
Journal of
Mathematical

Inequalities

Volume 8, Number 4 (2014), 685–692 doi:10.7153/jmi-08-51

REFINEMENTS OF SOME INEQUALITIES

RELATED TO JENSEN’S INEQUALITY

YASUO NAKASUJI

Dedicated to Professor Sin-Ei Takahasi
on the occasion of his 70th birthday

(Communicated by J. Matkowski)

Abstract. A finite form of Jensen’s inequality for a continuous convex function from a topolog-
ical abelian semigroup to another topological ordered abelian semigroup is given by the author
and S.-E. Takahasi. As an application of this abstract Jensen’s inequality, two inequalities with
respect to geometric mean and arithmetic mean are obtained. The first gives a new refinement of
the geometric-arithmetic mean inequality. The second gives a refinement between the arithmetic
mean and a certain mean.

1. Introduction

The finite form of Jensen’s inequality proved by Jensen [1] in 1906 asserts that
if t1, · · · , tn are positive numbers with ∑n

i=1 ti = 1 and f is a continuous convex (resp.
concave) function on a real interval I , then

f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)

(
resp. f

(
n

∑
i=1

tixi

)
�

n

∑
i=1

ti f (xi)

)

holds for all x1, · · · ,xn ∈ I .
In [3], the author and Takahasi have introduced a concept called (∗,◦ )-convex

(or concave) for a continuous function from a topological abelian semigroup (I,∗)
to another topological ordered abelian semigroup (J,◦) , and give an abstract Jensen’s
inequality for such a function. Applying this abstract Jensen’s inequality, we give two
interesting inequalities related to the geometric mean and the arithmetic mean. The first
(Theorem 1) is a new refinement of the geometric-arithmetic mean inequality and the
second (Theorem 2) is a refinement between the arithmetic mean and a certain mean
related to the geometric mean.
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2. Terminology and main results

Let I be a topological space and ∗ a topological abelian semigroup operation on
I . For any x ∈ I and n ∈ N , define the n -th power x(n)∗ of x recursively by x(1)∗ = x
and x(n+1)∗ = x(n)∗ ∗ x for n � 1.

We assume that

(�1 ) any n -th power function: x �→ x(n)∗ is a bijection of I onto itself.

By the assumption (�1 ), for each x ∈ I and n ∈ N , there exists a unique element a of I
such that a(n)∗ = x . Denote by x(1/n)∗ such an element a . Moreover, we define

x(m/n)∗ =
(
x(1/n)∗

)(m)∗

for each m,n ∈ N . Then we can easily see that this definition is well-defined. In this
case, we can easily show that the following power laws:

x(p+q)∗ = x(p)∗ ∗ y(q)∗ ,x(pq)∗ =
(
x(p)∗

)(q)∗
and (x∗ y)(p)∗ = x(p)∗ ∗ y(p)∗ (1)

for all p,q∈Q+ and x,y∈ I . Here Q+ denotes the set of all positive rational numbers.
Furthermore, we assume that

(�2) for each x∈ I , the function p �→ x(p)∗ is continuous on Q+ and it has a continuous
extension to R+ , say t �→ x(t)∗ .

Here R+ denotes the set of all positive real numbers. Therefore power laws (1) hold for
all p,q∈R+ . Denote by A+(I) the set of all topological abelian semigroup operations
on I satisfying both (�1 ) and (�2 ). Our assumption (�1 ) leads to the following important
concept called mean . For each x,y ∈ I , put

M∗(x,y) = (x∗ y)(1/2)∗.

We call M∗(x,y) the mean of x and y with respect to the operation ∗ .
Now let J be a topological ordered space with relation � , and denote by A 0

+(J) =
A 0

+(J,�) the set of all operations ◦ ∈ A+(J) satisfying the following two conditions:
(�1) a � b ⇔ a ◦ c � b ◦ c for all a,b,c ∈ J
and
(�2) a � b ⇒ a(t)◦ � b(t)◦ for all a,b ∈ J and t ∈ R+ .

Let C(I,J) be the set of all continuous functions from I to J . Take ∗ ∈ A+(I) ,
◦ ∈ A 0

+(J,�) and f ∈C(I,J) arbitrarily. If f satisfies

f (M∗(x,y)) � M◦( f (x), f (y)) (resp. f (M∗(x,y)) � M◦( f (x), f (y)))

for all x,y ∈ I , then f is said to be (∗,◦)-convex (resp. concave).
In [3], the author and Takahasi have shown the following theorem which states a

finite form of Jensen’s inequality for a (∗,◦)-convex (or concave) function.
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THEOREM A. Let ∗ ∈ A+(I) and ◦ ∈ A 0
+(J,�) . If f ∈C(I,J) is (∗,◦)-convex,

then
f (x(t1)∗

1 ∗ · · · ∗ x(tn)∗
n ) � f (x1)(t1)◦ ◦ · · · ◦ f (xn)(tn)◦

holds for all n ∈ N , x1, · · ·,xn ∈ I and t1, · · ·,tn ∈ R+ with t1 + · · ·+ tn = 1 .
If f is (∗,◦)-concave, then the inequality above is reversed.

