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Abstract. The Huygens-Wilker type inequalities involving generalized trigonometric functions
and generalized hyperbolic functions are established. The first and the second inequalities of
Huygens and Wilker, for classes of functions under discussion, are also investigated.

1. Introduction

During the past two decades after the publication of the paper [9], by P. Lindqvist,
several researchers have studied the so-called p -trigonometric and the p -hyperbolic
functions, which in the particular case p = 2 reduce to classical functions. A list of
published papers which deal with these two families of functions is long. For more
details the interested reader is referred to [3, 8, 9, 2, 4, 1, 7, 13, 18, 19, 23] and to the
references therein. In what follows we will call these families of functions the general-
ized trigonometric functions (gtf ) and the generalized hyperbolic functions (ghf ). The
interest in investigations of these functions is justified by the fact they play an important
in certain problems that arise in theory of differential equations. It is known that the gtf
are eigenfunctions of the Dirichlet problem for the one-dimensional p -Laplacian. For
more details, see [9, 3].

This paper deals with inequalities involving members of two families of functions
mentioned earlier. In particular, when p = 2, some of obtained inequalities simplify to
four known inequalities for the trigonometric functions. The first two read as follows
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(0 < |x| < π/2). Inequalities (1) and (2) have been obtained, respectively, by C. Huy-
gens [6] and J.B. Wilker [20]. Several proofs of these results can be found in math-
ematical literature (see, e.g., [5, 10, 11, 12, 17, 22, 21, 24, 25, 26] and the references
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therein). In [17] the authors called inequalities (1) and (2) the first Huygens and the
first Wilker inequalities, respectively, for the trigonometric functions.

The second Huygens and the second Wilker inequalities for the trigonometric
functions
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(0 < |x| < π/2) have been also of interest for several researchers. For the proofs of the
last two results the interested reader is referred to [17] and [21]. It is worth mentioning
that inequalities which bear strong resemblance of inequalities (1)–(4) have been ob-
tained recently for the Jacobian elliptic functions, Gauss lemniscate functions and other
classes of functions as well (see, e.g., [11, 13, 14, 15, 16]).

Counterparts of inequalities (1)–(4) for the hyperbolic functions have also been
proven. They have the same structure as inequalities (1)–(4) with the following mod-
ifications sin → sinh and tan → tanh. For more details and additional references see,
e.g., [17]. The goal of this paper is to obtain some inequalities which provide general-
izations of the inequalities (1)–(4) for the gtf and the ghf functions. Definitions of these
families of functions are given in Section 2. The Huygens-Wilker type inequalities for
the gtf and the ghf are established in Section 3. The first and the second Huygens and
Wilker inequalities for functions under discussion are obtained in Section 4. Therein,
among other things, we demonstrate that the right sides of the second Huygens and the
second Wilker inequalities for the gtf are comparable. A similar result for the ghf is
also established.

2. Definitions and preliminaries

For the reader’s convenience we recall first definition of the celebrated Gauss hy-
pergeometric function F(a,b;c;z) :

F(a,b;c;z) =
∞

∑
n=0

(a,n)(b,n)
(c,n)

zn

n!
, |z| < 1,

where (a,n) = a(a+1) . . .(a+n−1) (n �= 0) is the shifted factorial or Appell symbol,
with (a,0) = 1 if a �= 0, and c �= 0,−1,−2, . . . .

In what follows we will always assume that the letter p represents a real number
which is strictly greater 1, unless otherwise stated. Also, we will adopt notation and
definitions used in [3].

Let

πp = 2
π/p

sin(π/p)
.

Further, let

ap =
πp

2
, bp = 2−1/pF

( 1
p
,
1
p
;1+

1
p
;
1
2

)
, cp = 2−1/pF

(
1,

1
p
;1+

1
p
;
1
2

)
.



GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 727

Also, let I = (0,1) be the unit interval. The gtf and the ghf used in this paper are the
following homeomorphisms

sinp : (0,ap) → I, tanp : (0,bp) → I

and
sinhp : (0,cp) → I, tanhp : (0,∞) → I.

