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ON THE RANGE OF THE PARAMETERS FOR THE
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(Communicated by J. Pečarić)

Abstract. We will investigate the range of the parameters which make the grand Furuta inequality
valid.

1. Introduction

A bounded linear operator T on a Hilbert space is said to be positive semidefinite
(denoted by 0 � T ) if 0 � (Th,h) for all vectors h . We write 0 < T if T is positive
semidefinite and invertible.

Furuta obtained an epochmaking extension of the Löwner-Heinz inequality.

THEOREM 1.1. [2] Let 0 � p, 1 � q and 0 � r with p+ r � (1+ r)q. If 0 �
B � A holds, then (

A
r
2 Bp A

r
2

) 1
q � A

p+r
q .

It is well-known that Theorem 1.1 is equivalent to the next theorem, which is often
called the essential case of the Furuta inequality.

THEOREM 1.2. Let 1 � p and 0 � r . If 0 � B � A holds, then

(
A

r
2 Bp A

r
2

) 1+r
p+r � A1+r.

The following result by Tanahashi is a full description of the best possibility of the
range

p+ r � (1+ r)q and 1 � q

as far as all parameters are positive. We would like to emphasize that the theorem can
be divided into 2 cases.
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THEOREM 1.3. [7] Let p, q, r be positive real numbers. If (1+ r)q < p+ r or
0 < q < 1 , then there exist 2×2 matrices A, B with 0 < B � A that do not satisfy the
inequality (

A
r
2 Bp A

r
2

) 1
q � A

p+r
q .

The next proposition is corresponding to the case (1+ r)q < p+ r of the previous

theorem by putting q =
p+ r

(1+ r)α
.

PROPOSITION 1.4. Let 0 < p, 0 � r . If 1 < α , then there exist 2× 2 matrices
A, B with 0 < B � A that do not satisfy the inequality

(
A

r
2 Bp A

r
2

) 1+r
p+r α

� A(1+r)α .

On the other hand, the following “α -free” proposition is corresponding to the case

0 < q < 1 of Theorem 1.3 by putting q =
p+ r
1+ r

.

PROPOSITION 1.5. Let 0 < p < 1 and 0 < r . Then there exist 2× 2 matrices
A, B with 0 < B � A that do not satisfy the inequality

(
A

r
2 Bp A

r
2

) 1+r
p+r � A1+r.

Since the condition q =
p+ r
1+ r

is the essential case for the Furuta inequality, our

interest about Proposition 1.5 is not at all inferior to Proposition 1.4.
By the way, Furuta gave a unifying extension of both Theorem 1.1 and the Ando-

Hiai inequality [1], which is often called the grand Furuta inequality.

THEOREM 1.6. [3] Let 1 � p, 1 � s, 0 � t � 1 and t � r . If 0 � B � A with
0 < A, then the following inequality holds:

{
A

r
2

(
A− t

2 Bp A− t
2

)s
A

r
2

} 1−t+r
(p−t)s+r � A1−t+r. (1)

Again, Tanahashi showed that the outside powers in this theorem are best possible.

THEOREM 1.7. [8] Let 1 � p, 1 � s, 0 � t � 1 and t � r . If 1 < α , then there
exist 2×2 matrices A, B with 0 < B � A that do not satisfy the inequality

{
A

r
2

(
A− t

2 Bp A− t
2

)s
A

r
2

} 1−t+r
(p−t)s+r α

� A(1−t+r)α .

REMARK 1.8. In [8], Theorem 1.7 is originally stated as follows:
Let p,r,s, t be real numbers satisfying 1 < s , 0 < t < 1, t � r , 1 � p . If

1− t + r
(p− t)s+ r

< α,
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then there exist invertible matrices A, B with 0 � B � A which do not satisfy{
A

r
2

(
A− t

2 Bp A− t
2

)s
A

r
2

}α
� A{(p−t)s+r}α .