REMARK 1. The above theorem is the inheritance of the idea of [2, Theorem 1]
which gives a new interpretation of Jensen’s inequality by ϕ -mean.

As an application of Theorem A, we have the following

THEOREM 1. Let a1, · · · ,an,t1, · · · ,tn > 0 with t1 + · · ·+ tn = 1 and put

(GA)t =
n

∏
i=1

(ai + t)ti − t

for each t � 0 . Then {(GA)t : t � 0} is strictly monotone increasing and

lim
t→∞

(GA)t =
n

∑
i=1

tiai

holds.

REMARK 2. The above theorem gives a strict refinement of the geometric-arithmetic
mean inequality:

n

∏
i=1

ati
i < (GA)t <

n

∑
i=1

tiai (t > 0).

Furthermore, as another application of Theorem A, we have the following

THEOREM 2. Let 0 < a1, · · · ,an,t1, · · · ,tn < 1 with t1 + · · ·+ tn = 1 and put

(AP)t =
1
t

∏n
i=1(1+ tai)ti −∏n

i=1(1− tai)ti

∏n
i=1(1+ tai)ti + ∏n

i=1(1− tai)ti

for each t with 0 < t � 1 . Then {(AP)t : 0 < t � 1} is strictly monotone increasing
and

lim
t↓0

(AP)t =
n

∑
i=1

tiai.

holds.

REMARK 3. The above theorem gives a strict refinement between ∑n
i=1 tiai and

(AP)1 :
n

∑
i=1

tiai < (AP)t <
∏n

i=1(1+ai)ti −∏n
i=1(1−ai)ti

∏n
i=1(1+ai)ti + ∏n

i=1(1−ai)ti
(0 < t < 1).
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3. Proofs of main results

In order to show our main results, we must prepare several lemmas.

LEMMA 1. Let I and J be two ordered topological spaces. Suppose that there
exists a homeomorphism ϕ of I onto J such that both ϕ and ϕ−1 are monotone
increasing or monotone decreasing. Let ◦ ∈A 0

+(J) and put a◦ϕ b = ϕ−1(ϕ(a)◦ϕ(b))
for each a,b ∈ I . Then

(i) ◦ϕ ∈ A 0
+(I) .

(ii) a
(t1)◦ϕ
1 ◦ϕ · · ·◦ϕ a

(tn)◦ϕ
n = ϕ−1

(
ϕ(a1)(t1)◦ ◦ · · · ◦ϕ(an)(tn)◦

)
holds for all a1, · · · ,

an ∈ I and t1, · · · , tn > 0 .

Proof. (i) It is obvious that ◦ϕ is a topological abelian semigroup operation on

I . Note that a(n)◦ϕ = ϕ−1((ϕ(a)(n)◦) for each a ∈ I and n ∈ N . Then ◦ϕ satisfies

the condition (�1) . Moreover we have that a(p)◦ϕ = ϕ−1((ϕ(a)(p)◦) for each a ∈ I
and p ∈ Q+ . Then ◦ϕ satisfies the condition (�2) . Suppose that both ϕ and ϕ−1 are
monotone increasing. Then

a � b ⇔ ϕ(a) � ϕ(b)
⇔ ϕ(a)◦ϕ(c) � ϕ(b)◦ϕ(c)

⇔ ϕ−1(ϕ(a)◦ϕ(c)) � ϕ−1(ϕ(b)◦ϕ(c))
⇔ a ◦ϕ c � b ◦ϕ c

for all a,b,c ∈ I . Then ◦ϕ satisfies the condition (�1 ). Furthermore we have

a � b ⇒ ϕ(a) � ϕ(b)

⇒ ϕ(a)(t)◦ � ϕ(b)(t)◦

⇒ ϕ−1(ϕ(a)(t)◦) � ϕ−1(ϕ(b)(t)◦)

⇒ a(t)◦ϕ � b(t)◦ϕ

for all a,b ∈ I and t ∈ R+ . Then ◦ϕ satisfies the condition (�2 ). Consequently we
obtain that ◦ϕ ∈ A 0

+(J) . If both ϕ and ϕ−1 are monotone decreasing, then we obtain
the same result by using the same method above.