For x ∈ I , their inverse functions are defined as follows
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For the latter use we recall some formulas which involve functions defined above.
They all appear in [8]. The generalized cosine function cosp is defined as

cosp x = (1− (sinp x)p)1/p, x ∈ [0,ap]

and the generalized tangent function satisfies the following equation

tanp x =
sinp x
cosp x

, x ∈ [0,ap).

The counterparts of the last two formulas for the ghf are defined below

coshp x = (1+(sinhp x)p)1/p, x > 0,

and

tanhp x =
sinhp x
coshp x

.

Some results of this paper are established with the aid of the following.

PROPOSITION 1. Let u,v,λ ,μ be positive numbers. Assume that u and v satisfy
the separation condition

u < 1 < v. (9)

Then the inequality
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holds true if either

1 < uαvβ , s > 0 and rλ � sμα/β (11)

or if
uαvβ < 1, s < 0 and rλ � sμα/β , (12)

where α,β � 0 with α +β = 1. If u and v satisfy the separation condition (9) together
with

1 < α
1
u

+ β
1
v
, (13)

then the inequality (2.6) is also valid if

r � s � −1 and μα � λ β . (14)

Proof. Validity of inequality (10), when conditions (11) are satisfied, are estab-
lished in [12, Theorem 3.1]. For the proof of (12) we let

d =
λ

λ + μ
ur +

μ
λ + μ

vs.

Application of the inequality of weighted arithmetic and geometric means gives

dλ+μ � urλ vsμ . (15)

It follows from (12) that v < u−α/β . Taking into account that s < 0 we obtain vsμ >
u−sμα/β . This and (15) give

dλ+μ > urλ−sμα/β � 1,

where the last inequality is a consequence of 0 < u < 1 and (12). Conditions (14) of
validity of the inequality (10) are established in [12]. The proof is complete. �

We will call inequalities of the form (10) the Huygens-Wilker type inequalities.

3. Huygens-Wilker type inequalities for the gtf and ghf

This section is devoted to the study of the Huygens-Wilker type inequalities which
involve either the gtf or the ghf. Our first result reads as follows.

THEOREM 2. Let (u,v) be an ordered pair of functions defined as follows

(u,v) =
( f (x)

x
,
f−1(x)

x

)
, (16)

where x ∈ I and
f (x) = sinp x or f (x) = tanhp x. (17)
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Further, let λ ,μ > 0 . Then the inequality

1 <
λ

λ + μ
ur +

μ
λ + μ

vs (18)

is satisfied if
s > 0 and rλ � sμ . (19)

Proof. We shall prove first the assertion when f (x) = sinp x . Let

u =
sinp x

x
and v =

sin−1
p x

x
. (20)

It follows from Lemma 3.32 in [8] and from (5) that

sinp x
x

< 1 <
sin−1

p x

x
.

Thus with u and v as defined in (20) we see that condition (9) is satisfied. Moreover,
inequality (11) is also satisfied with α = β = 1/2 because

1 <
sinp x

x

sin−1
p x

x

(see [8, Lemma 3.32]). To complete the proof when f (x) = sinp x we utilize Proposition
1. A proof of (18), when f (x) = tanhp x , goes along the lines introduced above. Let

u =
tanhp x

x
and v =

tanh−1
p x

x
. (21)

Making use of [8, Lemma 3.32] and formula (8) we obtain

tanhp x
x

< 1 <
tanh−1

p x

x
.

This shows that in the case under discussion condition (9) is satisfied. To complete the
proof we appeal again to [8, Lemma 3.32] to claim that the first inequality in (11) is
satisfied with α = β = 1/2. Application of Proposition 1 yields the assertion. �

We shall establish now the following.

