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LYAPUNOV–TYPE INEQUALITIES FOR HIGHER–ORDER

DIFFERENTIAL EQUATIONS WITH ONE–DIMENSIONAL p–LAPLACIAN

XIAOHONG ZUO AND WENGUI YANG

(Communicated by W. D. Evans)

Abstract. In this paper, we establish Lyapunov-type inequalities for a single higher-order differ-
ential equation, a cycled system and a coupled system with one-dimensional p -Laplacian. Our
result generalize some given results.

1. Introduction

The Lyapunov inequality for linear ordinary differential equation

u′′(x)+ r(x)u(x) = 0, x ∈ (a,b), u(a) = 0 = u(b),

where r ∈ C([a,b], [0,∞)) , gives a necessary condition for the existence of a positive
solution as follows:

4
b−a

�
∫ b

a
r(x)dx.

Lyapunov [1] initiated to estimate the above inequality. Since then, there have been
several results to generalize the above linear ordinary differential equation from dif-
ferent viewpoints. To some latest results, the reader is referred to [7, 8, 9, 10, 11, 12,
13, 14, 15] and the references quoted therein. For example, Watanabe [16] obtained
Lyapunov type inequality for the existence of the solution of the equation including p -
Laplacian (2.1) under clamped boundary condition, and the usage of the best constant
of Lp Sobolev inequality clarifies the process for obtaining such inequality.

In 2003, Yang [2] generalized above result to certain higher-order differential
equations as follows. Consider the differential equation

u(2n)(x)+ r(x)u(x) = 0, u(i)(a) = 0 = u(i)(b),

for i = 0,1, . . . ,n−1, where u(x) �= 0, x ∈ (a,b) , r(x) ∈C([a,b]) . Then

∫ b

a
(x−a)2n−1(b− x)2n−1|r(x)|dx � (2n−1)[(n−1)!]2(b−a)2n−1,
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especially, ∫ b

a
|r(x)|dx >

42n−1(2n−1)[(n−1)!]2

(b−a)2n−1 .

In 2004, Pinasco [3] extended linear ordinary differential equations to the follow-
ing one dimensional p -Laplacian problem:

−ϕp(u′(x))′ = r(x)ϕp(u(x)), x ∈ (a,b), u(a) = 0 = u(b), (1.1)

where ϕp(s) = |s|p−2s , p > 1, r ∈C([a,b], [0,∞)) . He obtained Lyapunov inequality
as follows:

2p

(b−a)p/q
�
∫ b

a
r(x)dx.

In 2010, Sim and Lee [4] obtained if u is a positive solution for (1.1), then

(b−a)p−1

2p−2 �
∫ b

a
(t−a)p−1(b− t)p−1r(x)dx,

where p = 2, the above inequality was obtained by Hartman [5].
Motivated by above papers, the purpose of this paper is to get Lyapunov in-

equalities for single higher-order differential equations as well as systems with one-
dimensional p -Laplacian. The idea of the proof of our results comes from that of Sim
and Lee [4]. Our result generalize some given results.

2. Single equation

Consider higher-order differential equations with one-dimensional p -Laplacian

(−1)nϕp(u(n)(x))(n) = r(x)ϕp(u(x)), x ∈ (a,b), u(i)(a) = 0 = u(i)(b), (2.1)

for i = 0,1, . . . ,n−1, where n ∈ N , ϕp(s) = |s|p−2s , p > 1, r ∈C([a,b], [0,∞)) .

THEOREM 2.1. If u is a positive solution for (2.1), then one have

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 �
∫ b

a
r(x)((x−a)(b− x))pn−1 dx, (2.2)

especially,

2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1 �
∫ b

a
r(x)dx. (2.3)

Proof. From u(a) = u′(a) = · · · = u(n−1)(a) , we get

|u(x)| =
∣∣∣∣ 1
(n−1)!

∫ x

a
(x− s)n−1u(n)(s)ds

∣∣∣∣� 1
(n−1)!

∫ x

a
(x− s)n−1|u(n)(s)|ds. (2.4)
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By using Höder inequality on the integral of the right-hand side of (2.4) with indices
p/(p−1) and p , we have

|u(x)| � 1
(n−1)!

(∫ x

a
(x− s)p(n−1)/(p−1)ds

)(p−1)/p(∫ x

a
|u(n)(s)|pds

)1/p

=
1

(n−1)!

(
p−1
pn−1

(x−a)(pn−1)/(p−1)
)(p−1)/p(∫ x

a
|u(n)(s)|pds

)1/p

.

