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CERTAIN Lp BOUNDS FOR ROUGH SINGULAR INTEGRALS

KHADIJA AL-BALUSHI AND AHMAD AL-SALMAN

(Communicated by J. Pečarić)

Abstract. In this paper, we prove Lp bounds for singular integrals with rough kernels associated
to certain surfaces. Our results extend as well as improve previously obtained results.

1. Introduction and main results

Let Rn , n� 2, be the n−dimensional Euclidean space and Sn−1 be the unit sphere
in Rn equipped with normalized Lebesgue measure dσ . Let Ω be a homogeneous
function of degree zero with Ω ∈ L1

(
Sn−1

)
and

∫
Sn−1

Ω(y′)dσ (y′) = 0 (1)

where y′ = y
|y| ∈ Sn−1 for y �= 0. The classical Calderón-Zygmund singular integral

operator TΩ is defined by

(TΩ f ) (x) = p.v.
∫

Rn
Ω(y′) |y|−n f (x− y)dy, (2)

where f ∈ S (Rn) , the space of Schwartz functions.
By introducing the “method of rotation”, Calderón and Zygmund ([5] ,[6]) proved

that the operator TΩ is bounded on Lp (Rn) provided that Ω is an odd function in
L1
(
Sn−1

)
. However, for general functions Ω , Calderón and Zygmund proved that TΩ

is bounded on Lp (Rn) for 1 < p < ∞ provided that Ω ∈ L log+ L
(
Sn−1

)
, i.e.,

∫
Sn−1

|Ω(y′)| log+ |Ω(y′)|dσ (y′) < ∞. (3)

Moreover, they showed that the Lp bondedness may fail if the condition Ω ∈ L log+

L
(
Sn−1

)
is replaced by Ω ∈ L

(
log+ L

)1−ε (Sn−1
)
, for some ε > 0. Subsequently,

the condition Ω ∈ L log+ L
(
Sn−1

)
was independently improved by Connett ([8]) and

Ricci-Weiss ([15]) who showed that if Ω ∈ H1
(
Sn−1

)
, then TΩ maps Lp (Rn) into

itself for 1 < p < ∞ . Here, H1
(
Sn−1

)
denotes the Hardy space on the unit sphere

which contains the class L log+ L
(
Sn−1

)
as a proper subspace.
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On the other hand, by an application of Plancherel’s formula, it can be easily seen
that TΩ maps L2 (Rn) onto itself boundedly if, and only if the function Ω satisfies the
condition

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)| log+ 1
|ξ ·y′|dσ (y′) < ∞. (4)

However, it is not known weather the Condition 4 alone implies the Lp boundedness
of TΩ for some p �= 2. For a though discussion of this problem, we advice readers to
consult [12], [16], among others.

In [12], Grafakos and Stefanov discussed the Lp bondedness of TΩ under condi-
tions related to the Condition 4. In fact, they introduced the following conditions

sup
ξ∈Sn−1

∫
Sn−1

|Ω(y′)|
(
log+ 1

|ξ ·y′|
)1+α

dσ (y′) < ∞, (5)

α > 0. For α > 0, let Fα
(
Sn−1

)
denote the space of all integrable functions Ω on

Sn−1 that satisfy (1). It is clear that⋃
q>1

Lq(Sn−1) ⊂
⋂

α>0

Fα
(
Sn−1) . (6)

On the other hand, it is shown in [12] that⋂
α>0

Fα (Sn−1) � H1(Sn−1) �
⋃

α>0

Fα (Sn−1) (7)

and ⋂
α>0

Fα (Sn−1) � L log+ L(Sn−1). (8)

The following is the main result in [12]

THEOREM 1.1. ([12]) Let Ω ∈ Fα
(
Sn−1

)
and satisfy (1). Then TΩ extends to a

bounded operator from Lp (Rn) into itself for p ∈ ( 2+α
1+α ,2+ α

)
.

Clearly, if the index α is close to zero, i.e., α → 0+ , then the interval for p
in Theorem 1.1 reduces to p = 2. In [10], Fan, Guo and Pan were able to improve
the range of p . In fact, they showed that the result of Theorem 1.1 still holds for
p ∈ ( 2+2α

1+2α ,2+2α
)
.

The main objective of this paper is to consider the conditions (5) in the context of
singular integrals along certain surfaces.

(I) Singular integrals associated to polynomial mappings. For a suitable function
Φ : Rn → Rd , consider the singular integral operator

TΩ,Φ f (x) = p.v.
∫

Rn
Ω(y′) |y|−n f (x−Φ(y))dy. (9)

Clearly, if Φ(y) = y , the operator TΩ,Φ reduces to the classical operator TΩ . In this
paper, we are interested in the case when

Φ(y) = P(|y|)⊗ϕ(y′) =
(
P1 (|y|)ϕ1(y′),P2 (|y|)ϕ2(y′), ...,Pd (|y|)ϕd(y′

)
), (10)
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where Pj (t) ,1 � j � d are real valued polynomials on R and ϕ1 (y′) , ...ϕd (y′) are
real valued functions that are analytic on Sn−1 . It can be easily seen that if d = n
and P1 (t) = P2 (t) = ... = Pd (t) = P(t) = t and ϕ1 (y′) = y′1 ,..., ϕd (y′) = y′d , then
Φ(y) = y and hence, as mentioned above the corresponding operator TΩ,Φ reduces
to the classical operator TΩ . When d = n and P1 (t) = P2 (t) = ... = Pd (t) = P(t)
and ϕ1 (y′) = y′1 ,..., ϕd (y′) = y′d , then the operator TΩ,Φ = TΩ,P has been studied by
Fan, Guo and Pan in [10]. In [10], Fan, Guo and Pan proved that the operator TΩ,P is
bounded on Lp for p ∈ ( 2+2α

