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MARCINKIEWICZ INTEGRALS ASSOCIATED WITH
SCHRODINGER OPERATOR ON GENERALIZED MORREY SPACES

ALI AKBULUT AND OKAN Kuzu

(Communicated by J. Pecaric)

Abstract. Let L= —A+V be a Schrodinger operator, where A is the Laplacian on R", while
nonnegative potential V' belongs to the reverse Holder class. In this paper, we study the bound-
edness of the Marcinkiewicz operator associated with Schrodinger operator ‘uJL on generalized
Morrey spaces M), ,. We find the sufficient conditions on the pair (@1, @,) which ensures the
boundedness of the operators ”/L from one generalized Morrey space M) o, to another M, o, ,
1 < p <o and from the space M o, to the weak space WM, 4, .

1. Introduction

The classical Morrey spaces were originally introduced by Morrey in [20] to study
the local behavior of solutions to second order elliptic partial differential equations.
For the properties and applications of classical Morrey spaces, we refer the readers to
[5, 6,12, 13, 14, 20].

Suppose that §"~! = {x € R": |x| = 1} is the unit sphere of R" (n > 2) equipped
with the normalized Lebesgue measure do = do(x').

In [23], Stein defined the Marcinkiewicz integral for higher dimensions. Suppose
that Q satisfies the following conditions.

(i) Q is a homogeneous function of degree zero on R”. That is,

Q(tx) = Q(x) (1.1)

forall # >0 and x € R".
(ii) Q has mean zero on §"~!. That is,

’ AQ(x’)dG()/) =0, (1.2)

where x' = x/|x| for any x # 0.
(iii) QeL(s" ).
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The Marcinkiewicz integral operator of higher dimension (o is defined by

mﬂfﬂ@==<£mwbd)()2w)lﬂ,

where
Q(x—y)

Fas($)) = | /0y

—yl<e [x =y

REMARK 1.1. We easily see that the Marcinkiewicz integral operator of higher
dimension Ug can be regarded as a generalized version of the classical Marcinkiewicz
integral in the one dimension case. Also, it is easy to see that g is a special case of
the Littlewood-Paley g-function if we take

800 = QW)X 1, (-
We say that Q € Lip,, (S"!), 0 < o < 1 if there exists a constant C > 0 such that

1Q(x) — Q)| < Clx —y'|* forall X,y € 5" !,
In [23], Stein proved the following results.

THEOREM 1.1. (E. M. Stein) Suppose that Q satisfies (1.1).
(@) IfQeL(S"") and Q is odd, then g is bounded on Ly(R") for 1 < p <

(b)  If Q satisfies (1.2) and Q € Lip,(S"~1), 0 < o < 1, then ug is of weak
type (1,1). That is, there exists a constant C such that for any t >0 and f € L;(R"),

[ eR" s pa(n)e) >0} < 5 [ 17l

(c) If Q satisfies (1.2) and Q € Lip,(S*!), 0 < @ < 1, then ug is of type
(p,p) for 1 < p <2. That is, there exists a constant A, such that for any f € L,(R"),

(N, <AplfllL, -

The L, boundedness of o has been studied extensively. See [3, 17, 23, 24],
among others. A survey of past studies can be found in [9]. Recently the following
result was obtained in [2].

THEOREM 1.2. Suppose that Q satisfies (1.1) and (1.2). If
Qe L(log™ L)' /2(s"71), (1.3)
then g is bounded on L,(R") for 1 < p < eo. The exponent 1/2 is the best possible.

On the other hand, the study of Schrodinger operator L = —A+V recently at-
tracted much attention. In particular, Shen [7] considered Lp estimates for Schrodinger
operators L with certain potentials which include Schrédinger Riesz transforms R? =
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%L*%, j=1,...,n. Then, Dziubannski and Zienkiewicz [8] introduced the Hardy
7

type space HL1 (R") associated with the Schrodinger operator L, which is larger than
the classical Hardy space H'(R").