THEOREM 3. Let (u,v) be an ordered pair of functions defined as follows

(u,v) =
( f−1(x)

x
,
f (x)
x

)
, (22)

where x ∈ I and
f (x) = tanp x or f (x) = sinhp x. (23)
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Further, let λ ,μ > 0 . Then the inequality

1 <
λ

λ + μ
ur +

μ
λ + μ

vs (24)

is valid provided
s < 0 and rλ � sμ . (25)

Proof. For the later use let as record a couple of two-sided inequalities
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The first inequalities in (26) and (27) follow from (6) and (7), respectively. The second
ones are obtained in [8, Lemma 3.32]. Also, it has been shown in [8, Lemma 3.32] that
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x
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x
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Thus in both cases the first inequality in (12) is satisfied with α = β = 1/2 for the pairs
of functions
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)

and
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p x

x
,
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)
.

Using Proposition 1 again we obtain the desired result. �
We close this section with the following.

THEOREM 4. Let p � 2 and let x ∈ (0,ap) . Also, let λ , μ and s be positive
numbers. If the real number r satisfies the inequality

rλ � sμ , (28)

then the inequality (10) is satisfied if either

(u,v) =
( x
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,

x
tanhp x

)
(29)

or if
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( x
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)
(30)
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or if

(u,v) =
( x

sinhp x
,

x
sinp x

)
(31)

or if

(u,v) =
( sinp x

x
,coshp x

)
(32)
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(sinp x

x
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x
tanhp x

)
(33)

or if

(u,v) =
( tanhp x

x
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(34)

Proof. Let u and v be defined in (29). It follows from [8, Lemma 3.32, parts (3)
and (4)] that

u < 1 < v.

Moreover, the third and fifth members of [8, (3.11)] give the inequality

1 < uv.

Thus (9) and the first part of (11) are satisfied with α = β = 1/2. Application of
Proposition 1 shows that the inequality (10) is valid provided condition (28) is satisfied.
The assertion when u and v are the same as in (30) can be established in a similar way.
In this case one has u < 1 < v , where the second inequality follows from the definition
of coshp . The second and fifth members of [8, (3.11)] yield the inequality 1 < uv . The
asserted result is obtained with the aid of Proposition 1. The remaining cases when u
and v are defined in (31)–(34) can be established in a similar manner. Recall that in all
cases in question inequality (26) in [8] yields 1 < uv . The proof is complete. �

4. Huygens’ and Wilker’s inequalities of the first and the second kind

The goal of this section is to obtain some additional results which pertain to the
Huygens and Wilker inequalities for two families of functions discussed in this paper.
The first three results deal with inequalities for the gtf.

THEOREM 5. Let p � 2 and assume that 0 < x < ap . Then
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]
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Moreover, inequality (35) implies inequality (36).
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Proof. Let

u =
sinp x

x
and v =

tanp x
x

(p > 1,0 < x < ap) . It follows from Lemma 3.32 in [8] that u and v satisfy the
separation condition (9), i.e., u < 1 < v . We shall show now that u and v satisfy the
first inequality in (11) with α = p/(1+ p) and β = 1/(p+1) . To this aim we utilize
the inequality

(cosp x)
1

1+p <
sinp x

x
(see [8, (3.7)]) which can be written as follows

1 <
( sinp x

x

) p
1+p

( tanp x
x

) 1
1+p

or
1 < uαvβ ,

where α and β are defined above. Thus the last condition in (11) takes the form

rλ � sμ p.

Inequality (35) now follows using Proposition 1 with r = s = 1, λ = 2 and μ = 1.
Similarly, inequality (36) is obtained with the aid of Proposition 1 with r = 2,s = 1 and
λ = μ = 1. For the proof of the last assertion we write (35) in the form

sinp x
x

>
3cosp x

1+2cosp x
.

Then

( sinp x
x

)2
+

tanp x
x

>
9cos2

p x

(1+2cosp x)2 +
3

1+2cosp x

=
9cos2p x+6cosp x+3

(1+2cosp x)2 = 2+
( 1− cosp x

1+2cosp x

)2
> 2.

The assertion now follows. �
The second Huygens and the second Wilker inequalities are obtained in the fol-

lowing.