These are just rephrasing, although their α differs each other. Theorem 1.7 can be
naturally considered as an extension of Proposition 1.4. Indeed, if we put s = 1, t = 0
in Theorem 1.7, then we obtain Proposition 1.4 restricted as 1 � p . On the other hand,
being different from Theorem 1.3, even if all parameters are positive, Theorem 1.7 does
not show that the range

1 � p, 1 � s, 0 � t � 1, t � r

can not be expanded anymore for the grand Furuta inequality to be valid. Thus the
clarification of best possibility of the grand Furuta inequality is less satisfactory than
that of the Furuta inequality. So our problem is to determine the range:{

(p,s, t,r) ∈ R
4
+; the inequality (1) holds whenever 0 < B � A

}
.

Although it will be a nice theorem if one could show the full solution only at once, it
seems difficult to the author. Therefore, we should pile up several main cases of the
problem.

It is quite natural to expect “α -free” version which can be regarded as correspond-
ing to Proposition 1.5. The following result obtained by Koizumi and the author is such
an attempt.

THEOREM 1.9. [5] Let 0 < p, 0 < s, 0 < t � 1 and t � r . Suppose that

t < p and
1− t + r

(p− t)s+ r
· sp < 1.

Then there exist 2×2 matrices A, B with 0 < B � A that do not satisfy the inequality
(1).

REMARK 1.10. The quantity
1− t + r

(p− t)s+ r
· sp in the above assumption has an

essential meaning. It also appears in a certain functional inequality (cf. [9]).

(a) If 1 � p , 1 � s , 0 � t � 1 and t � r , then
1− t + r

(p− t)s+ r
� 1 � 1− t + r

(p− t)s+ r
· sp .

(b) If 0 < p , 0 < s < 1, sp < 1 and 0 < t � r , then
1− t + r

(p− t)s+ r
· sp < 1.

REMARK 1.11. The case (ii) of [5, Theorem 2.1] by Koizumi and the author treats
the case 0 < p = t < 1, 0 < s , t < r . However, we have A1 < A2 by the notations in
[5] and the proof for (i) is not applicable to (ii). It seems still open.

The author obtained the following theorem, which can be regarded as correspond-
ing to Proposition 1.5. The advantage is that the assumption on parameters other than
0 < s < 1 are very mild. It is not required to assume sp < 1 as in the condition (b) of
Remark 1.10.
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THEOREM 1.12. [10] Let 1 < p, 0 < s < 1 , 0 < t < 1+r and ts < r . Then there
exist 2×2 matrices A, B with 0 < B � A that do not satisfy the inequality (1).

In [10], we used matrices(
x2 +1 x

x 3

)
and

(
1 0
0 2

)
.

The purpose of this article is to show another theorem which has the same conclusion
as Theorem 1.12, for parameters of a different condition, by using other matrices.

2. Preliminaries

In this section, we will explain the outline of Tanahashi’s argument in [7] and [8]
without proofs.

Let A, B be 2× 2 matrices with 0 < B � A and B =
(

1 0
0 b

)
, and let U be a

unitary which diagonalizes A as U∗AU =
(

d1 0
0 d2

)
. Assume A and B satisfy the

grand Furuta inequality (1). Put α = 1− t + r and ψ = (p− t)s+ r . Then

{
U∗A

r
2U
(
U∗A− t

2UU∗BpUU∗A− t
2U
)s

U∗A
r
2U
} α

ψ � U∗AαU,

hence we have

{(
d

r
2
1 0

0 d
r
2
2

)[(
d
− t

2
1 0

0 d
− t

2
2

)
U∗
(

1 0
0 bp

)
U

(
d
− t

2
1 0

0 d
− t

2
2

)]s(
d

r
2
1 0

0 d
r
2
2

)} α
ψ

�
(

dα
1 0
0 dα

2

)
. (2)

Denote (
d
− t

2
1 0

0 d
− t

2
2

)
U∗
(

1 0
0 bp

)
U

(
d
− t

2
1 0

0 d
− t

2
2

)
= k

(
A1 A3

A3 A2

)
,

where k is a positive scalar to be specified later.