Similar to the classical Marcinkiewicz function, we define the Marcinkiewicz
functions u; associated with the Schrodinger operator L by

= > di i
u}f<x>=< / 73) ,

where K7 (x,y) = KX(x,y)lx —y| and K% (x,y) is the kernel of R; = iL‘l j=

/,HK, K (x,9)f (y)dy

1,...,n. Inparticular, when V =0, KJ?‘(x,y) :Kj?‘(x,y)\x—y\ M and KA(x,y)

pe—y[r=1

is the kernel of R; = %A‘%, Jj=1,...,n. In this paper, we write K;(x,y) = KJ-A(x,y)
7

_ 5 N\ 1/2
i) = ( / %) .

Obviously, u; are classical Marcinkiewicz functions. Therefore, it will be an inter-
esting thing to study the property of [.1 The main purpose of this paper is to show
that Marcinkiewicz integrals assomated with Schrodinger operators are bounded from
one generalized Morrey space M, o, to another M), o, , 1 < p < e, and from the space
M, p, to the weak space WM 4, .

Note that a nonnegative locally L, integrable function V(x) on R” is said to be-
long to B, (1 < g < o) if there exists C > 0 such that the reverse Holder inequality

(e 09) < (g 7o) 09

holds for every ball x € R” and r > 0, where B(x,r) denotes the open ball centered at
x with radius 7; see [21]. It is worth pointing out that the B, class is that, if V € B,
for some g > 1, then there exists € > 0, which depends only n and the constant C in
(1.4), such that V € B, . Throughout this paper, we always assume that 0 #V € B,,.

We will use the following statement on the boundedness of the weighted Hardy
operator

and

[ K ey

= / g(s)w(s)ds, 0<t <oo,
t

where w is a weight.
The following theorem in the case w = 1 was proved in [4].

THEOREM 1.3. Let vy, vy and w be weights on (0,) and v{(t) be bounded
outside a neighborhood of the origin. The inequality

esssupvy(r)H,yg(r) < Cess supvy(1)g(t) (1.5)

t>0 t>0
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holds for some C > 0 for all non-negative and non-decreasing g on (0,) if and only

if

> w(s)ds
B :=ess supv t/ —————— < oo, 1.6
,>op 2(1) ¢+ esssupvi(T) (1.6)
§<T<o0

Moreover, the value C = B is the best constant for (1.5).

REMARK 1.2. In (1.5) and (1.6) it is assumed that é =0and 0-0=0.

By A < B we mean that A < CB with some positive constant C independent of
appropriate quantities. If A < B and B < A, we write A =~ B and say that A and B are
equivalent.

2. Generalized Morrey spaces

The classical Morrey spaces M), ; were originally introduced by Morrey in [20]
to study the local behavior of solutions to second order elliptic partial differential equa-
tions. For the properties and applications of classical Morrey spaces, we refer the read-
ersto[11, 18].

We denote by M), ; =M, 3 (R") the Morrey space, the space of all functions f €
LII?C (R™) with finite quasinorm

_A
£ 113, = 1Al (B
where 1 <p<ooand 0 <A < n.
Note that M, 0 = L,(R") and M, = Lo.(R"). If A <O or A >n,then M,,; =0,
where O is the set of all functions equivalent to 0 on R".

DEFINITION 2.1. Let @(x,r) be a positive measurable function on R” x (0, )
and 1 < p <. We denote by M, , = M, »,(R") the generalized Morrey space, the
space of all functions f € L};’C(R") with finite quasinorm

_1
1f it = sup @)~ B, 7 (1f 12, (80xr)-

x€R™ r>0
Also by WM, , = WM,, ,(R") we denote the weak generalized Morrey space of all
functions f € WLS(R") for which

1
I Fllwat,e = sup @(c,r) " [BO)| 7 (1 llwe, By < o
x€R™ r>0

where WL,(B(x,r)) denotes the weak L, -space consisting of all measurable functions
f for which

Hf”WLp(B(x,r)) = Hf%B(x‘,) ||WLP(R") <o
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Also the spaces L;OC(R") and WL;’C (R") endowed with the natural topology are de-
fined as the set of all functions f such that fy, € L,(R") and fy, € WL,(R") for all
balls B C R", respectively.