1+2α ,2+2α
)

provided that Ω ∈ Fα(Sn−1) for some α > 0.
Furthermore, if n = 2, P1 (t) = P2 (t) = ... = Pd (t) = tm,m � 1, and ϕ (y′) is homo-
geneous function of degree zero that is real analytic on Sn−1 , then Al-Salman showed
in [4] that the operator TΩ,Φ is bounded on Lp for p ∈ ( 2+2α

1+2α ,2+2α
)

provided that
Ω ∈ Fα(Sn−1) for some α > 0. In this paper, we prove the following two results con-
cerning the class of operators TΩ,Φ :

THEOREM 1.2. Suppose that Ω ∈ Fα
(
Sn−1

)
for some α > 0 and satisfy (1).

Suppose also that Φ(y) = P(|y|)⊗ y′ is as in (10). Then TΩ,Φ is bounded in Lp
(
Rd
)

for p ∈ ( 2+2α
1+2α ,2+2α

)
. The Lp bounds of TΩ,Φ are independent of the coefficients of

the polynomial mappings Pj , 1 � j � d .

THEOREM 1.3. Suppose that Ω ∈ Fα
(
S1
)

for some α > 0 and satisfy (1). Sup-
pose also that P1 (t) = P2 (t) = ... = Pd (t) = P(t) and ϕ (y′) = (ϕ1 (y′) , ...ϕd (y′)) is
real analytic on S1 . Then TΩ,Φ is bounded on Lp

(
Rd
)

for p ∈ ( 2+2α
1+2α ,2+2α

)
.

It is clear that Theorems 1.2 and 1.3 generalize the corresponding results in [4],
[10], and [12]. We turn now to discuss the second class of operators in this paper.
Namely, we discuss singular integrals along surfaces of revolution.

(II) Singular integrals along surfaces of revolution. We consider singular integral
operators along hypersurfaces obtained by rotating one dimensional curves around one
of the coordinate axes. For suitable functions Φ : Rn → Rd and φ : [0,∞) → R , we
define the singular integral operator TΦ,φ along the surface

Γ = {(Φ(y) ,φ (|y|)) : y ∈ Rn}
by

TΦ,φ f (x,xn+1) = p.v.
∫

Rn
f (x−Φ(y) ,xn+1−φ (|y|))Ω(y′) |y|−n dy, (11)

where (x,xn+1) ∈ Rn ×R = Rn+1 , n � 2. When Φ(y) = y , the operator Tφ = TΦ,φ
was introduced in 1996 by W. Kim, S. Wainger, J. Wright, and S. Ziesler [13]. It
was shown in [13] that Tφ is bounded on Lp for every 1 < p < ∞ provided that φ
is a convex increasing function with φ(0) = 0 and Ω ∈ C ∞(Sn−1) . Subsequently, the
condition Ω ∈ C ∞(Sn−1) was relaxed to the weaker condition L log+ L(Sn−1) by Al-
Salman and Pan in [2]. In [7], L. Cheng and Y. Pan studied the classical operator Tφ
for functions Ω ∈ Fα

(
Sn−1

)
and polynomial mappings φ . More precisely, L. Cheng

and Y. Pan proved the following result:

THEOREM 1.4. ([7]) Let Ω ∈ Fα
(
Sn−1

)
for some α > 0 and let φ be a polyno-

mial.
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(i) If n = 2 , then Tφ is bounded on Lp
(
R3
)

for p ∈ ( 2+2α
1+2α ,2+2α

)
.

(ii) If n � 3 and φ ′ (0) = 0 , then Tφ is bounded on Lp
(
Rn+1

)
for p ∈

(
2+2α
1+2α ,

2+2α
)
.

In both (i) and (ii), the bounds on the operator norm are independent of the coef-
ficients of φ .

In the following, we consider the general operator TΦ,φ for various functions Φ
and φ . In order to state our first result concerning the operator TΦ,φ , we need to recall
the following class of functions introduced by Al-Salman and Pan in [3].

DEFINITION 1.5. ([3]) For n � 2, and m � 1, let V (n,m) be the collection of
homogeneous polynomials in n−variables of degree m . An integrable function Ω on
Sn−1 is said to be in the space W (n,m,α) if

sup
P∈V (n,m)
‖P‖=1

∫
Sn−1

|Ω(y′)|
(
log 1

|P(y)|
)1+α

dσ (y′) < ∞. (12)

Here, ‖P‖ = ∑
|α |=m

|aα | where P(y) = ∑
|α |=m

aα yα .

It is shown in [3] that
∞⋂

s=1
W (2,s,α) = Fα

(
S1
)

while
∞⋂

s=1
W (n,s,α) is a proper

subspace of Fα
(
Sn−1

)
for n � 3. Set

W (n,α) =
∞⋂

s=1
W (n,s,α) .

Now, for α > 0, n � 2, and m � 1, we let W 0 (n,s,α) be the space of all inte-
grable functions Ω on Sn−1 that satisfy

sup
P∈V (n,m)
‖P‖=1,β∈R

∫
Sn−1

|Ω(y′)|
(
log 1

|P(y)+β |
)1+α

dσ (y′) < ∞. (13)

Also, we set

W 0 (n,α) =
∞⋂

s=1
W 0 (n,s,α) .

