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Abstract. Let L = −Δ +V be a Schrödinger operator, where Δ is the Laplacian on R
n , while

nonnegative potential V belongs to the reverse Hölder class. In this paper, we study the bound-
edness of the Marcinkiewicz operator associated with Schrödinger operator μL

j on generalized
Morrey spaces Mp,ϕ . We find the sufficient conditions on the pair (ϕ1,ϕ2) which ensures the
boundedness of the operators μL

j from one generalized Morrey space Mp,ϕ1 to another Mp,ϕ2 ,
1 < p < ∞ and from the space M1,ϕ1 to the weak space WM1,ϕ2 .

1. Introduction

The classical Morrey spaces were originally introduced by Morrey in [20] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers to
[5, 6, 12, 13, 14, 20].

Suppose that Sn−1 = {x ∈ R
n : |x|= 1} is the unit sphere of R

n (n � 2) equipped
with the normalized Lebesgue measure dσ = dσ(x′) .

In [23], Stein defined the Marcinkiewicz integral for higher dimensions. Suppose
that Ω satisfies the following conditions.

(i) Ω is a homogeneous function of degree zero on R
n . That is,

Ω(tx) = Ω(x) (1.1)

for all t > 0 and x ∈ R
n .

(ii) Ω has mean zero on Sn−1 . That is,∫
Sn−1

Ω(x′)dσ(x′) = 0, (1.2)

where x′ = x/|x| for any x �= 0.
(iii) Ω ∈ L1(Sn−1) .
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The Marcinkiewicz integral operator of higher dimension μΩ is defined by

μΩ( f )(x) =
(∫ ∞

0
|FΩ,t( f )(x)|2 dt

t3

)1/2

,

where

FΩ,t( f )(x) =
∫
|x−y|�t

Ω(x− y)
|x− y|n−1 f (y)dy.

REMARK 1.1. We easily see that the Marcinkiewicz integral operator of higher
dimension μΩ can be regarded as a generalized version of the classical Marcinkiewicz
integral in the one dimension case. Also, it is easy to see that μΩ is a special case of
the Littlewood-Paley g -function if we take

g(x) = Ω(x′)|x|−n+1χ|x|�1
(|x|).

We say that Ω ∈ Lipα(Sn−1) , 0 < α � 1 if there exists a constant C > 0 such that
|Ω(x′)−Ω(y′)| � C|x′ − y′|α for all x′,y′ ∈ Sn−1 .

In [23], Stein proved the following results.

THEOREM 1.1. (E. M. Stein) Suppose that Ω satisfies (1.1).
(a) If Ω ∈ L1(Sn−1) and Ω is odd, then μΩ is bounded on Lp(Rn) for 1 < p <

∞ .
(b) If Ω satisfies (1.2) and Ω ∈ Lipα(Sn−1) , 0 < α � 1 , then μΩ is of weak

type (1,1) . That is, there exists a constant C such that for any t > 0 and f ∈ L1(Rn) ,

|{x ∈ R
n : μΩ( f )(x) > t}| � C

t

∫
Rn

| f (x)|dx.

(c) If Ω satisfies (1.2) and Ω ∈ Lipα(Sn−1) , 0 < α � 1 , then μΩ is of type
(p, p) for 1 < p � 2 . That is, there exists a constant Ap such that for any f ∈ Lp(Rn) ,

‖μΩ( f )‖Lp
� Ap‖ f‖Lp

.

The Lp boundedness of μΩ has been studied extensively. See [3, 17, 23, 24],
among others. A survey of past studies can be found in [9]. Recently the following
result was obtained in [2].

THEOREM 1.2. Suppose that Ω satisfies (1.1) and (1.2). If

Ω ∈ L(log+ L)1/2(Sn−1), (1.3)

then μΩ is bounded on Lp(Rn) for 1 < p < ∞ . The exponent 1/2 is the best possible.

On the other hand, the study of Schrödinger operator L = −Δ +V recently at-
tracted much attention. In particular, Shen [7] considered Lp estimates for Schrödinger
operators L with certain potentials which include Schrödinger Riesz transforms RL

j =
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∂
∂x j

L− 1
2 , j = 1, . . . ,n . Then, Dziubanński and Zienkiewicz [8] introduced the Hardy

type space H1
L(Rn) associated with the Schrödinger operator L , which is larger than

the classical Hardy space H1(Rn) .
Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz

functions μ j associated with the Schrödinger operator L by

μL
j f (x) =

(∫ ∞

0

∣∣∣∣∫|x−y|�t
KL

j (x,y) f (y)dy

∣∣∣∣2 dt
t3

)1/2

,

where KL
j (x,y) = K̃L

j (x,y)|x− y| and K̃L
j (x,y) is the kernel of Rj = ∂

∂x j
L− 1

2 , j =

1, . . . ,n . In particular, when V = 0, KΔ
j (x,y)= K̃Δ

j (x,y)|x−y|= (x−y) j/|x−y|
|x−y|n−1 and K̃Δ

j (x,y)

is the kernel of Rj = ∂
∂x j

Δ− 1
2 , j = 1, . . . ,n . In this paper, we write Kj(x,y) = KΔ

j (x,y)
and

μ j f (x) =

(∫ ∞

0

∣∣∣∣∫|x−y|�t
Kj(x,y) f (y)dy

∣∣∣∣2 dt
t3

)1/2

.

Obviously, μ j are classical Marcinkiewicz functions. Therefore, it will be an inter-
esting thing to study the property of μL

j . The main purpose of this paper is to show
that Marcinkiewicz integrals associated with Schrödinger operators are bounded from
one generalized Morrey space Mp,ϕ1 to another Mp,ϕ2 , 1 < p < ∞ , and from the space
M1,ϕ1 to the weak space WM1,ϕ2 .

Note that a nonnegative locally Lq integrable function V (x) on R
n is said to be-

long to Bq (1 < q < ∞) if there exists C > 0 such that the reverse Hölder inequality(
1

|B(x,r)|
∫

B(x,r)
Vq(y)dy

)1/q

� C

(
1

|B(x,r)|
∫

B(x,r)
V (y)dy

)
(1.4)

holds for every ball x ∈ R
n and r > 0, where B(x,r) denotes the open ball centered at

x with radius r ; see [21]. It is worth pointing out that the Bq class is that, if V ∈ Bq

for some q > 1, then there exists ε > 0, which depends only n and the constant C in
(1.4), such that V ∈ Bq+ε . Throughout this paper, we always assume that 0 �= V ∈ Bn .

We will use the following statement on the boundedness of the weighted Hardy
operator

H∗
wg(t) :=

∫ ∞

t
g(s)w(s)ds, 0 < t < ∞,

where w is a weight.
The following theorem in the case w = 1 was proved in [4].

THEOREM 1.3. Let v1 , v2 and w be weights on (0,∞) and v1(t) be bounded
outside a neighborhood of the origin. The inequality

ess sup
t>0

v2(t)H∗
wg(t) � Cess sup

t>0
v1(t)g(t) (1.5)
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holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only
if

B := ess sup
t>0

v2(t)
∫ ∞

t

w(s)ds
ess sup
s<τ<∞

v1(τ)
< ∞. (1.6)

Moreover, the value C = B is the best constant for (1.5).

REMARK 1.2. In (1.5) and (1.6) it is assumed that 1
∞ = 0 and 0 ·∞ = 0.

By A � B we mean that A � CB with some positive constant C independent of
appropriate quantities. If A � B and B � A , we write A ≈ B and say that A and B are
equivalent.

2. Generalized Morrey spaces

The classical Morrey spaces Mp,λ were originally introduced by Morrey in [20]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, we refer the read-
ers to [11, 18].

We denote by Mp,λ ≡ Mp,λ (Rn) the Morrey space, the space of all functions f ∈
Lloc

p (Rn) with finite quasinorm

‖ f‖Mp,λ
= sup

x∈Rn, r>0
r−

λ
p ‖ f‖Lp(B(x,r)),

where 1 � p < ∞ and 0 � λ � n .
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn) . If λ < 0 or λ > n , then Mp,λ = Θ ,

where Θ is the set of all functions equivalent to 0 on R
n .

DEFINITION 2.1. Let ϕ(x,r) be a positive measurable function on R
n × (0,∞)

and 1 � p < ∞ . We denote by Mp,ϕ ≡ Mp,ϕ(Rn) the generalized Morrey space, the
space of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖ f‖Mp,ϕ = sup
x∈Rn,r>0

ϕ(x,r)−1 |B(x,r)|− 1
p ‖ f‖Lp(B(x,r)).

Also by WMp,ϕ ≡ WMp,ϕ(Rn) we denote the weak generalized Morrey space of all
functions f ∈WLloc

p (Rn) for which

‖ f‖WMp,ϕ = sup
x∈Rn,r>0

ϕ(x,r)−1 |B(x,r)|− 1
p ‖ f‖WLp(B(x,r)) < ∞,

where WLp(B(x,r)) denotes the weak Lp -space consisting of all measurable functions
f for which

‖ f‖WLp(B(x,r)) ≡ ‖ f χ
B(x,r)‖WLp(Rn) < ∞.
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Also the spaces Lloc
p (Rn) and WLloc

p (Rn) endowed with the natural topology are de-
fined as the set of all functions f such that f χB ∈ Lp(Rn) and f χB ∈WLp(Rn) for all
balls B ⊂ R

n , respectively.

