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Abstract. A finite form of Jensen’s inequality for a continuous convex function from a topolog-
ical abelian semigroup to another topological ordered abelian semigroup is given by the author
and S.-E. Takahasi. As an application of this abstract Jensen’s inequality, two inequalities with
respect to geometric mean and arithmetic mean are obtained. The first gives a new refinement of
the geometric-arithmetic mean inequality. The second gives a refinement between the arithmetic
mean and a certain mean.

1. Introduction

The finite form of Jensen’s inequality proved by Jensen [1] in 1906 asserts that
if #;,---,t, are positive numbers with 3 ;#; =1 and f is a continuous convex (resp.
concave) function on a real interval 7, then

f itixi <itif(xi) resp. f itixi Zilif(xi)
=1 =1 =1 =1

holds for all x,---,x, € 1.

In [3], the author and Takahasi have introduced a concept called (*,0)-convex
(or concave) for a continuous function from a topological abelian semigroup (I,*)
to another topological ordered abelian semigroup (J,0), and give an abstract Jensen’s
inequality for such a function. Applying this abstract Jensen’s inequality, we give two
interesting inequalities related to the geometric mean and the arithmetic mean. The first
(Theorem 1) is a new refinement of the geometric-arithmetic mean inequality and the
second (Theorem 2) is a refinement between the arithmetic mean and a certain mean
related to the geometric mean.
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2. Terminology and main results

Let I be a topological space and * a topological abelian semigroup operation on
I. For any x € I and n € N, define the n-th power xW of x recursively by xe = x
and x D = xWs wx forn > 1.

We assume that

(#1) any n-th power function: x — XM isa bijection of I onto itself.

By the assumption ({1 ), for each x € I and n € N, there exists a unique element a of 1
such that a* = x. Denote by x/m+ such an element a. Moreover, we define

s/ = (<0/m-) s

for each m,n € N. Then we can easily see that this definition is well-defined. In this
case, we can easily show that the following power laws:
(9)-

xPHa)e — (P g (@) 1 (Pa)s (x<p>*> and (xxy) (P = xPhgy (1)

forall p,q € Q+ and x,y € I. Here Q. denotes the set of all positive rational numbers.
Furthermore, we assume that

(#2) for each x € I, the function p — x(P)+ is continuous on Q. and it has a continuous
extension to R, , say 7 — x()+ |

Here R denotes the set of all positive real numbers. Therefore power laws (1) hold for
all p,q € R;. Denote by <7, (I) the set of all topological abelian semigroup operations
on [ satisfying both (#; ) and (). Our assumption (f ) leads to the following important
concept called mean. For each x,y € I, put

M, (x,y) = (xxy) 120,

We call M. (x,y) the mean of x and y with respect to the operation .

Now let J be a topological ordered space with relation <, and denote by df J)=
/?(J,<) the set of all operations o € <7, (J) satisfying the following two conditions:
(b1) a<bsaoc<bocforall a,b,ceJ
and
(b2) a<b=a"> <b forall a,bcJ and r € R,

Let C(I,J) be the set of all continuous functions from 7 to J. Take * € <7, (I),
o€ ?(J,<) and f € C(I,J) arbitrarily. If f satisfies

M (x,9)) < Mo(f(x), £ () (resp. f(Mx(x,y)) = Mo(f(x), f(¥)))

forall x,y € I, then f is said to be (x,0)-convex (resp. concave).
In [3], the author and Takahasi have shown the following theorem which states a
finite form of Jensen’s inequality for a (x,o)-convex (or concave) function.
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THEOREM A. Let x € o/, (I) and o € &/2(J,<). If f € C(1,J) is (x,0)-convex,
then

O k) < Fr) @2 0o f () e
holds forall n € N, x1,---,.x, €l and t1,---;t, ERL witht; +---+t, = 1.

If f is (x,0)-concave, then the inequality above is reversed.

REMARK 1. The above theorem is the inheritance of the idea of [2, Theorem 1]
which gives a new interpretation of Jensen’s inequality by ¢-mean.

As an application of Theorem A, we have the following

THEOREM 1. Let ay,---,an,t1,---,tn >0 with t{ +---+1t, = 1 and put

(GA), =T T(as+1) 1

i=1

foreach t > 0. Then {(GA), :t > 0} is strictly monotone increasing and

tlLIg(GA)t = Zi tia;

holds.