By the argument in [3] and [7], we can easily show that

W 0 (2,α) = Fα
(
S1) (14)

and
W 0 (n,α) ⊂W (n,α) , n � 3. (15)

Now we have the following result:



CERTAIN Lp BOUNDS FOR ROUGH SINGULAR INTEGRALS 807

THEOREM 1.6. Let n � 2 , Φ = P be a real valued polynomial in n−variables,
and φ be a real valued polynomial on R with φ(0) = 0 . If Ω ∈ W 0 (n,α) for some
α > 0 , then the operator TP,φ is bounded on Lp

(
Rn+1

)
for p ∈ (

2+2α
1+2α ,2+2α

)
.

Moreover, the Lp bounds are independent of the coefficients of φ and P .

By (14), it follows that Theorem 1.6 is a substantial improvement of the corre-
sponding result in [7]. Our next result is the following:

THEOREM 1.7. Suppose that Φ(y) = P(|y|)⊗ y′ where P(t) = (P1(t), ...,Pd(t))
is a polynomial mapping. Suppose also that φ is a real valued polynomial on R .

(i) If n = 2, and Ω ∈ Fα
(
Sn−1

)
for α > 0 , then TΦ,φ is bounded on Lp

(
R3
)

for
p ∈ ( 2+2α

1+2α ,2+2α
)
.

(ii) If n � 3, and Ω ∈W 0 (n,1,α) , then TΦ,φ is bounded on Lp
(
Rn+1

)
for p ∈( 2+2α

1+2α ,2+2α
)
.

In both (i) and (ii), the Lp bounds on the operator norm are independent of the
coefficient of φ and Pj .

It should be noticed here that Ω ∈W 0 (n,1,α) if

sup
ξ∈Sn−1

β∈R

∫
Sn−1

∣∣Ω(y′)∣∣ log

(∣∣∣∣ 1
〈ξ ,y′〉+ β

∣∣∣∣
)1+α

dσ
(
y′
)

< ∞ (16)

which is equivalent to (5) in the case n = 2.
Now, we move to discuss the third class of operators in this paper.

(III) Singular integrals along surfaces determined by certain convex functions. We
assume that the surface Γ is in the form

Γ =
{(

ψ (|y|)y′,φ (|y|)) : y ∈ Rn} .

The singular integral operator associated to the surface Γ is given by

Tψ,φ f (x,xn+1) = p.v.
∫

Rn
f (x−ψ (|y|)y′,xn+1−φ (|y|))Ω(y′) |y|−n dy. (17)

Clearly, if ψ and φ are polynomials, then the corresponding operator Tψ,φ is a special
class of the operators discussed in Theorem 1.7 above. However, our aim here is to
discuss the Lp boundedness for functions that satisfy certain convexity assumptions.
More precisely, our result concerning this class of operators is the following:

THEOREM 1.8. Let ψ ,φ ∈C1 [0,∞) be convex increasing, ψ (0) = φ (0) = φ ′ (0)
= 0 , and ψ ′ (0) �= 0 . Let ϕ(t) = φ(ψ−1(t)) and assume that ϕ ′ is convex and increas-
ing. If Ω ∈ Fα

(
Sn−1

)
for some α > 0 , and satisfies (1), then Tψ,φ is bounded on

Lp
(
Rn+1

)
for all p ∈ ( 2+2α

1+2α ,2+2α
)
.

It should be noticed here that by specializing to the case ψ(t) = t , one obtain the
result in [14].

This paper is organized as follows. In section 2, we shall present the main tools
that we shall need to prove our results. In section 3, we shall prove Theorems 1.2 and
1.3. In section 4, we prove Theorems 1.6 and 1.7. The proof of Theorem 1.8 will be
presented in Section 5. In Section 6, some further results will be highlighted.
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2. Some lemmas

By combining the proofs of Lemma 5.2 in [11] and Lemma 2.1 in [3], we obtain
the following version of Lemma 5.2 in [11]

LEMMA 2.1. Let α > 0 , m, d ∈ N and
{

σs,k : 0 � s � m and k ∈ Z
}

be a fam-
ily of uniformly bounded Borel measure on Rd with σ0,k = 0 , for every k ∈ Z . Let

{ηs : 1 � s � m} ⊂ R+�{1} , {�s : 1 � s � m} ⊂ N , and Ls : Rd → R�s be linear
transformations for 1 � s � m. Suppose that

i)
∣∣σ̂s,k (ξ )

∣∣� C
[
ln
(
ηk

s |Lsξ |
)]−(1+α)

for ξ ∈ Rd , k ∈ Z and 1 � s � m,
ii)
∣∣σ̂s,k (ξ )− σ̂s−1,k (ξ )

∣∣� C
∣∣ηk

s |Lsξ |
∣∣ for ξ ∈ Rd , k ∈ Z and 1 � s � m,

iii) For every q ∈ (1,∞) there exist an Aq > 0 such that∥∥∥∥sup
k∈Z

∣∣σs,k
∣∣∗ | f |∥∥∥∥

q

� Aq ‖ f‖q , (18)

for all f ∈ Lq
(
Rd
)

and 1 � s � m. Then for p∈ ( 2+2α
1+2α ,2+2α

)
, there exists a positive

constant Cp such that ∥∥∥∥ ∑
k∈Z

σm,k ∗ f

∥∥∥∥
p

� Cp ‖ f‖p

holds for all f ∈ Lp
(
Rd
)
. Moreover, the constant Cp is independent of the linear

transformations {Ls : 1 � s � m} .

The following lemma can be found in ([16], page 477).

LEMMA 2.2. ([16]) For every 1 < p � ∞ there exists a positive constant Cp such
that the maximal function

(MP f ) (x) = sup
r>0

1
r

∣∣∣∣∣ ∫|t|<r
f (x−P(t))dt

∣∣∣∣∣
satisfies

‖MP f‖p � Cp ‖ f‖p ,

for f ∈ Lp
(
Rd
)
. The constant Cp may depend on the degree of the polynomials

{
Pj
}

.