For a � x � (a+b)/2, noting x−a � (2/(b−a))(x−a)(b− x) , we have

|u(x)| � 1
(n−1)!

(
p−1
pn−1

(
2

b−a
(x−a)(b− x)

)(pn−1)/(p−1)
)(p−1)/p

×
(∫ (a+b)/2

a
|u(n)(s)|pds

)1/p

.

Thus, we have

|u(x)|p � 1
[(n−1)!]p

(
p−1
pn−1

(
2

b−a
(x−a)(b− x)

)(pn−1)/(p−1)
)p−1

×
(∫ (a+b)/2

a
|u(n)(s)|pds

)

=
2pn−1(p−1)p−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1 ((x−a)(b− x))pn−1

×
(∫ (a+b)/2

a
|u(n)(s)|pds

)
. (2.5)

Similarly, by using Höder inequality, we get

|u(x)| =
∣∣∣∣ 1
(n−1)!

∫ b

x
(s− x)n−1u(n)(s)ds

∣∣∣∣� 1
(n−1)!

∫ b

x
(s− x)n−1|u(n)(s)|ds

� 1
(n−1)!

(
p−1
pn−1

(b− x)(pn−1)/(p−1)
)(p−1)/p(∫ b

x
|u(n)(s)|pds

)1/p

.

For (a+b)/2 � x � b , noting b− x � (2/(b−a))(x−a)(b− x) , we have

|u(x)|p � 2pn−1(p−1)p−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1 ((x−a)(b− x))pn−1

×
(∫ b

(a+b)/2
|u(n)(s)|pds

)
. (2.6)

Adding (2.5) and (2.6), we have

2|u(x)|p � 2pn−1(p−1)p−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1 ((x−a)(b− x))pn−1

×
(∫ b

a
|u(n)(s)|pds

)
. (2.7)
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Multiplying both sides of (2.7) by r(t) and rewriting, we get

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 r(x)|u(x)|p � r(x)((x−a)(b− x))pn−1

×
(∫ b

a
|u(n)(s)|pds

)
. (2.8)

Since u is a solution for (2.1), we have

∫ b

a
|u(n)(x)|pdx =

∫ b

a
r(x)|u(x)|pdx. (2.9)

Integrating (2.8) on [a,b] and using (2.9), we have

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1

∫ b

a
|u(n)(x)|pdx

=
(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1

∫ b

a
r(x)|u(x)|pdx

�
∫ b

a
r(x)((x−a)(b− x))pn−1

(∫ b

a
|u(n)(s)|pds

)
dx.

Therefore, we get

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 �
∫ b

a
r(x)((x−a)(b− x))pn−1 dx.

For a � x � b , since (x−a)(b− x) � (b−a)2/4, we have

2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1 �
∫ b

a
r(x)dx.

This completes the proof. �

REMARK 2.2. When n = 1, the above result coincides with Theorem 2.1 in Sim
and Lee [4]. When n = 1 and p = 2, the above result coincides with Hartman’s estimate
[5].

COROLLARY 2.3. If u is a positive solution for (2.1) with p = 2 , then one have

(2n−1)[(n−1)!]2(b−a)2n−1

22(n−1) �
∫ b

a
r(x)((x−a)(b− x))2n−1 dx,

especially,

22n(2n−1)[(n−1)!]2

(b−a)2n−1 �
∫ b

a
r(x)dx.
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3. Cycled system

Consider a cycled system

(−1)nϕp(u
(n)
1 (x))(n) = r1(x)ϕp(u2(x)), x ∈ (a,b),

(−1)nϕp(u
(n)
2 (x))(n) = r2(x)ϕp(u3(x)), x ∈ (a,b),

· · ·
(−1)nϕp(u

(n)
m−1(x))

(n) = rm−1(x)ϕp(um(x)), x ∈ (a,b),

(−1)nϕp(u
(n)
m (x))(n) = rm(x)ϕp(u1(x)), x ∈ (a,b),

u(i)
j (a) = 0 = u(i)

j (b),

(3.1)

for i = 0,1, . . . ,n−1 and j = 1,2, . . . ,m , where m,n ∈ N .