LEMMA 2.1. Suppose that A1 < A2 and A3 < 0 . Let

V =
1√−A1 +A2 +2ε1

( √
ε1 −√−A1 +A2 + ε1

−√−A1 +A2 + ε1 −√
ε1

)

where

2ε1 = A1 −A2 +
√

(A1−A2)2 +4A2
3.
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Then A3 = −√(−A1 +A2 + ε1)ε1 , V is unitary and

V ∗
(

A1 A3

A3 A2

)
V =

(
A2 + ε1 0

0 A1− ε1

)
.

The formula (2) implies

{(
d

r
2
1 0

0 d
r
2
2

)
ksV

(
(A2 + ε1)s 0

0 (A1 − ε1)s

)
V ∗
(

d
r
2
1 0

0 d
r
2
2

)} α
ψ

�
(

dα
1 0
0 dα

2

)
.

Write the left-hand matrix as

ks α
ψ (−A1 +A2 +2ε1)

− α
ψ

(
B1 B3

B3 B2

) α
ψ

,

where

B1 = dr
1 {ε1(A2 + ε1)s +(−A1 +A2 + ε1)(A1 − ε1)s}

B2 = dr
2 {(−A1 +A2 + ε1)(A2 + ε1)s + ε1(A1 − ε1)s}

B3 = −d
r
2
1 d

r
2
2

√
(−A1 +A2 + ε1)ε1 {(A2 + ε1)s − (A1− ε1)s} .

LEMMA 2.2. Keep the situation as above. Assume that B2 < B1 . Then the fol-
lowing inequality holds:

ε2

{
γdα

1 − (B2− ε2)
α
ψ
}{

(B1 + ε2)
α
ψ − γdα

2

}
�(B1−B2 + ε2)

{
γdα

1 − (B1 + ε2)
α
ψ
}{

γdα
2 − (B2− ε2)

α
ψ
}

, (3)

where

ε2 =
1
2

(
−B1 +B2 +

√
(B1−B2)2 +4B2

3

)
,

γ =
{
k−s(−A1 +A2 +2ε1)

} α
ψ .

3. Results

The method of our proof of the following theorem is the same as Tanahashi’s argu-
ment, which is also used in [5] and [10] by the author. However, the details are differ-
ent, and details are important for this kind of problems under consideration. Needless
to say, different parameters may bring different conclusions (if we change 0 < p < 1,
1 � t < 1 + r to 1 � p , 0 � t � 1, t � r and try to trace the argument, then any
contradiction does not arise). We would like to emphasize there are several branching
points such that the conditions about parameters in the assumption are to be reflected
to powers or coefficients in calculations.
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THEOREM 3.1. Let 0 < p < 1 , 1 < s, 1 � t < 1+ r and 0 < (p− t)s+ r . Then
there exist 2×2 matrices A, B with 0 < B � A that do not satisfy the inequality

{
A

r
2

(
A− t

2 Bp A− t
2

)s
A

r
2

} 1−t+r
(p−t)s+r � A1−t+r.

Proof. We will consider matrices

A =

(
2 x

x 2x2

)
and B =

(
1 0
0 x2

)
.

Then we have 0 < B � A . The eigenvalues of A are x2 +1±
√

x4− x2 +1. Let

c =

√
x4 − x2 +1− x2 +1

x
and U =

1√
c2 +1

(
c 1
1 −c

)
.

Then U is unitary and U∗AU =
(

d1 0
0 d2

)
, where

d1 = x2 +1+
√

x4− x2 +1, d2 = x2 +1−
√

x4− x2 +1.