In order to handle the oscillatory integrals, we shall need the following lemma due
to Van der Corput:

LEMMA 2.3. (Van der Corput [16]) Let φ be a real valued and smooth function

in (a,b) and
∣∣∣φ (k) (x)

∣∣∣� 1,∀x ∈ (a,b) . Then

∣∣∣∣ b∫
a

eiλ φ(x)dx

∣∣∣∣� ck |λ |−
1
k

holds when:
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(i) k � 2 or
(ii) k = 1 and φ ′ (x) is monotonic. The bound ck is independent of a,b, φ , and

λ .

The following two lemmas will be useful:

LEMMA 2.4. ([9]) Let φ : [0,∞) → R be a C1 function such that φ ′ is convex,
increasing and satisfies φ ′ (0) = 0. Let (ak) be a lacunary sequence with inf ak+1

ak
� 2 .

Then, there exists a c > 0 such that∣∣∣∣ b∫
1

ei[akat+ηφ(akt)]dt

∣∣∣∣� c |aka|−
1
2

holds for all b � 1,a,η ∈ R, and k ∈ Z .

It should be remarked here that the above lemma, i.e., Lemma 2.4 is proved in [9]
for the special case ak = 2k . However, the proof for the general case follows by minor
modifications of the special case.

LEMMA 2.5. ([4]) Let Φ : S1 →Rd , Φ = (Φ1, . . . ,Φd) be a real analytic function
on S1 . Suppose also that {Φ1, . . . ,Φd} is linearly independent set. If Ω ∈ Fα

(
S1
)
,

then

sup
ξ∈Sd−1

∫
S1
|Ω(y′)|

(
log+ 1

|ξ ′.Φ(y′)|
)1+α

dσ (y′) < ∞.

Now, we prove the following lemma:

LEMMA 2.6. Let P be a real valued polynomial in n−variables and φ be a real
valued polynomial on R . Let Ω ∈ L1

(
Sn−1

)
and let

μ
P,φ ( f )(x,xd+1) = sup

j∈Z

∫
2 j�|y|<2 j+1

| f (x−P(y),xd+1−φ(|y|))| |Ω(y′)|
|y|n dy.

Then ∥∥∥μ
P,φ ( f )

∥∥∥
Lp(Rd+1)

� Cp ‖Ω‖L1(Sn−1) ‖ f‖Lp(Rd+1) (19)

for all 1 < p < ∞ with constants Cp that are independent of the coefficients of the
polynomials P and φ .

Proof. The verification of (19) is a straightforward application of Lemma 2.2. In
fact, by polar coordinates we have

μ
P,φ ( f )(x,xd+1)

�
∫

Sn−1

∣∣Ω(y′)
∣∣
⎛
⎝sup

j∈Z

2 j+1∫
2 j

∣∣ f (x−P(ty′),xd+1−φ(t))
∣∣ dt

t

⎞
⎠dσ(y′).
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By Minkowski’s inequality, we get∥∥∥μ
P,φ ( f )

∥∥∥
Lp(Rd+1)

�
∫

Sn−1

∣∣Ω(y′)
∣∣
∥∥∥∥∥∥
⎛
⎝sup

j∈Z

2 j+1∫
2 j

∣∣ f (x−P(ty′),xd+1−φ(t))
∣∣ dt

t

⎞
⎠
∥∥∥∥∥∥

p

dσ(y′).

Hence, (19) follows by an application of Lemma 2.2. This completes the proof. �

Now, we prove the following result concerning oscillatory integrals:

LEMMA 2.8. Let ψ ,φ be as in Theorem 1.8. Then

∣∣∣∣∣∣
2k+1∫
2k

e−i[λ1ψ(t)+λ2φ(t)] dt
t

∣∣∣∣∣∣� C
∣∣∣ψ(2k)λ1

∣∣∣− 1
2

(20)

with a constant C independent of λ1,λ2, and k .

Proof. By change of variables we have

2k+1∫
2k

e−i[λ1ψ(t)+λ2φ(t)] dt
t

=

ψ(2k+1)∫
ψ(2k)

e−i[λ1u+λ2ϕ(u))] du
ψ−1(u)ψ ′(ψ−1(u))

where ϕ(t) = φ(ψ−1(t)) . By Lemma 2.4, we have∣∣∣∣∣∣∣
ψ(2k+1)∫
ψ(2k)

e−i[λ1u+λ2ϕ(u))]du

∣∣∣∣∣∣∣� ψ(2k)C
∣∣∣ψ(2k)λ1

∣∣∣− 1
2
.

Thus, by an integration by parts, we have

∣∣∣∣∣∣
2k+1∫
2k

e−i[λ1ψ(t)+λ2φ(t)] dt
t

∣∣∣∣∣∣ � ψ(2k)C
∣∣∣ψ(2k)λ1

∣∣∣− 1
2
(

1
2kψ ′(2k)

)

� C
∣∣∣ψ(2k)λ1

∣∣∣− 1
2
.

This completes the proof. �

We end this section by the following result concerning maximal functions related
to the operators in (17):
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LEMMA 2.9. Let ψ ,φ be as in Theorem 1.8. Let y′ ∈ Sn−1 . Then the maximal
function

Mψ,φ ,y′ ( f ) (x,xn+1) = sup
k

∣∣∣∣∣
2k+1∫
2k

f (x−ψ(t)y′,xn+1−φ (t)) dt
t

∣∣∣∣∣ (21)

satisfies ∥∥Mψ,φ ,y′ ( f )
∥∥

p � Cp ‖ f‖p (22)

for all 1 < p < ∞ with constant Cp independent of y′ .