THEOREM 3.1. If (u1,u2, . . . ,um) is a positive solution for (3.1), then one have

(
(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1

)m

�
m

∏
j=1

(∫ b

a
r j(x)((x−a)(b− x))pn−1 dx

)
,

(3.2)
especially,

(
2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1

)m

�
m

∏
j=1

(∫ b

a
r j(x)dx

)
. (3.3)

Proof. We only show the case m = 2. For the general case, we can prove it by
repeating this procedure. As in (3.1), for j = 1,2, we obtain from (2.7)

|u j(x)|p � 2pn−2(p−1)p−1 ((x−a)(b− x))pn−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1

(∫ b

a
|u(n)

j (s)|pds

)
.

Thus, for j = 1,2, we get

|u j(x)| �
(

2pn−2(p−1)p−1 ((x−a)(b− x))pn−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1

)1/p(∫ b

a
|u(n)

j (s)|pds

)1/p

(3.4)

and

|u j(x)|p−1 �
(

2pn−2(p−1)p−1 ((x−a)(b− x))pn−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1

)(p−1)/p

×
(∫ b

a
|u(n)

j (s)|pds

)(p−1)/p

. (3.5)
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Multiplying the first equation of (3.1) by u1 and integrating on [a,b] , we have by (3.4)
and (3.5) that

∫ b

a
|u(n)

1 (x)|pdx �
∫ b

a
r1(x)|u2(x)|p−1|u1(x)|dx

�
(∫ b

a

2pn−2(p−1)p−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1 r1(x)((x−a)(b−x))pn−1 dx

)

×
(∫ b

a
|u(n)

2 (x)|pdx

)(p−1)/p(∫ b

a
|u(n)

1 (s)|pds

)1/p

.

Thus, we have

(∫ b

a
|u(n)

1 (s)|pds

)(p−1)/p

� 2pn−2(p−1)p−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1

×
(∫ b

a
r1(x)((x−a)(b− x))pn−1 dx

)

×
(∫ b

a
|u(n)

2 (x)|pdx

)(p−1)/p

.

Similarly, for the second equation in (3.1), we have

(∫ b

a
|u(n)

2 (s)|pds

)(p−1)/p

� 2pn−2(p−1)p−1

(pn−1)p−1[(n−1)!]p(b−a)pn−1

×
(∫ b

a
r2(x)((x−a)(b− x))pn−1 dx

)

×
(∫ b

a
|u(n)

1 (x)|pdx

)(p−1)/p

.

Therefore, we obtain

(
(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1

)2

�
2

∏
j=1

(∫ b

a
r j(x)((x−a)(b− x))pn−1 dx

)
,

For a � x � b , since (x− a)(b− x) � (b− a)2/4, we have from the above three in-
equalities

(
2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1

)2

�
2

∏
j=1

(∫ b

a
r j(x)dx

)
,

This completes the proof. �

REMARK 3.2. When n = 1, the above result coincides with Theorem 3.1 in Sim
and Lee [4].
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COROLLARY 3.3. If (u1,u2, . . . ,um) is a positive solution for (3.1) with p = 2 ,
then one have(

(2n−1)[(n−1)!]2(b−a)2n−1

22(n−1)

)m

�
m

∏
j=1

(∫ b

a
r j(x)((x−a)(b− x))2n−1 dx

)
,

especially, (
22n(2n−1)[(n−1)!]2

(b−a)2n−1

)m

�
m

∏
j=1

(∫ b

a
r j(x)dx

)
.

COROLLARY 3.4. If (u1,u2, . . . ,um) is a positive solution for (3.1) with r1 = r2 =
· · · = rm = r , then one have

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 �
∫ b

a
r(x)((x−a)(b− x))pn−1 dx.

especially,

2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1 �
∫ b

a
r(x)dx.

4. Strongly coupled system

Consider a strongly coupled system

(−1)nϕp(u
(n)
1 (x))(n) = r1(x)(ϕp(u1(x))+ ϕp(u2(x))+ ϕp(um(x))) , x ∈ (a,b),

(−1)nϕp(u
(n)
2 (x))(n) = r2(x)(ϕp(u1(x))+ ϕp(u2(x))+ ϕp(um(x))) , x ∈ (a,b),

· · ·
(−1)nϕp(u

(n)
m (x))(n) = rm(x)(ϕp(u1(x))+ ϕp(u2(x))+ ϕp(um(x))) , x ∈ (a,b),

u(i)
j (a) = 0 = u(i)

j (b),

(4.1)

for i = 0,1, . . . ,n−1 and j = 1,2, . . . ,m , where m,n ∈ N .

