N with 1 � r � n , and C0(x) = 1.
Guan [34] obtained its property as follows.

LEMMA 2.8. ([9]) Suppose that x = (x1,x2, · · · ,xn) ∈ R
n
+ . If

xi = (x1,x2, · · · ,xi−1,xi+1, · · · ,xn),

then
Cr(x) = xiCr−1(x)+Cr(xi). (2.5)

3. Proof of main results

Proof of Theorem 1.1. For fixed r , let u = (u1,u2, · · · ,un) , ui = r
√

xi , i = 1,2, · · · ,n .
Then F∗

n (x,r) = Cr(u) . From Lemma 2.8, it follows that

∂Cr(u)
∂uk

= Cr−1(u)+uk
∂Cr−1(u)

∂uk
, k = 1,2, · · · ,n. (3.1)

Hence, we get

∂Cr(u)
∂uk

= Cr−1(u)+ukCr−2(u)+u2
kCr−2(u)+ · · ·+ur−2

k Cr−2(u)+ur−1
k . (3.2)



SCHUR M-POWER CONVEXITY OF GENERALIZED HAMY SYMMETRIC FUNCTION 665

Differentiating F∗
n (x,r) with respect to x1 and using (3.2), we obtain

∂F∗
n (x,r)
∂x1

=
n

∑
k=1

∂Cr(u)
∂uk

· ∂uk

∂x1
=

∂Cr(u)
∂u1

· ∂u1

∂x1

=
(
Cr−1(u)+u1Cr−2(u)+u2

1Cr−2(u)+ · · ·+ur−2
1 Cr−2(u)+ur−1

1

) r
√

x1

rx1

=
1
r

r

∑
j=1

Cr− j(u)x
j−r
r

1 .

(3.3)

Similarly, we have

∂F∗
n (x,r)
∂x2

=
1
r

r

∑
j=1

Cr− j(u)x
j−r
r

2 . (3.4)

By Lemma 2.5 and Remark 2.7, and combining (3.3) with (3.4), we find that

Δ1 =(x1− x2)
(

x1−m
1

∂F∗
n (x,r)
∂x1

− x1−m
2

∂F∗
n (x,r)
∂x2

)

=
(x1− x2)

r

r

∑
j=1

[
Cr− j(u)

(
x

j
r−m
1 − x

j
r −m
2

)]

=
(x1− x2)2

r

r

∑
j=1

⎡
⎢⎢⎣( j

r
−m

)
Cr− j(u)

(
x

j
r −m
1 − x

j
r−m
2

)
( j

r −m)(x1− x2)

⎤
⎥⎥⎦

=
(x1− x2)2

r

r

∑
j=1

[( j
r
−m

)
Cr− j(u)U(

j
r
−m;x1,x2)

]
,

(3.5)

where U(p;x1,x2) is defined by (2.3).
On the other hand, Lemma 2.6 implies that for x1,x2 > 0, U(p;x1,x2) > 0. So, to

guarantee Δ1 � (�)0, it suffices to

j
r
−m � (�)0, j = 1,2, · · · ,r.

Solving the inequalities for m yield m � 1
r or m � 1. Thus, the proof of Theorem 1.1

is complete. �

Proof of Corollary 1.3. For fixed r ∈ N with 1 � r � n , let φ(x,r) = F∗
n (x,r)

F∗
n (1−x,1) .

Differentiating φ with respect to xi shows that

∂φ(x,r)
∂xi

=
1

(F∗
n (1−x,1))2

(
F∗

n (1−x,1) · ∂F∗
n (x,r)
∂xi

+F∗
n (x,r)

)
, i = 1,2. (3.7)
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From (3.7) it follows that

Δ2 = (x1 − x2)
(

x1−m
1

∂φ(x,r)
∂x1

− x1−m
2

∂φ(x,r)
∂x2

)

=
x1−x2

F∗
n (1−x,1)

(
x1−m
1

∂F∗
n (x,r)
∂x1

−x1−m
2

∂F∗
n (x,r)
∂x2

)
+

φ(x,r)
F∗

n (1−x,1)
(x1−x2)(x1−m

1 −x1−m
2 )

=
1

F∗
n (1−x,1)

·Δ1 +
φ(x,r)

F∗
n (1−x,1)

x1−m
1 − x1−m

2

(1−m)(x1− x2)
· (1−m)(x1− x2)2

=
1

F∗
n (1−x,1)

·Δ1 +
φ(x,r) · (1−m)(x1− x2)2

F∗
n (1−x,1)

U(1−m;x1,x2),

where U(p;x1,x2) is defined by (2.3), and U(p;x1,x2) > 0.
Clearly, for m � 1, it is seen that Δ1 � 0 and 1−m � 0, which yield Δ2 � 0,

that is, F∗
n (x,r)

F∗
n (1−x,1) is Schur m-power concave on (0, 1

2)n . In the same way, for m � 1
r ,

F∗
n (x,r)

F∗
n (1−x,1) is Schur m-power convex on (0, 1

2)n .
This completes the proof. �
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