REMARK 2. The above theorem gives a strict refinement of the geometric-arithmetic
mean inequality:

[1d < (GA) < Y tia; (1>0).

i=1 i=1
Furthermore, as another application of Theorem A, we have the following
THEOREM 2. Let 0 < ay,---,ap,t1, -t <1 with t; +---+t, = 1 and put

1 H?Zl(l +tai)ti — H?Zl(l —tai)t"
(AP)I E——, . n :
t I (U +ta)t +TT (1 — tay)

foreach t with 0 <t < 1. Then {(AP), : 0 <t < 1} is strictly monotone increasing
and

n
lim(AP); = tia;.
tlf(I)l( ) Z{ a

holds.

REMARK 3. The above theorem gives a strict refinement between Y.\, t;a; and
(AP);:

1 '.1_ 1 N "’l_ 1—a: t;
Ztiai < (AP)t < Hl_l( +al) l_l( al)
i=1

O0<r<]).
s T (1 ag | )
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3. Proofs of main results
In order to show our main results, we must prepare several lemmas.

LEMMA 1. Let I and J be two ordered topological spaces. Suppose that there
exists a homeomorphism @ of I onto J such that both ¢ and ¢~ are monotone
increasing or monotone decreasing. Let o € /2(J) and put aopb = ¢~ (¢(a)o @(b))
foreach a,b c 1. Then

(i) op € F2(I).

(i) "% 0g-0gay? = g7 (9(a) )= 00 @lay) ) ) holds forall ay, -,
a, €I and ty,---,t, > 0.

Proof. (i) It is obvious that o, is a topological abelian semigroup operation on
1. Note that a"°0 = ¢~'((¢(a)™*) for each a € I and n € N. Then oy satisfies

the condition (#). Moreover we have that a0 = @~ 1((¢(a)?)) for each a € I
and p € Q. Then o, satisfies the condition (#). Suppose that both ¢ and o~ ! are
monotone increasing. Then

b@QD(a) o(b)
¢(a)oo(c) < p(b)oo(c)
¢~ (9(a)op(c) <9~ (9(b)og(c))

(z)ao(pcébo(pc

forall a,b,c € I. Then oy, satisfies the condition (b1). Furthermore we have

for all a,b € and t € Ry.. Then o, satisfies the condition (h,). Consequently we
obtain that oy € df (J). If both @ and @~ are monotone decreasing, then we obtain
the same result by using the same method above.

(i) Let ay,---,a,,t1,---,t, > 0. Then we have

(tl)c (tn)o
al (P O(P---O(Pan (P

1 <(p(a1)(n)o> 0p+0p " ((p(an)(”1>°>
O <¢(a1)(n)o O(p(az)(fZ)o) 0 0p ¢! ((p(a,,)(’")°>

=¢
o

=o' () o0 p(a) ).
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and hence the desired equality holds. [

LEMMA 2. Let fi,---, fu be differentiable positive-valued functions on a real in-
terval I and ty,---.,t, > 0. Then

d n ) n . n
ST =TTA0 Y
i=1 i=1 i=1

I

fi (%)
fi(x)

holds for all x € 1.

Proof. Straightforward. [J

Now note that R is an ordered topological space with the ordinary order and the
ordinary topology. Let + be the ordinary additive operation on R. Then it is obvious
that + € &7?(R).

Proof of Theorem 1. Take t > 0 arbitrarily and put I, = {x € R:x > —t}. Then
I; is an ordered topological spaces with the ordinary order and the ordinary topology.
Consider the following function

o (x) =log(x+1) (xeL).

Then ¢, is a homeomorphism of I, onto R. Moreover both ¢, and ¢, ! are strictly
monotone increasing, and hence (+)g, € %f(lt) by Lemma 1-(i). For the sake of
simplicity, let o, = (+)q, . Since ¢, '(y) = ¢* —¢ for all y € R, we have from simple
computation that

ao,b=(a+1t)(b+1)—1t

forall a,b € l;.
Now let ay,---,a, € I, and t,---,t, > 0. Then we have from Lemma 1-(ii) that

agtl)ol O__.Oagltn)ol _ (p[_l(tl(pt(al)+"'+tn(pt(an))

n

=[(ai+0)" —1=(GA).

i=1

Assume that 0 <7 < s, andso I; C I;. Let 1 : I; — I, be the identity mapping. Then 1t
is (o7,04)-convex. Indeed,

lMOt(aab) :Mot(a,b = (a o; b)(1/2)0,

=+/(a+1t)(b+1)—1

~—| —

<V(a+s)(b+s)—s
=M, (a,b) = M., (1a,1b)

holds for all a,b € I,. Therefore if ¢ 4 ---+1, = 1, then we have from Theorem A
that (GA), < (GA)y. However, (GA), < (GA); holds. Indeed, if (GA), = (GA);, then
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" (ai+x)" = x+ ¢ must hold for all x € R with # <x < s and a constant ¢ € R.