Proof. For k ∈ Z , define the measure μk by

μ̂k (ξ ,η) =
2k+1∫
2k

e−i(ξ ·y′ψ(t)+ηφ(t)) dt
t .

Then
Mψ,φ ,y′ ( f ) (x,xn+1) = sup

k
|μk ∗ f (x,xn+1)| .

Now, Choose a smooth function θ with the properties θ̂ (ξ ) = 1 for |ξ | � 1
2 , and

θ̂ (ξ ) = 0 for |ξ |� 1. Let θr(x) = r−nθ ( x
r ) for r � 0. Define the sequence of measures

τk by
τ̂k(ξ ,η) = μ̂k(ξ ,η)− θ̂ψ(2k)(ξ )μ̂k(0,η). (23)

By Lemma 2.8, we get

|τ̂k(ξ ,η)| �
∣∣∣ψ(2k)ξ · y′

∣∣∣− 1
2

(24)

for
∣∣ψ(2k)ξ

∣∣� 1.
On the other hand, we have

|τ̂k(ξ ,η)| �
∣∣∣ψ(2k+1)ξ · y′

∣∣∣ . (25)

Now, notice that

Mψ,φ ,y′ ( f ) (x,xn+1) � (∑
k

|τk ∗ f (x,xn+1)|2) 1
2 +(MH ⊗Mφ ) f (x,xn+1) (26)

where MH is the Hardy-Littlewood maximal function acting on x -variable and Mφ is
the maximal function in Lemma 2.2 with P is replaced by φ .

Also,

τ∗( f )(x,xn+1) � Mψ,φ ,y′ ( f ) (x,xn+1)+ (MH ⊗Mφ ) f (x,xn+1) (27)

where
τ∗( f )(x,xn+1) = sup

k
|τk ∗ f (x,xn+1)| .

Thus, by (24)–(27), Lemma 2.2, and a bootstrapping argument as in [2], we obtain (22).
This completes the proof. �
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3. Proofs of results on singular integrals associated to polynomial mappings

This section is devoted to the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Assume that Ω ∈ Fα
(
Sn−1

)
for some α > 0 and satisfy

(1). Let
M = deg(P) = max{deg(Pj),1 � j � d}.

For 1 � l � n , let

Pl(t) =
M

∑
j=1

a j,lt
j.

For 1 � s � M and 1 � l � n , let

P(s)
l (t) =

s

∑
j=1

a j,lt
j,

P(s)(t) = (P(s)
1 (t), ...,P(s)

n (t)),

and
Φs(y) = P(s) (|y|)⊗ y′.

For each k ∈ Z and 1 � s � M , define the measures σs,k and μs,k by

σ̂s,k (ξ ) =
∫

2k�|y|<2k+1
Ω(y′) |y|−n e−iΦs(y).ξ dy,

μ̂s,k (ξ ) =
∫

2k�|y|<2k+1
|Ω(y′)| |y|−n e−iΦs(y).ξ dy.

Also, we define σ∗
s by

σ∗
s f (x) = sup

k∈Z

∣∣μs,k ∗ f (x)
∣∣ .

It is clear that σ0,k = 0 for all k ∈ Z . Moreover,

TΩ,Φ f (x) = ∑
k∈Z

σM,k ∗ f . (28)

Now,

Φs(y).ξ =
n

∑
l=1

ξly
′
lP

(s)
l (|y|) =

n

∑
l=1

s

∑
j=1

ξly
′
la j,l |y| j

=
s

∑
j=1

(
n

∑
l=1

ξly
′
la j,l

)
|y| j =

s

∑
j=1

(
Lj(ξ ) · y′) |y| j

where Lj : Rn → Rn is the linear transformation given by

Lj(ξ ) = (ξ1a j,1, ...,ξna j,n). (29)
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Thus, ∣∣σ̂s,k (ξ )− σ̂s−1,k (ξ )
∣∣

�
∫

2k�|y|<2k+1
|exp [i((Ls(ξ ) · y′) |y|s)]−1| |Ω(y′)| |y|−n dy � C

(
2sk |Lsξ |

)
. (30)

On the other hand,

∣∣σ̂s,k (ξ )
∣∣� ∫

Sn−1
|Ω(y′)|

∣∣∣∣∣
2∫
1

exp

[
−i

(
s
∑
j=1

(Lj(ξ ) · y′)2k j

)]
dt
t

∣∣∣∣∣dσ (y′) . (31)

By Lemma 2.3, we have∣∣∣∣∣
2∫
1

exp

[
−i

(
s
∑
j=1

(Lj(ξ ) · y′)2k j

)]
dt
t

∣∣∣∣∣�
∣∣∣(Ls(ξ ) · y′)2ks

∣∣∣−1
s

(32)

By (32) and the trivial estimate∣∣∣∣∣
2∫
1

exp

[
−i

(
s
∑
j=1

(Lj(ξ ) · y′)2k j

)]
dt
t

∣∣∣∣∣� 1, (33)

we get ∣∣∣∣∣
2∫
1

exp

[
−i

(
s
∑
j=1

(Lj(ξ ) · y′)2k j

)]
dt
t

∣∣∣∣∣
� C

(
log+

∣∣∣2ksLs(ξ )
∣∣∣)−1−α

(
log+

(
1

|Ls(ξ )/ |Ls(ξ )| · y′|
))1+α

(34)

which when combined with (5) imply that

∣∣σ̂s,k (ξ )
∣∣� C

(
log+

∣∣∣2ksLs(ξ )
∣∣∣)−1−α

. (35)

Now, as in the proof of Lemma 2.6, we get

‖σ∗
s f‖p �

∫
Sn−1

∣∣Ω(y′)
∣∣
∥∥∥∥∥∥
⎛
⎝sup

k∈Z

2k+1∫
2k

∣∣∣ f (x−P(s) (t)⊗ y′)
∣∣∣ dt

t

⎞
⎠
∥∥∥∥∥∥

p

dσ(y′).