Assume A and B satisfy the grand Furuta inequality (1). Then we have

A1 = d−t
1 (x2p +c2), A2 = d−t

2 (1+x2pc2), A3 = −d
− t

2
1 d

− t
2

2 (x2p−1)c, k =
1

c2 +1

by the notation of the previous section.
In this article, it is sufficient to estimate only main terms. One can easily establish

the following formulae:

√
x4− x2 +1 = x2− 1

2
+o(1), c =

1
2x

(1+o(1)),

d1 = 2x2 (1+o(1)), d2 =
3
2

(1+o(1)),

A1 = 2−tx2(p−t) (1+o(1)), A2 =
(

3
2

)−t

(1+o(1)), A2
3 =

3−t

4
x4p−2t−2 (1+o(1)),

where f (x) = o(1) means that f (x) → 0 (x → +∞) . �

By 0 < p < 1 � t , we have A1 < A2 for sufficiently large x . It is elementary to
see that

A2−A1 = 3−t2t(1+o(1)), (A2−A1)
(

4A2
3

(A1−A2)2

)2

∼ x8p−4t−4 = x4p−2t−2o(1)
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and

ε1 =
1
2
(A2−A1)

⎛
⎝−1+

√
1+

4A2
3

(A1 −A2)2

⎞
⎠

=
1
2
(A2−A1)

{( 1
2
1

)
4A2

3

(A1−A2)2 +
(1

2
2

)(
4A2

3

(A1 −A2)2

)2

+ · · ·
}

=
A2

3

A2−A1
+ x4p−2t−2o(1)

=
3−t

4
x4p−2t−2 (1+o(1))

{
3−t2t(1+o(1))

}−1 + x4p−2t−2o(1)

= 2−t−2x4p−2t−2 (1+o(1)).

Obviously, the main terms of −A1 +A2 +2ε1 , −A1 +A2 + ε1 and A2 + ε1 (resp.
A1− ε1 ) are the same as A2 (resp. A1 ), so

(−A1 +A2 + ε1)(A2 + ε1)s = 2t+ts3−t−ts(1+o(1)),

ε1(A1 − ε1)s = 2−t−2−tsx4p−2t−2+2(p−t)s(1+o(1)),

(−A1 +A2 + ε1)(A1 − ε1)s = 2t−ts3−tx2(p−t)s(1+o(1)),

ε1(A2 + ε1)s = 2−t−2+ts3−tsx4p−2t−2(1+o(1)).

Since 4p−2t−2+2(p− t)s < 0, we have

ε1(A1− ε1)s < (−A1 +A2 + ε1)(A2 + ε1)s

for sufficiently large x . Hence we can obtain

B2 = 2−r+t+ts3r−t−ts(1+o(1)),

B2
3 = 2−2+2ts3r−t−2tsx2r+4p−2t−2(1+o(1)).

On the other hand, the signature of 2(p− t)s− (4p−2t−2) is still undetermined;
it is positive if s ≈ 1, p ≈ 0, and negative if s is large. Hence we have to divide our
argument into cases in order to obtain the main term of

B1 = 2rx2r
{

2−t−2x4p−2t−23−ts2ts (1+o(1))+3−t2t2−tsx2(p−t)s (1+o(1))
}

.

3.1. s < 1+
1− p
t− p

Let 4p− 2t− 2 < 2(p− t)s . In this case, we have ε1(A2 + ε1)s < (−A1 + A2 +
ε1)(A1 − ε1)s for sufficiently large x , hence

B1 = 2r+t−ts3−tx2r+2(p−t)s(1+o(1)).
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Since 0 < ψ , we have B2 < B1 for sufficiently large x , the main term of B1−B2 is the
same as B1 , and hence

B2
3

(B1−B2)2 ∼ x2r+4p−2t−2

x4(p−t)s+4r
=

1

x4(p−t)s+2r−4p+2t+2
,

(B1−B2)
(

4B2
3

(B1−B2)2

)2

∼ x2(p−t)s+2r ·
(

1

x4(p−t)s+2r−4p+2t+2

)2

= x−2(p−t)s+4p−2t−2 · 1

x4(p−t)s+2r−4p+2t+2
= x−2(p−t)s+4p−2t−2o(1),

where we use {2(p− t)s−4p+2t+2}+2{(p− t)s+ r}> 0. Therefore,

ε2 =
1
2

(
−B1 +B2 +

√
(B1−B2)2 +4B2

3

)
=

1
2
(B1−B2)