This is a contradiction.
We next show that limy_...(GA); = X, tia;. To do this, put

n—1 4
a;+t
1) =
p(t) g(anH)

for each ¢ > 0. Then we have that (GA); = a,p(t) + (p(t) — 1)t (¢ > 0). Obviously,
lim; . p(t) = 1. Also we have from Lemma 2 that

lim(p(r) — l)tzlimM

t—oo x]0 X
lim d "=/ 1+aix )\
= 11 _—
xl0 dx -7 \ 1+ apx

14 aix \ ] ti(ai—ay)
=1
;ﬁlH(l—i-anx) g{ (I +aix) (1 +aux)

=nai+-+ty_1a-1— 1+ +ta—1)an.

Therefore

hm(GA)t—an—Hlal—k o 1a,— 1—(l1+ 1 a,,— leal,

{—o00
as required. Thus we obtain the desired result. [J

Proof of Theorem 2. Let 0 <t <1 andput ; = {x € R:0<x < 1/t}. Then
I; is an ordered topological spaces with the ordinary order and the ordinary topology.
Consider the following function

@ (x) =tanh~ ! (tx) (x€ 1)

Then ¢ is a homeomorphism of I, onto R,.. Moreover both ¢, and ¢! are strictly
monotone increasing, and hence (+)q, € 72(I;) by Lemma 1-(i). For the sake of
simplicity, let o; = (4), -

Now let 0 < ay,---,an,t1, -+, t, <1 with t; +---+1t,=1. Then ay,---,a, € I,
and hence we have from Lemma 1-(ii) that

1
a(ltl)"’ O+ 0y a,(f")°' = tanh (t1 tanh_l(ml) 4+t tanh_l(tan)) .

Since tanh™!(x) =log, /42 (0 <x < 1), it follows that

1+ta,>[i/2

tltanh‘l(ta1)+---+t,,tanh (tay) logH<1 ;
—ta;
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Therefore we have

(t1)o; (tn)o,

1
ay, oproray T = ;tanhlog

On the other hand, we have

1
ao b= — tanh (tanh™' (@) + tanh ™! (1))

(L+ta)(1+41D)
(I —ta)(1—1D)

1
=7 tanhlog

LY
kY

1 ta+tb
Tt 1—|—(ta)(tb)

1+ta)(1+tb
1—ta)( 1 th

1+ta)( +tb
1—ta)(

(
(
(
(

1+t2 b(t>0ab61t)

Let a,b € I;. Then the solution of the equation xo, x = ao; b,x € I, is given by

1 +12ab — /(1 —12a?)(1 —12b?)

M., (a,b) =

?(a+Db)
Put f(x) = M., (a,b) for each x € R with 0 < x <. By simple computation, we have
22— -2/ (x I—a)(x 2 - D2
fay== < Voo )>O(O<x<t).

(a+Db) x3\/ X2 —a?)(x —b2)
Then Mo, (a,b) > M, (a,b) holds when 0 < s < ¢. This means that the identity mapping
from I, to I is (o;,05)-concave when 0 < s < 7. Therefore it follows from Theorem A

that

(AP)[ _ Clgtl)o, O +++ 0O agltn)ot 2 agfl)os Og -+ Oy aglln)ox — (AP)s (O <§< t)
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holds. However, (AP); < (AP); (0 <s <) holds. Indeed, if (AP); = (AP), and
0<s<t,then

i (1 +xa) =TT (1 — xai)™

g (Uay) + TT (1 —xap)s
must hold for all x € R with s <x <t and a constant ¢ € R. This is a contraction. Also
we have from Lemma 2 that

n

n
lim(AP); = %hm% (H(l +ait)i =[]0 —an)"
i=1

t]0 t]0 -1

i=1 i=1 i=1

d
_ 111111 - (1 —|—a-t)t’ z tzaz +H l—at 1 i tia;
2110 ! 1—a

Thus we obtain the desired result. [l

REMARK 4. We can show that Y} | tja; < (AP); (0 <7 < 1) in other ways. In-
deed,

2—12a® —1*b* —2/(1 —12a?)(1 - 2p?)
2t2(a+Db)

M., (a,b) — M (a,b) =

/

holds for all a,b € I,. Then the identity mapping from I, to R is (o;,+)-concave,
and hence

(AP), = a(ltl)ot Op =0y as,t")o’ >a ( oy -+ ay (1) Etla,
i=1

holds by Theorem A.
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