THEOREM 4.1. If (u1,u2, . . . ,um) is a positive solution for (4.1), then one have

1
m

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 �
m

∑
j=1

(∫ b

a
r j(x)((x−a)(b− x))pn−1 dx

)
,

(4.2)
especially,

1
m

2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1 �
m

∑
j=1

(∫ b

a
r j(x)dx

)
. (4.3)
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Proof. As in the proof of Theorem 3.1, we only show the case m = 2. Multiplying
u1 to the first equation in (4.1) and integrating on [a,b] and using (2.7), (3.4) and (3.5),
we obtain from∫ b

a
|u(n)

1 (x)|pdx �
∫ b

a
r1(x)|u1(x)|pdx+

∫ b

a
r1(x)|u2(x)|p−1|u1(x)|dx

� Ω
(∫ b

a
r1(x)((x−a)(b− x))pn−1dx

)(∫ b

a
|u(n)

1 (x)|pdx

)

+Ω
(∫ b

a
r1(x)((x−a)(b− x))pn−1 dx

)

×
(∫ b

a
|u(n)

2 (x)|pdx

)(p−1)/p(∫ b

a
|u(n)

1 (s)|pds

)1/p

, (4.4)

where

Ω =
(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 .

Similarly, from the second equation of (4.1), we have

∫ b

a
|u(n)

2 (x)|pdx �
∫ b

a
r2(x)|u2(x)|pdx+

∫ b

a
r2(x)|u1(x)|p−1|u2(x)|dx

� Ω
(∫ b

a
r2(x)((x−a)(b− x))pn−1dx

)(∫ b

a
|u(n)

2 (x)|pdx

)

+Ω
(∫ b

a
r2(x)((x−a)(b− x))pn−1 dx

)

×
(∫ b

a
|u(n)

1 (x)|pdx

)(p−1)/p(∫ b

a
|u(n)

2 (s)|pds

)1/p

. (4.5)

Let us set

X =
∫ b

a
|u(n)

1 (x)|pdx, Y =
∫ b

a
|u(n)

2 (x)|pdx

C1 = Ω
∫ b

a
r1(x)((x−a)(b− x))pn−1 dx, C2 = Ω

∫ b

a
r2(x)((x−a)(b− x))pn−1 dx.

Then from (4.4) and (4.5), we have

X � C1X +C1X
1/pY (p−1)/p,

Y � C2Y +C2Y
1/pX (p−1)/p, (4.6)

respectively. Equation (4.6) implies

X � C1(X +Y )+C1

(
X 1/pY (p−1)/p +Y 1/pX (p−1)/p

)
,

Y � C2(X +Y )+C2

(
X 1/pY (p−1)/p +Y 1/pX (p−1)/p

)
,



LYAPUNOV-TYPE INEQUALITIES FOR DIFFERENTIAL EQUATIONS 745

respectively. Therefore, we have

X +Y � (C1 +C2)(X +Y )+ (C1 +C2)
(
X 1/pY (p−1)/p +Y 1/pX (p−1)/p

)
.

Since X 1/pY (p−1)/p +Y 1/pX (p−1)/p � X +Y [6, page 38], we obtain

X +Y � 2(C1 +C2)(X +Y ).

Hence, we have

1
2

� (C1 +C2).

That is,

1
2

1
m

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 �
2

∑
j=1

(∫ b

a
r j(x)((x−a)(b− x))pn−1 dx

)
,

For a � x � b , since (x−a)(b− x) � (b−a)2/4, we have

1
2

2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1 �
2

∑
j=1

(∫ b

a
r j(x)dx

)
.

This completes the proof. �

REMARK 4.2. When n = 1, the above result coincides with Theorem 4.1 in Sim
and Lee [4].

COROLLARY 4.3. If (u1,u2, . . . ,um) is a positive solution for (4.1) with p = 2 ,
then one have

1
m

(2n−1)[(n−1)!]2(b−a)2n−1

22(n−1) �
m

∑
j=1

(∫ b

a
r j(x)((x−a)(b− x))2n−1 dx

)
,

especially,

1
m

22n(2n−1)[(n−1)!]2

(b−a)2n−1 �
m

∑
j=1

(∫ b

a
r j(x)dx

)
.

COROLLARY 4.4. If (u1,u2, . . . ,um) is a positive solution for (4.1) with r1 = r2 =
· · · = rm = r , then one have

1
m2

(pn−1)p−1[(n−1)!]p(b−a)pn−1

2pn−2(p−1)p−1 �
∫ b

a
r(x)((x−a)(b− x))pn−1 dx.

especially,

1
m2

2pn(pn−1)p−1[(n−1)!]p

(p−1)p−1(b−a)pn−1 �
∫ b

a
r(x)dx.
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