(ii) Let a1, · · · ,an,t1, · · · ,tn > 0. Then we have

a
(t1)◦ϕ
1 ◦ϕ · · · ◦ϕ a

(tn)◦ϕ
n

= ϕ−1
(

ϕ(a1)(t1)◦
)
◦ϕ · · · ◦ϕ ϕ−1

(
ϕ(an)(tn)◦

)
= ϕ−1

(
ϕ(a1)(t1)◦ ◦ϕ(a2)(t2)◦

)
◦ϕ · · · ◦ϕ ϕ−1

(
ϕ(an)(tn)◦

)
...

= ϕ−1
(

ϕ(a1)(t1)◦ ◦ · · · ◦ϕ(an)(tn)◦
)

,



REFINEMENTS OF SOME INEQUALITIES 689

and hence the desired equality holds. �

LEMMA 2. Let f1, · · · , fn be differentiable positive-valued functions on a real in-
terval I and t1, · · · , tn > 0 . Then

d
dx

n

∏
i=1

fi(x)ti =
n

∏
i=1

fi(x)ti
n

∑
i=1

ti f ′i (x)
fi(x)

holds for all x ∈ I .

Proof. Straightforward. �

Now note that R is an ordered topological space with the ordinary order and the
ordinary topology. Let + be the ordinary additive operation on R . Then it is obvious
that + ∈ A 0

+(R) .

Proof of Theorem 1. Take t � 0 arbitrarily and put It = {x ∈ R : x > −t} . Then
It is an ordered topological spaces with the ordinary order and the ordinary topology.
Consider the following function

ϕt(x) = log(x+ t) (x ∈ It).

Then ϕt is a homeomorphism of It onto R . Moreover both ϕt and ϕ−1
t are strictly

monotone increasing, and hence (+)ϕt ∈ A 0
+(It) by Lemma 1-(i). For the sake of

simplicity, let ◦t = (+)ϕt . Since ϕ−1
t (y) = ey − t for all y ∈ R , we have from simple

computation that
a ◦t b = (a+ t)(b+ t)− t

for all a,b ∈ It .
Now let a1, · · · ,an ∈ It and t1, · · · ,tn > 0. Then we have from Lemma 1-(ii) that

a
(t1)◦t
1 ◦ · · · ◦a

(tn)◦t
n = ϕ−1

t (t1ϕt(a1)+ · · ·+ tnϕt(an))

=
n

∏
i=1

(ai + t)ti − t = (GA)t .

Assume that 0 � t < s , and so It ⊂ Is . Let ι : It → Is be the identity mapping. Then ι
is (◦t ,◦s)-convex. Indeed,

ιM◦t (a,b) = M◦t (a,b) = (a ◦t b)(1/2)◦t

=
√

(a+ t)(b+ t)− t

�
√

(a+ s)(b+ s)− s

= M◦s(a,b) = M◦s(ιa, ιb)

holds for all a,b ∈ It . Therefore if t1 + · · ·+ tn = 1, then we have from Theorem A
that (GA)t � (GA)s . However, (GA)t < (GA)s holds. Indeed, if (GA)t = (GA)s , then
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∏n
i=1(ai + x)ti = x + c must hold for all x ∈ R with t < x < s and a constant c ∈ R .

This is a contradiction.
We next show that limt→∞(GA)t = ∑n

i=1 tiai . To do this, put

p(t) =
n−1

∏
i=1

(
ai + t
an + t

)ti

for each t > 0. Then we have that (GA)t = anp(t)+ (p(t)− 1)t (t > 0) . Obviously,
limt→∞ p(t) = 1. Also we have from Lemma 2 that

lim
t→∞

(p(t)−1)t = lim
x↓0

p(1/x)−1
x

= lim
x↓0

d
dx

n−1

∏
i=1

(
1+aix
1+anx

)ti

= lim
x↓0

n−1

∏
i=1

(
1+aix
1+anx

)ti n−1

∑
i=1

ti(ai−an)
(1+aix)(1+anx)

= t1a1 + · · ·+ tn−1an−1− (t1 + · · ·+ tn−1)an.

Therefore

lim
t→∞

(GA)t = an + t1a1 + · · ·+ tn−1an−1− (t1 + · · ·+ tn−1)an =
n

∑
i=1

tiai,

as required. Thus we obtain the desired result. �

Proof of Theorem 2. Let 0 < t � 1 and put It = {x ∈ R : 0 < x < 1/t} . Then
It is an ordered topological spaces with the ordinary order and the ordinary topology.
Consider the following function

ϕt(x) = tanh−1(tx) (x ∈ It)

Then ϕt is a homeomorphism of It onto R+ . Moreover both ϕt and ϕ−1
t are strictly

monotone increasing, and hence (+)ϕt ∈ A 0
+(It) by Lemma 1-(i). For the sake of

simplicity, let ◦t = (+)ϕt .
Now let 0 < a1, · · · ,an,t1, · · · ,tn < 1 with t1 + · · ·+ tn = 1. Then a1, · · · ,an ∈ It ,

and hence we have from Lemma 1-(ii) that

a
(t1)◦t
1 ◦t · · · ◦t a

(tn)◦t
n =

1
t

tanh
(
t1 tanh−1(ta1)+ · · ·+ tn tanh−1(tan)

)
.