⎛
⎝−1+

√
1+

4B2
3

(B1 −B2)2

⎞
⎠

=
1
2
(B1−B2)

{( 1
2
1

)
4B2

3

(B1−B2)2 +
( 1

2
2

)(
4B2

3

(B1−B2)2

)2

+ · · ·
}

=
B2

3

B1 −B2
+ x−2(p−t)s+4p−2t−2o(1)

= 2−2+3ts−r−t3r−2tsx−2(p−t)s+4p−2t−2(1+o(1)),

so we have

B2 − ε2 = 2−r+t+ts3r−t−ts(1+o(1))−2−2+3ts−r−t3r−2tsx−2(p−t)s+4p−2t−2(1+o(1))

= 2−r+t+ts3r−t−ts(1+o(1)),

where we use 0 < 2ps−2ts−4p+2t+2.
The main term of B1 + ε2 is the same as B1 , and so

(B1 + ε2)
α
ψ =

(
2r+t−ts3−t) α

ψ x2α(1+o(1)).

Now we should apply Lemma 2.2 to derive a contradiction.

Since
(
c2 +1

)s (−A1 +A2 +2ε1) = 2t3−t(1+o(1)) , we have γ = 2t α
ψ 3−t α

ψ (1
+o(1)) .

One can easily see the estimations of 5 factors in the formula (3) as follows:

γdα
1 − (B2− ε2)

α
ψ = 2t α

ψ +α3−t α
ψ x2α (1+o(1)),

(B1 + ε2)
α
ψ − γdα

2 =
(
2r+t−ts3−t) α

ψ x2α(1+o(1)),

B1−B2 + ε2 = 2r+t−ts3−tx2(p−t)s+2r(1+o(1)),

γdα
1 − (B1 + ε2)

α
ψ = 2t α

ψ
(
2α −2(r−ts) α

ψ
)

3−t α
ψ x2α (1+o(1)),

γdα
2 − (B2− ε2)

α
ψ = 2t α

ψ 3−t α
ψ

{(
3
2

)α
−
(

3
2

)(r−ts) α
ψ
}

(1+o(1)),
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where we use 0 < α . Applying these estimations to the inequality (3), we obtain

23ts−r−t−23r−2ts2α (2r+t−ts3−t) α
ψ (1+o(1))

�2r+t−ts3−t
(
2α −2(r−ts) α

ψ
)

2t α
ψ 3−t α

ψ

{(
3
2

)α
−
(

3
2

)(r−ts) α
ψ
}

· x2(p−t)s+2rx−{−2(p−t)s+4p−2t−2}x−2α(1+o(1)).

For the power of x , we have

2(p− t)s+2r−{−2(p− t)s+4p−2t−2}−2α = 4(p− t)(s−1) < 0,

where we use p < t , 1 < s . Letting x → ∞ , we have

0 < 23ts−r−t−23r−2ts2α (2r+t−ts3−t) α
ψ � 0.

This is a contradiction.

3.2. s = 1+
1− p
t− p

Let 4p− 2t − 2 = 2(p− t)s . It is not difficult to modify the argument in the
previous subsection and to obtain

γdα
1 − (B2− ε2)

α
ψ = c1x

2α(1+o(1)),

(B1 + ε2)
α
ψ − γdα

2 = c2x
2α(1+o(1)),

B1−B2 + ε2 = c3x
2(p−t)s+2r(1+o(1)),

γdα
1 − (B1 + ε2)

α
ψ = c4x

2α (1+o(1)),

γdα
2 − (B2− ε2)

α
ψ = c5(1+o(1)),

where c j( j = 1, · · ·5) are constants with 0 < c1,c2 .
These estimations can be applied to the inequality (3). By letting x → ∞ and

using 0 < p < 1, we can obtain a contradiction 0 < c1c2 � 0 of the same type as the
subsection 3.1.