THEOREM 6. Let 1 < p � 2 . If x ∈ (0,ap) , then
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x
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x
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Moreover, inequality (37) implies inequality (38).
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Proof. The following inequality

x
sinp x

>
3

2+ cosp x
(39)

was obtained in [8] (see Theorem3.22). Multiplying both sides of (39) by (2+cosp x)/3
we obtain inequality (37). To prove inequality (38) and also in order to establish the
last statement we utilize (39) again to obtain

( x
sinp x

)2
+

x
tanp x
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( x
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)2
+

x
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9
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2+ cosp x
=
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= 2+
(cosp x−1

2+ cosp x

)2
> 2.

The proof is complete. �
An inequality which connects the right sides of (37) and (38) is established in the

following.

THEOREM 7. Let 1 < p � 2 and assume that 0 < x < ap . Then

1
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]
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1
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2
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+
x
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)
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Proof. The following inequality

cosp x > 3
sinp x

x
−2 (41)

is a consequence of (39) and plays a crucial role in this proof. We have
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)

=
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x
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x

)

>
1
6

( x
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)2[
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x

(
3
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x
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)
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1
6

( x
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3
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x
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]

=
1
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sinp x
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x

−1
)2

> 0.

The proof is complete. �
We shall demonstrate now that the results similar to these obtained in Theorems 5 -

7 also hold true for the ghf. The first Huygens inequality and the first Wilker inequality
for the class of functions under discussion are obtained in the following.
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THEOREM 8. Let 1 < p � 2 and let x > 0 . Then

1 <
1
3

(
2
sinhp x

x
+

tanhp x

x

)
(42)

and

1 <
1
2

[( sinhp x
x

)2
+

tanhp x
x

]
. (43)

Moreover, inequality (42) implies inequality (43).

Proof. Let

u =
tanhp x

x
and v =

sinhp x
x

(x > 0) . It follows from Lemma 3.32 in [8] that u and v satisfy the separation condition
(9), i.e., u < 1 < v . We shall show now that u and v satisfy the first inequality in (11)
with α = 1/(1+ p) and β = p/(p+1) . To this aim we utilize the inequality

(coshp x)
1

1+p <
sinhp x

x

(see [8, (3.9)]) which can be written as follows

1 <
( tanhp x

x

) 1
1+p

(sinhp x
x

) p
1+p

or
1 < uαvβ ,

where α and β are defined above. Thus the last condition in (11) takes the form

rλ p � sμ .

Inequality (42) now follows using Proposition 2.1 with r = s = λ = 1, μ = 2 and
p � 2. Similarly, inequality (43) is obtained if s = 2, r = λ = μ = 1 and p � 2.

The last assertion can be established in the same way as it was done in the proof
of the corresponding statement in Theorem 5. We omit further details. �

The counterpart of Theorem 6 for the ghf reads as follows.

THEOREM 9. Let p � 2 and assume that x > 0 . Then

1 <
1
3

(
2

x
sinhp x

+
x

tanhp x

)
(44)

and

1 <
1
2

[( x
sinhp x

)2
+

x
tanhp x

]
. (45)

Moreover, inequality (44) implies inequality (45).
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Proof. For the proof of (44) we utilize the following result [8, Theorem 3.24]

x
sinhp x

>
3

2+ coshp x
(46)

(p � 2,x > 0) from which (44) follows. Inequality (45) and the last assertion can be
proven using the same ideas as those employed in the proof of the corresponding part
of Theorem 6. We omit further details. �

We close this section with the following.

THEOREM 10. Let p � 2 and let x > 0 . Then

1
2

[( x
sinhp x

)2
+

x
tanhp x

]
>

1
3

(
2

x
sinhp x

+
x

tanhp x

)
. (47)

Proof. In order to obtain the desired result one can follow the lines of the proof of
(40) utilizing the inequality

coshp x > 3
sinhp x

x
−2

which follows from (46). We leave it to the reader to complete the proof of (47). �
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