According to this definition, we recover the space Mp,λ under the choice ϕ(x,r) =

r
λ−n

p :
Mp,λ = Mp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

,

WMp,λ = WMp,ϕ

∣∣∣
ϕ(x,r)=r

λ−n
p

.

Let f ∈ Lloc
1 (Rn) . The Hardy-Littlewood maximal function M f is defined by

M f (x) = sup
t>0

|B(x,t)|−1
∫

B(x,t)
| f (y)|dy.

Suppose that T represents a linear or a sublinear operator, which satisfies that for
any f ∈ L1(Rn) with compact support and x /∈ supp f

|T f (x)| � c0

∫
Rn

| f (y)|
|x− y|n dy, (2.1)

where c0 is independent of f and x .
We point out that the condition (2.1) was first introduced by Soria and Weiss in

[22]. The condition (2.1) are satisfied by many interesting operators in harmonic anal-
ysis, such as the Calderón–Zygmund operators, Carleson’s maximal operator, Hardy–
Littlewood maximal operator, C. Fefferman’s singular multipliers, R. Fefferman’s sin-
gular integrals, Ricci–Stein’s oscillatory singular integrals, the Bochner–Riesz means
and so on (see [19], [22] for details).

The following statement, was proved in [15].

THEOREM 2.4. Let 1 � p < ∞ and (ϕ1,ϕ2) satisfies the condition

∫ ∞

r

ess inf
t<s<∞

ϕ1(x,s)s
n
p

t
n
p +1

dt � Cϕ2(x,r), (2.2)

where C does not depend on x and r . Let T be a sublinear operator satisfies the
condition (2.1) bounded on Lp(Rn) for p > 1 , and bounded from L1(Rn) to WL1(Rn) .
Then the operator T is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1 to
WM1,ϕ2 . Moreover, for p > 1

‖T f‖Mp,ϕ2
� ‖ f‖Mp,ϕ1

,

and for p = 1
‖T f‖WM1,ϕ2

� ‖ f‖M1,ϕ1
.



796 A. AKBULUT AND O. KUZU

COROLLARY 2.1. [16] Let 1 � p < ∞ , Ω satisfies the conditions (1.1), (1.2) and
(1.3). Let also (ϕ1,ϕ2) satisfies the condition (2.2). Then the operator μΩ and the
operator μ j are bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1 to WM1,ϕ2 .

COROLLARY 2.2. [1] Let 1 � p < ∞ and (ϕ1,ϕ2) satisfies the condition (2.2).
Then the maximal operator M is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from
M1,ϕ1 to WM1,ϕ2 . Moreover, for p > 1

‖M f‖Mp,ϕ2
� ‖ f‖Mp,ϕ1

, ‖μ j f‖Mp,ϕ2
� ‖ f‖Mp,ϕ1

,

and for p = 1

‖M f‖WM1,ϕ2
� ‖ f‖M1,ϕ1

, ‖μ j f‖WM1,ϕ2
� ‖ f‖M1,ϕ1

.

3. Marcinkiewicz operator μL
j in the spaces Mp,ϕ

In this section, we prove the boundedness of the Marcinkiewicz operator μL
j on

Mp,ϕ(Rn) spaces.
For x ∈ R

n , the function mV (x) is defined by

ρ(x) = sup
r>0

{
r :

1
rn−2

∫
B(x,r)

V (y)dy � 1

}
.

LEMMA 3.1. [21] Let V ∈ Bq with q � n/2 . Then there exists l0 > 0 such that

l
C

(
1+

|x− y|
ρ(x)

)−l0

� ρ(y)
ρ(x)

� C

(
1+

|x− y|
ρ(x)

)l0/(l0+1)

.

In particular, ρ(x) ∼ ρ(y) if |x− y|< Cρ(x) .

LEMMA 3.2. [21] Let V ∈ Bq with q � n/2 . For any l > 0 , there exists Cl > 0
such that ∣∣∣∣KL

j (x,y)
∣∣∣∣� Cl(

1+ |x−y|
ρ(x)

)l

1
|x− y|n−1 ,

and ∣∣∣∣KL
j (x,y)−Kj(x,y)

∣∣∣∣� C
ρ(x)−1

|x− y|n−2 .

The following Theorem has been proved in [10]. For the sake of completeness we
give the proof.