Thus, by Lemma 2.2, we get

‖σ∗
s f‖p � Cp ‖Ω‖1 ‖ f‖p (36)

for all 1 < p < ∞ . Hence, by (30), (35), (36), and Lemma 2.1, the proof is com-
plete. �



814 K. AL-BALUSHI AND A. AL-SALMAN

Proof of Theorem 1.3. Assume that Ω ∈ Fα
(
S1
)

for some α > 0 and satisfy (1).
Assume also that ϕ (y′) = (ϕ1 (y′) , ...ϕd (y′)) is real analytic on S1 . Let P(t)= P1 (t) =

P2 (t) = ... = Pd (t) and that P(t) =
M
∑

m=1
amtm . For 1 � s � M , let Ps (t) =

s
∑

m=1
amtm .

For each k ∈ Z , we define

σ̂s,k (ξ ) =
∫

2k�|y|<2k+1
Ω(y′) |y|−n e−iPs(|y|)ϕ(y′).ξ dy (37)

μ̂s,k (ξ ) =
∫

2k�|y|<2k+1
|Ω(y′)| |y|−n e−iPs(|y|)ϕ(y′).ξ dy. (38)

Let
{

ϕi1 , ...ϕi�

}
be a maximal linearly independent subset of {ϕ1, ...ϕd} , where 1 �

� � d , 1 � i j � d and j = 1, ..., � . Thus, for j /∈{i1, ..., il} , there exist a( j) = (a j,1, ...,a j,l)
∈ R� such that

ϕ j(y′) = a( j) · (ϕi1(y
′), ...ϕi�(y

′)) =
l

∑
o=1

a j,oϕio(y
′).

This implies that there exists a linear transformation L : Rd → R� such that

ϕ
(
y′
) ·ξ = L(ξ ) · ϕ̃ (y′) , ξ ∈ Rd

where ϕ̃ (y′) =
(
ϕi1 (y′) , ...ϕi� (y

′)
)
.

Now, ∣∣σ̂s,k (ξ )
∣∣� ∫

S1
|Ω(y′)| ∣∣Is,k (ξ )

∣∣dσ (y′) ,

where

Is,k (ξ ) =
2∫
1

exp
[−iPs

(
2kt
)
(L(ξ ) .ϕ̃ (y′))

]
dt
t .

By Lemma 2.3, we get

∣∣Is,k (ξ )
∣∣� ∣∣∣2ksasL(ξ ) · ϕ̃ (y′)∣∣∣− 1

s
. (39)

By (39) and the estimate
∣∣Is,k (ξ )

∣∣� 1, we get

∣∣Is,k (ξ )
∣∣�

(
log+ ∣∣L(ξ )′ .ϕ̃ (y′)

∣∣−1
)1+α

(
log+ |2skas| |L(ξ )|)1+α (40)

where L(ξ )′ = L(ξ )
|L(ξ )| . By combining inequality (40) and Lemma 2.5, we get

∣∣σ̂s,k (ξ )
∣∣� C

(
log+

∣∣∣2skas

∣∣∣ |L(ξ )|
)−1−α

. (41)
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On the other hand, by using the vanishing property of Ω , we have∣∣σ̂s,k (ξ )− σ̂s−1,k (ξ )
∣∣

�
∫

2k�|y|<2k+1
|exp [i(L(ξ ) .ϕ̃ (y′))as |y|s]−1| |Ω(y′)| |y|−n dy

� C
∣∣∣as2

skL(ξ )
∣∣∣ ∫
S1
|Ω(y′)|‖ϕ̃ (y′)‖dσ (y′)

� C
∣∣∣as2skL(ξ )

∣∣∣‖Ω‖1 sup
y′∈S1

∥∥ϕ̃
(
y′
)∥∥� C

∣∣∣as2skL(ξ )
∣∣∣ . (42)

In order to conclude the proof, we only need to prove the boundedness on Lp for all
p > 1 of the maximal operator

σ∗
s f (x) = sup

k∈Z

∣∣μs,k ∗ f (x)
∣∣ .

Notice that

σ∗
s f (x) � sup

k

∫
S1
|Ω(y′)|

∣∣∣∣∣
2k+1∫
2k

f (x−Ps (t)ϕ (y′)) dt
t

∣∣∣∣∣dσ (y′)

�
∫
S1
|Ω(y′)|M(s)

ϕ(y′) f (x)dσ (y′) ,

where

M(s)
ϕ(y′) ( f ) (x) = sup

k

∣∣∣∣∣
2k+1∫
2k

f (x−Ps (t)ϕ (y′)) dt
t

∣∣∣∣∣ .
By Lemma 2.2, we have ∥∥∥M(s)

ϕ(y′)( f )
∥∥∥

p
� Cp ‖ f‖p (43)

for all 1 < p < ∞ with constant Cp independent of ϕ (y′) . By (43) and Minkowski’s
inequality, we get

‖σ∗
s f‖p � Cp ‖ f‖p (44)

for all 1 < p < ∞ . Hence, by (41), (42), (44), and Lemma 2.1, the proof is com-
plete. �

4. Proofs of results on singular integrals along surfaces of revolution

This section is devoted to the proofs of Theorems 1.6 and 1.7. We shall start by
the proof of Theorem 1.6.