Since tanh−1(x) = log
√

1+x
1−x (0 < x < 1) , it follows that

t1 tanh−1(ta1)+ · · ·+ tn tanh−1(tan) = log
n

∏
i=1

(
1+ tai

1− tai

)ti/2

.
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Therefore we have

a
(t1)◦t
1 ◦t · · · ◦t a

(tn)◦t
n =

1
t

tanhlog
n

∏
i=1

(
1+ tai

1− tai

)ti/2

=
1
t

∏n
i=1

(
1+tai
1−tai

)ti/2−∏n
i=1

(
1+tai
1−tai

)−ti/2

∏n
i=1

(
1+tai
1−tai

)ti/2
+ ∏n

i=1

(
1+tai
1−tai

)−ti/2

=
1
t

∏n
i=1

(
1+tai
1−tai

)ti −1

∏n
i=1

(
1+tai
1−tai

)ti
+1

= (AP)t .

On the other hand, we have

a ◦t b =
1
t

tanh
(
tanh−1(ta)+ tanh−1(tb)

)

=
1
t

tanhlog

√
(1+ ta)(1+ tb)
(1− ta)(1− tb)

=
1
t

√
(1+ta)(1+tb)
(1−ta)(1−tb) −

√
(1+ta)(1+tb)
(1−ta)(1−tb)

−1

√
(1+ta)(1+tb)
(1−ta)(1−tb) +

√
(1+ta)(1+tb)
(1−ta)(1−tb)

−1

=
1
t

ta+ tb
1+(ta)(tb)

=
a+b

1+ t2ab
(t > 0,a,b ∈ It).

Let a,b ∈ It . Then the solution of the equation x◦t x = a ◦t b,x ∈ It is given by

M◦t (a,b) =
1+ t2ab−

√
(1− t2a2)(1− t2b2)

t2(a+b)
.

Put f (x) = M◦x(a,b) for each x ∈ R with 0 < x < t . By simple computation, we have

f ′(x) =
2x−2−a2−b2−2

√
(x−2 −a2)(x−2 −b2)

(a+b)x3
√

(x−2−a2)(x−2−b2)
� 0 (0 < x < t).

Then M◦t (a,b) � M◦s(a,b) holds when 0 < s < t . This means that the identity mapping
from It to Is is (◦t ,◦s)-concave when 0 < s < t . Therefore it follows from Theorem A
that

(AP)t = a
(t1)◦t
1 ◦t · · · ◦t a

(tn)◦t
n � a

(t1)◦s
1 ◦s · · · ◦s a

(tn)◦s
n = (AP)s (0 < s < t)
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holds. However, (AP)t < (AP)s (0 < s < t) holds. Indeed, if (AP)t = (AP)s and
0 < s < t , then

∏n
i=1(1+ xai)ti −∏n

i=1(1− xai)ti

∏n
i=1(1+ xai)ti + ∏n

i=1(1− xai)ti
= cx

must hold for all x ∈R with s < x < t and a constant c∈R . This is a contraction. Also
we have from Lemma 2 that

lim
t↓0

(AP)t =
1
2

lim
t↓0

d
dt

(
n

∏
i=1

(1+ait)ti −
n

∏
i=1

(1−ait)ti
)

=
1
2

lim
t↓0

(
n

∏
i=1

(1+ait)ti
n

∑
i=1

tiai

1+ait
+

n

∏
i=1

(1−ait)ti
n

∑
i=1

tiai

1−ait

)

=
n

∑
i=1

tiai.

Thus we obtain the desired result. �

REMARK 4. We can show that ∑n
i=1 tiai � (AP)t (0 < t � 1) in other ways. In-

deed,

M◦t (a,b)−M+(a,b) =
2− t2a2− t2b2−2

√
(1− t2a2)(1− t2b2)

2t2(a+b)
� 0

holds for all a,b ∈ It . Then the identity mapping from It to R+ is (◦t ,+)-concave,
and hence

(AP)t = a
(t1)◦t
1 ◦t · · · ◦t a

(tn)◦t
n � a(t1)+

1 + · · ·+a(tn)+
n =

n

∑
i=1

tiai

holds by Theorem A.
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