THEOREM 3.5. Let V ∈ Bn . Then the operators μL
j , j = 1, . . . ,n are bounded on

Lp(Rn) for 1 < p < ∞ , and bounded from L1(Rn) to weak L1(Rn) .
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Proof. It suffices to show that

μL
j f (x) � μ j f (x)+CM f (x),a.e. x ∈ R

n, (3.1)

where M denotes the standard Hardy-Littlewood maximal operator.
Fixing x ∈ R

n and let r = ρ(x) .

μL
j f (x) �

(∫ r

0

∣∣∣∣∫|x−y|�t
KL

j (x,y) f (y)dy

∣∣∣∣2 dt
t3

) 1
2

+

(∫ ∞

r

∣∣∣∣∫|x−y|�r
KL

j (x,y) f (y)dy

∣∣∣∣2 dt
t3

) 1
2

+

(∫ ∞

r

∣∣∣∣∫
r<|x−y|�t

KL
j (x,y) f (y)dy

∣∣∣∣2 dt
t3

) 1
2

�
(∫ r

0

∣∣∣∣∫|x−y|�t
[KL

j (x,y)−Kj(x,y)] f (y)dy

∣∣∣∣2 dt
t3

) 1
2

+

(∫ r

0

∣∣∣∣∫|x−y|�t
Kj(x,y) f (y)dy

∣∣∣∣2 dt
t3

) 1
2

+

(∫ ∞

r

∣∣∣∣∫|x−y|�r
KL

j (x,y) f (y)dy

∣∣∣∣2 dt
t3

) 1
2

+

(∫ ∞

r

∣∣∣∣∫
r<|x−y|�t

KL
j (x,y) f (y)dy

∣∣∣∣2 dt
t3

) 1
2

:= E1 +E2 +E3 +E4.

For E1 , by Lemma 3.2, we have

E1 � C

(∫ r

0

∣∣∣∣1r
∫
|x−y|�t

| f (y)|
|x− y|n−2 dy

∣∣∣∣2 dt
t3

) 1
2

� CM f (x).

Obviously,

E2 � μ j f (x).

For E3 , using Lemma 3.2 again, we get

E3 �
(∫ ∞

r

∣∣∣∣1r
∫
|x−y|�r

| f (y)|
|x− y|n−2 dy

∣∣∣∣2 dt
t3

) 1
2

� CM f (x).
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It remains to estimate E4 . From Lemma 3.2, we obtain

E4 � C

(∫ ∞

r

∣∣∣∣r∫
r<|x−y|�t

| f (y)|
|x− y|n dy

∣∣∣∣2 dt
t3

) 1
2

� Cr

⎛⎝∫ ∞

r

∣∣∣∣∣[log2 t/r]+1

∑
k=0

(2kr)n
∫
|x−y|�2kr

| f (y)|dy

∣∣∣∣∣
2
dt
t3

⎞⎠ 1
2

� Cr

(∫ ∞

r

∣∣∣([ log2
t
r

]
+1
)
M f (x)

∣∣∣2 dt
t3

) 1
2

� Cr

(∫ ∞

r

t
r
M f (x)2 dt

t3

) 1
2

� CM f (x).

Thus, Theorem 3.5 is proved. �

LEMMA 3.3. Let V ∈ Bn . If 1 < p < ∞ , then the inequality

‖μL
j ( f )‖Lp(B(x0,r)) � r

n
p

∫ ∞

2r
t−

n
p−1‖ f‖Lp(B(x0,t))dt

holds for any ball B(x0,r) , and for all f ∈ Lloc
p (Rn) .

Moreover, for p = 1 the inequality

‖μL
j ( f )‖WL1(B(x0,r)) � rn

∫ ∞

2r
t−n−1‖ f‖L1(B(x0,t))dt

holds for any ball B(x0,r) , and for all f ∈ Lloc
1 (Rn) .

Proof. Let p∈ (1,∞) . For arbitrary x0 ∈R
n , set B =B(x0,r) , for the ball centered

at x0 and of radius r , 2B = B(x0,2r) . We represent f as

f = f1 + f2, f1(y) = f (y)χ2B(y), f2(y) = f (y)χ�(2B)
(y), r > 0,

and have

‖μL
j ( f )‖Lp(B) � ‖μL

j ( f1)‖Lp(B) +‖μL
j ( f2)‖Lp(B).