3.3. 1+
1− p
t − p

< s

Let 2(p− t)s < 4p− 2t− 2. In this case, we have (−A1 +A2 + ε1)(A1 − ε1)s <
ε1(A2 + ε1)s for sufficiently large x , hence

B1 = 2r−t−2+ts3−tsx2r+4p−2t−2(1+o(1)).

Since 2ps−2ts−4p+2t+2 < 0, it is obvious that −4p+2t +2 < 2(t− p)s < 2r , so
we have B2 < B1 for sufficiently large x , and the main term of B1−B2 is the same as
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B1 . We can still apply Lemma 2.2, however, the estimations are changed, so we should
check the calculation.

B2
3

(B1−B2)2 ∼ x2r+4p−2t−2

x2(2r+4p−2t−2) =
1

x2r+4p−2t−2 ,

(B1−B2)
(

4B2
3

(B1 −B2)2

)2

∼ x2r+4p−2t−2 ·
(

1
x2r+4p−2t−2

)2

=
1

x2r+4p−2t−2 = o(1).

Therefore,

ε2 =
B2

3

B1 −B2
+o(1)

= 2−2+2ts3r−t−2tsx2r+4p−2t−2(1+o(1)) · (2r−t−2+ts3−tsx2r+4p−2t−2 (1+o(1))
)−1

+o(1)

= 2ts−r+t3r−t−ts(1+o(1)),

so the main terms of B2 and ε2 are cancelled by subtraction,

B2− ε2 = 2−r+t+ts3r−t−ts(1+o(1))−2ts−r+t3r−t−ts(1+o(1)) = o(1).

The main term of B1 + ε2 is the same as B1 ,

(B1 + ε2)
α
ψ =

(
2r−t−2+ts3−tsx2r+4p−2t−2) α

ψ (1+o(1)).

One can easily see the estimations of the factors in the formula (3).

γdα
1 − (B2− ε2)

α
ψ = 2t α

ψ +α3−t α
ψ x2α (1+o(1)),

(B1 + ε2)
α
ψ − γdα

2 =
(
2r−t−2+ts3−tsx2r+4p−2t−2) α

ψ (1+o(1)),

B1−B2 + ε2 = 2r−t−2+ts3−tsx2r+4p−2t−2 (1+o(1)),

γdα
1 − (B1 + ε2)

α
ψ = 2t α

ψ 3−t α
ψ (1+o(1)) ·2αx2α (1+o(1))

− (2r−t−2+ts3−tsx2r+4p−2t−2) α
ψ (1+o(1))

= −(2r−t−2+ts3−tsx2r+4p−2t−2) α
ψ (1+o(1)),

γdα
2 − (B2− ε2)

α
ψ = 2t α

ψ −α3−t α
ψ +α(1+o(1)),

where we used

2α − (2r+4p−2t−2)
α
ψ

=
α
ψ
{2(p− t)s−4p+2t+2} < 0.

Applying these estimations to the inequality (3), we obtain

2ts−r+t3r−t−ts2t α
ψ +α3−t α

ψ
(
2r−t−2+ts3−ts) α

ψ (1+o(1))

�−2r−t−2+ts3−ts (2r−t−2+ts3−ts) α
ψ 2t α

ψ −α3−t α
ψ +αx2r+4p−2t−2x−2α(1+o(1)).
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For the power of x , we have

(2r+4p−2t−2)−2α = 4p−4 < 0.

Letting x → ∞ , we have

0 < 2ts−r+t3r−t−ts2t α
ψ +α3−t α

ψ
(
2r−t−2+ts3−ts) α

ψ � 0.

This is a contradiction and completes the proof. �
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