Proof of Theorem 1.6. Let n � 2,P =(P1,P2, ...,Pd) where Pj : Rn −→ R is a
polynomialmapping for 1� j � d . Let φ be a polynomial on R and that Ω∈W 0 (n,α)
for some α > 0. Let

M = max{deg(φ),deg(P1),deg(P1), ...,deg(Pd)}.
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Let

φ (t) = ∑M
j=1 b jt j and Pj (y) = ∑

|β |�M
ajβ yβ

for j = 1,2, ...,d . For 1 � s � M , we let P(s)(y) =
(
P1,s,P2,s, ...,Pd,s

)
and φs (t)

=
s
∑
j=1

b jt j where

Pj,s (y) = ∑
|β |�s

a jβ yβ , j = 1,2, ...,d.

We shall set P(0) = 0 and φ0 = 0.

For k ∈ Z and 0 � s � M , we define the measure σs,k on Rn+1 by

∫
Rn+1

f dσs,k =
∫

2k�|y|<2k+1
f
(
P(s) (y) ,φs (|y|)

)
Ω(y′) |y|−n dy. (45)

We let σ∗
s be the maximal function

σ∗
s f (x) = sup

k∈Z

∣∣∣∣σs,k
∣∣∗ f (x)

∣∣ . (46)

For 1 � s � M , let �s denote the number of multi indices β = (β1,β2, ...,βn) satisfying
|β | = s , and define the linear transformation Ls : Rd → R�s by

Lsξ =

(
d
∑
j=1

a jβ ξ j

)
|β |=s

. (47)

For (ξ ,η) ∈ Rn ×R , y ∈ Sn−1 and k ∈ Z, we have

∣∣σ̂s,k (ξ ,η)
∣∣ =

∣∣∣∣∣ ∫
2k�|y|<2k+1

Ω(y′) |y|−n e−i[ξ .P(s)(y)+ηφs(|y|)]dy

∣∣∣∣∣
�

∫
Sn−1

|Ω(y′)|
∣∣∣∣
{

2∫
1

exp
[
−i
(

ξ .P(s) (2ky′t
)
+ ηφs

(
2kt
))]

dt
t

}∣∣∣∣dσ (y′)

Let Ik,s (ξ ,η) denote the integral inside the brackets, i.e.,

Ik,s (ξ ,η) =
2∫
1

exp
[
−i
(

ξ .P(s) (2ky′t
)
+ ηφs

(
2kt
))]

dt
t .
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Notice that

ξ .P(s)
(
2ky′t

)
+ ηφs

(
2kt
)

=
d

∑
j=1

ξ jPj,s

(
2ky′t

)
+ ηφs

(
2kt
)

=
d

∑
j=1

∑
|β |�s

ξ ja jβ 2|β |kt |β |y′β + ηφs

(
2kt
)

=

(
ηbs + ∑

|β |=s

(
d

∑
j=1

ξ ja jβ

)
y′β
)

2skts +(lower powers in t)

=

(
ηbs + ∑

|β |=s

(
d

∑
j=1

ξ ja jβ

)
y′β
)

2skts +(lower powers in t)

=
(

ηbs +Lsξ ·
(
y′β
)
|β |=s

)
2skts +(lower powers in t) .

Let
Qsξ

(
y′
)

= (Lsξ )′ ·
(
y′β
)
|β |=s

where (Lsξ )′ = Lsξ/ |Lsξ | . By Lemma 2.3, we get

∣∣Ik,s (ξ ,η)
∣∣� C

[
2ks |Lsξ |

(∣∣Qsξ
(
y′
)
+ ρ (ξ ,η)

∣∣)]− 1
s
, (48)

where ρ (ξ ,η) = bsη
|Lsξ | . Thus, by (48) and the estimate |Ik (ξ ,η)| � 1, we have

∣∣Ik,s (ξ ,η)
∣∣� C

(
log+

(
2ks |Lsξ |

))−(1+α)
(

s+ α + log+ 1∣∣Qsξ (y′)+ ρ (ξ ,η)
∣∣
)1+α

.

(49)
Since Ω ∈W 0 (n,α) , Qsξ ∈V (n,m) and

∥∥Qsξ
∥∥= 1, we immediately obtain

∣∣σ̂s,k (ξ ,η)
∣∣� C

(
log+

(
2ks |Lsξ |

))−(1+α)
(50)

for 0 � s � m and k ∈ Z and (ξ ,η) ∈ Rn+1 .
On the other hand, we have∣∣σ̂s,k (ξ ,η)− σ̂s−1,k (ξ ,η)

∣∣
�

∫
2k�|y|<2k+1

∣∣∣∣∣exp

[
−i

(
d
∑
j=1

∑
|β |=s

a jβ ξ jyβ +bsη |y|s
)]

−1

∣∣∣∣∣ |Ω(y′)| |y|−n dy

� C
(
2ks |Lsξ |

)
.

Finally, by an argument similar to that led to (44) and an application of Lemma 2.6, we
get

‖σ∗
s ( f )‖q � Cq ‖ f‖q (51)
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for all 1 < q < ∞ . Hence, by (50)–(51) and Lemma 2.1, we get TP,φ is bounded
on Lp

(
Rn+1

)
for p ∈ ( 2+2α

1+2α ,2+2α
)

with abound on
∥∥TP,φ

∥∥
p,p independent of the

coefficients of the Pj ’s and φ . This completes the proof. �

Proof of Theorem 1.7. We start by the case n � 3. Let

M = max{φ ,deg(P1), ...,deg(Pd)}.