Since f1 ∈ Lp(Rn) , μL
j f1 ∈ Lp(Rn) and from the boundedness of μL

j in Lp(Rn) (see
Theorem 3.5) it follows that:

‖μL
j ( f1)‖Lp(B) � ‖μL

j ( f1)‖Lp(Rn) � ‖ f1‖Lp(Rn) ≈ ‖ f‖Lp(2B),
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where constant C > 0 is independent of f . It’s clear that x ∈ B , y ∈ �
(2B) implies

1
2 |x0 − y|� |x− y|� 3

2 |x0− y| . We get

μL
j f2(x) �

∫
Rn

|Ω(x− y)|
|x− y|n−1 | f2(y)|

(∫ ∞

|x−y|
dt
t3

) 1
2

dy

�
∫

�(2B)

| f (y)|
|x− y|n dy

�
∫

�(2B)

| f (y)|
|x0 − y|n dy.

By Fubini’s theorem we have

∫
�(2B)

| f (y)|
|x0− y|n dy ≈

∫
�(2B)

| f (y)|
∫ ∞

|x0−y|
dt

tn+1 dy

≈
∫ ∞

2r

∫
2r�|x0−y|<t

| f (y)|dy
dt

tn+1

�
∫ ∞

2r

∫
B(x0,t)

| f (y)|dy
dt

tn+1 .

By applying Hölder’s inequality, we get

∫
�(2B)

| f (y)|
|x0− y|n dy �

∫ ∞

2r
‖ f‖Lp(B(x0,t))

dt
tn+1 .

Moreover, for all p ∈ [1,∞) the inequatily

‖μL
j ( f2)‖Lp(B) � r

n
p

∫ ∞

2r
t−

n
p−1‖ f‖Lp(B(x0,t)) dt (3.2)

is valid. Thus

‖μL
j ( f )‖Lp(B) � ‖ f‖Lp(2B) + r

n
p

∫ ∞

2r
t−

n
p−1‖ f‖Lp(B(x0,t)) dt.

On the other hand,

‖ f‖Lp(2B) ≈ r
n
p ‖ f‖Lp(2B)

∫ ∞

2r

dt

t
n
p +1

� r
n
p

∫ ∞

2r
t−

n
p−1 ‖ f‖Lp(B(x0,t)) dt. (3.3)

Thus

‖μL
j ( f )‖Lp(B) � r

n
p

∫ ∞

2r
t−

n
p−1‖ f‖Lp(B(x0,t)) dt.
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If p = 1. From the weak (1,1) boundedness of μL
j and (3.3) it follows that

‖μL
j f1‖WL1(B) � ‖μL

j f1‖WL1(Rn) � ‖ f1‖L1(Rn) = ‖ f‖L1(2B)

� rn
∫ ∞

2r

∫
B(x0,t)

| f (y)|dy
dt

tn+1

� rn
∫ ∞

2r
t−n−1‖ f‖L1(B(x0,t)) dt. (3.4)

Then by (3.2) and (3.4) we get the inequality (3.3).

THEOREM 3.6. Let V ∈ Bn and 1 � p < ∞ and (ϕ1,ϕ2) satisfies the condition
(2.2). Then the operator μL

j is bounded from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1

to WM1,ϕ2 . Moreover, for p > 1

‖μL
j f‖Mp,ϕ2

� ‖ f‖Mp,ϕ1
,

and for p = 1
‖μL

j f‖WM1,ϕ2
� ‖ f‖M1,ϕ1

.

Proof. By Lemma 3.3 and Theorem 1.3 we have for p > 1

‖μL
j f‖Mp,ϕ2

� sup
x∈Rn,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖Lp(B(x,t))

dt

t
n
p +1

� sup
x∈Rn,r>0

ϕ1(x,r)−1r−
n
p ‖ f‖Lp(B(x,r))

= ‖ f‖Mp,ϕ1

and for p = 1

‖μL
j f‖WM1,ϕ2

� sup
x∈Rn,r>0

ϕ2(x,r)−1
∫ ∞

r
‖ f‖L1(B(x,t))

dt
tn+1

� sup
x∈Rn,r>0

ϕ1(x,r)−1r−n‖ f‖L1(B(x,r))

= ‖ f‖M1,ϕ1
. �

Acknowledgements. The authors would like to express their gratitude to the refer-
ees for his very valuable comments and suggestions.

RE F ER EN C ES

[1] A. AKBULUT, V. S. GULIYEV AND R. MUSTAFAYEV, On the boundedness of the maximal operator
and singular integral operators in generalized Morrey spaces, Math. Bohem. 137 (1) (2012), 27–43.

[2] A. AL-SALMAN, H. AL-QASSEM, L. C. CHENG, Y. PAN, Lp bounds for the function of Marcinki-
ewicz, Math. Res. Lett. 9 (2002) 697–700.



MARCINKIEWICZ INTEGRALS ASSOCIATED WITH SCHRÖDINGER OPERATOR 801
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