According to this definition, we recover the space M,, ; under the choice ¢(x,r) =
A—n
rro:

M,, =M ) “ns
piA Jx% (p(m):rll,

WM, , =WM ‘ .
P X% q)(x.,r):rll’

Let f € LI°(R"). The Hardy-Littlewood maximal function Mf is defined by

MfC) = suplBCen)l ™ [ 170y

>0 B(x.t

Suppose that T represents a linear or a sublinear operator, which satisfies that for
any f € L;(R") with compact support and x & supp f

T <o |

I o
_ y|n
Rll

|x

where ¢ is independent of f and x.

We point out that the condition (2.1) was first introduced by Soria and Weiss in
[22]. The condition (2.1) are satisfied by many interesting operators in harmonic anal-
ysis, such as the Calderén—Zygmund operators, Carleson’s maximal operator, Hardy—
Littlewood maximal operator, C. Fefferman’s singular multipliers, R. Fefferman’s sin-
gular integrals, Ricci—Stein’s oscillatory singular integrals, the Bochner—Riesz means
and so on (see [19], [22] for details).

The following statement, was proved in [15].

THEOREM 2.4. Let 1 < p <o and (Q1,¢2) satisfies the condition

o ess inf @y (x,s)s%

| B —ar<contn), (22)
r [F-H

where C does not depend on x and r. Let T be a sublinear operator satisfies the
condition (2.1) bounded on L,(R") for p > 1, and bounded from Li(R") to WL (R").
Then the operator T is bounded from My o, to My e, for p > 1 and from My o, to
WM q,. Moreover, for p > 1

T f 161y S 1101y,

and for p =1
T fllwaty g, S 11f a1, g, -
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COROLLARY 2.1. [16] Let 1 < p < oo, Q satisfies the conditions (1.1), (1.2) and
(1.3). Let also (@1,¢,) satisfies the condition (2.2). Then the operator g and the
operator [j are bounded from M, o, to M, o, for p > 1 and from M, o, to WM, 4, .

COROLLARY 2.2. [1] Let 1 < p <o and (@1,¢) satisfies the condition (2.2).
Then the maximal operator M is bounded from M, o, to M o, for p > 1 and from
M, to WM\ y,. Moreover, for p > 1

HMf”Mp,(pz 5 Hf”Mp,(pl? ||lJ'jf||Mp<p2 S ||fHMpA,(pl7
and for p =1

IMfllwmt, gy S WMt g > RS llwity gy SNl -

3. Marcinkiewicz operator u,L in the spaces M, ,

In this section, we prove the boundedness of the Marcinkiewicz operator u,L on
M, o (R") spaces.
For x € R", the function my (x) is defined by

1
px)= sup{r: EA@J}V (y)dy < 1}.

r>0

LEMMA 3.1. [21] Let V € B, with g > n/2. Then there exists Iy > 0 such that

_ —ly _ lo/(lo+1)
i<1+|x y') <@<c<1+x y) :

c p(x) S opx) p(x)
In particular, p(x) ~ p(y) if |x —y| < Cp(x).

LEMMA 3.2. [21] Let V € B, with q > n/2. For any | > 0, there exists C; > 0
such that

G 1
Kt <
‘ J (xay)‘ 1 ‘X_yl 1 |x_y|n_l7
T om
and |
-
K,L(w)—Kj(x,y)’ < C%~

The following Theorem has been proved in [10]. For the sake of completeness we
give the proof.

THEOREM 3.5. Let V € B,,. Then the operators ,LLJI-‘, j=1,...,n are bounded on
L,(R") for 1 < p < eo, and bounded from L(R") to weak L (R").
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Proof. Tt suffices to show that
L
Wi f(x) < pif(x) +CMf(x),a.e. xR,

where M denotes the standard Hardy-Littlewood maximal operator.
Fixing x € R” and let r = p(x).
2 di
3

b () < (/0
{1 )
{1 )
(« )
+( [
“(f

* ( L Ko

=E|+Ey+E3+E;y.

D=

J K nsay

/|x_y‘<rK/L(x7y)f(y)dy

[ K 0y
r<|x—y|<t

/lx_m (K7 (x,y) = Kj(x,y)lf (4)dy

1
Zdtz
3

/|x_y‘<rK/L(x7y)f(y)dy

[ Ky

For E;, by Lemma 3.2, we have

-
Ei<C /
0

Obviously,

1/ £ )]

R e

1
2 2
d
dy t—j) < CMf().

Ey < ;if(x).

For Ej3, using Lemma 3.2 again, we get

E3<</
i

Zat

1 [ 0L, t_3>2<CMf(x>.

r Syl e —yn—2

797

(3.1)
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It remains to estimate £4. From Lemma 3.2, we obtain

1
2 2
°° dt
E <C / r/ f W)l ay| &
r r<lx—y|<t |X—y|” t
1
oo | [logot/r]+1 . Zdt 2
<C / 2r”/ dy| —
AL X e, e

<G (/rm’([log2 ;] +)Mf) Z%’Y

. N
¢ ( / ng(xft—;)
C

Mf(x).

<
<
Thus, Theorem 3.5 is proved. [

LEMMA 3.3. Let V € B,. If 1 < p < oo, then the inequality
n [ _n_y
I ooy S 75 [ 05y

holds for any ball B(xy,r), and for all f € L?C(Rn).
Moreover, for p =1 the inequality

IF O llwe, Boor) S '”/2r N F iy By 2

holds for any ball B(xo,r), and for all f € LY"°(R").

Proof. Let p € (1,00). For arbitrary xo € R", set B= B(xy, r), for the ball centered
at xo and of radius r, 2B = B(xp,2r). We represent f as

f=h+f, H0)=f0)xs0), fz(Y)Zf(Y)%B(zB)(Y)’ r>0,

and have
H.LLJL(f)HLP(B) < H.ujL(fl)HLp(B) + H.ujL(f2)||Lp(B)~

Since f € L,(R"), ,uijl € L,(R") and from the boundedness of ,ujL in L,(R") (see
Theorem 3.5) it follows that:

i POl ) < ek ey S A, @) = 1 28)
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.. C . .
where constant C > 0 is independent of f. It’s clear that x € B, y € (2B) implies
310 =y < o=y < 3lxo — . We get

1
Qx—y)| < dr\?
L </ | / — | d
ui fa(x) P 1|f2( )l N
<[ Lo,
(28) |x— |
< /z \f(y)ln dy
(2B) [x0 — Y|
By Fubini’s theorem we have
fO)] / /
dy =~
/“(23) o —y[" l3215%) ) 0] f"“ @
dt
N/2r /2r<\x07y\<t |f( )‘ ythrl
<[ vola
~ Jar B(xp,t) il

By applying Holder’s inequality, we get

() / dt
[;(23) ‘X y‘n ~ Hf”Lp B(xq,f) t"+1

Moreover, for all p € [1,e0) the inequatily

I ey S5 [0 F 1y (32
is valid. Thus

1Dy S 1 eym+ 75 1757 Ul g

On the other hand,
n < dt
\wwmzmwmmégg
§V5/2 e VA PR (3.3)
r
Thus

HE ey S P /2 5 L s -
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If p=1. From the weak (1, 1) boundedness of [.1JL and (3.3) it follows that

i fillwe, ) < 5 fillwe, o S WAl @ = 16112, 08)

dt
<
~ " ~/2V/X0, | ytn+l
< L by 34

Then by (3.2) and (3.4) we get the inequality (3.3).

THEOREM 3.6. Let V € B, and 1 < p < e and (@1, ;) satisfies the condition
(2.2). Then the operator uj is bounded from My, o, to My, o, for p > 1 and from M\ ¢,
to WM\ 4, . Moreover, for p > 1

K5 £ 110ty gy S 11F 111,

andfor p=1
1425 Fllway g S 1S Nbty g, -

Proof. By Lemma 3.3 and Theorem 1.3 we have for p > 1

° dt
H#Jf||Mp<p2§ SUP P2(x,7)” /erHL,,(B(x,t))F

>0

S osup @i(xr) r_%”fHLp(B(x,r))

x€R™ r>0

= 1116,

and for p=1

dt
T et ey i PP

x€R™ r>0

< osup o @ (nr) Tl e

xeR™, r>0

= £l 4, O
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