Let Pl,P
(s)
l ,P(s) , and Φs,1 � s � M and 1 � l � d , be as in the proof of Theorem 1.2.

We set P(0)
l = P(0) = Φ0 = 0. Set φs (t) = ∑s

j=0 b jt j with b0 = 0. For 0 � s � M and
k ∈ Z , we define the measure σs,k on Rn+1 by

∫
Rn+1

Fdσs,k =
∫

2k�|y|<2k+1
F (Φs (y) ,φs (|y|))Ω(y′) |y|−n dy. (52)

Set
σ∗

s ( f ) = sup
k∈Z

∣∣∣∣σs,k
∣∣∗ f

∣∣ . (53)

Then it follows that
TΦ,φ f (x) = ∑

k∈Z
σs,k ∗ f . (54)

In order to conclude the proof, we only need to show that the measures σs,k satisfy the
assumptions (i) and (ii) in Lemma 2.1.

Notice that for ξ ∈ Rn and η ∈ R , we have

Φs(y).ξ + ηφs (|y|) =
s

∑
j=1

((
Lj(ξ ) · y′)+bsη

) |y| j
where Lj is the linear transformation given in (29). Thus,∣∣σ̂s,k (ξ ,η)

∣∣� ∫
Sn−1

∣∣Is,k (ξ ,η)
∣∣ |Ω(y′)|dσ (y′) ,

where

Is,k (ξ ,η) =
2∫
1

exp
[−i

(
Φs(2kty′).ξ + ηφs

(
2kt
))]

dt
t . (55)

By Lemma 2.3, we get

∣∣Is,k (ξ ,η)
∣∣� C

[
2sk |Ls (ξ )|ρ .y′ + δ

]− 1
s

(56)

where
ρ = |Ls (ξ )|−1 Ls (ξ )

and
δ = min

{(
|Ls (ξ )|−1 |bsη | ,2

)
sgn(bsη)

}
.
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By (56) and the observation
∣∣Is,k (ξ ,η)

∣∣� 1,we obtain

∣∣Is,k (ξ ,η)
∣∣� C

[
ln
(
4 |〈ρ .y′〉+ δ |−1

)]1+α

[ln(2sk |Ls (ξ )|)]1+α ,

whenever 2sk |Ls (ξ )|� 2. Therefore, by the fact that Ω∈W 0 (n,1,α) , we immediately
obtain ∣∣σ̂s,k (ξ ,η)

∣∣
� C

[
ln
(
2sk |Ls (ξ )|

)]−1−α ∫
Sn−1

|Ω(y′)|
[
ln
(
4 |〈ρ .y′〉+ δ |−1

)]1+α
dσ (y′)

� C
[
ln
(
2sk |Ls (ξ )|

)]−1−α
(57)

provided that 2sk |Ls (ξ )| � 2.
On the other hand, it can be easily seen that

∣∣σ̂s,k (ξ ,η)− σ̂s−1,k (ξ ,η)
∣∣� C

∣∣∣2sk |Ls (ξ )|
∣∣∣ . (58)

By (57), (58), the boundedness of the maximal functions σ∗
s on Lp for all 1 < p < ∞

(which follows by Lemma 2.6) and Lemma 2.1, the theorem is proved for the case
n � 3.

Now, the proof of the case n = 2 follows by minor modification of the correspond-
ing proof of the case n � 3. In fact, by adapting the argument in ([7], p. 167,168), we
can show that the estimate (57) holds provided that Ω ∈ Fα

(
Sn−1

)
. �

5. Proofs of the result concerning convex functions

In the following, we give a sketch of the proof of Theorem 1.8.

Proof of Theorem 1.8. Let ψ ,φ ,ϕ(t) , and Ω be as in the statement 1.8. For k∈Z ,
define the measure σk , using Fourier transform, by

σ̂k (ξ ,η) =
∫

2k�|y|<2k+1
Ω(y′) |y|−n e−i[ξ .ψ(|y|)y′+ηφ(|y|)]dy.

Then it follows that

Tψ,φ ( f )(x,xn+1) = ∑
k∈Z

σk ∗ f (x,xn+1). (59)

By Lemma 2.8, we have

|σ̂k (ξ ,η)| �
[
log+

(∣∣∣ψ(2k)ξ
∣∣∣)]−1−α

. (60)
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On the other hand, by making use of the cancellation property of Ω on Sn−1 , we can
show that

|σ̂k (ξ ,η)| � log+
∣∣∣ψ(2k+1)ξ

∣∣∣ . (61)

Now, let σ∗ be the corresponding maximal function

σ∗ f (x,xn+1) = sup
k∈Z

||σk| ∗ f (x)| .

It can be easily seen that

σ∗ f (x,xn+1) �
∫

Sn−1
|Ω(y′)|Mψ,φ ,y′ ( f ) (x,xn+1)dσ (y′) (62)

where

Mψ,φ .y′ ( f ) (x,xn+1) = sup
k

∣∣∣∣∣
2k+1∫
2k

f (x−ψ(t)y′,xn+1−φ (t)) dt
t

∣∣∣∣∣ . (63)

In order to finish the proof, we only need to prove that σ∗ is bounded on Lp for all
1 < p < ∞ . In fact, by Lemma 2.9, we have∥∥Mψ,φ ,y′ ( f )

∥∥
p
� Cp ‖ f‖p (64)

for all 1 < p < ∞ with constant independent of y′ . Thus, by (62), (64), and Minkowski’s
inequality, we get

‖σ∗ f‖p � Cp ‖ f‖p (65)

for all 1 < p < ∞ . This completes the proof of the boundedness of σ∗ and hence the
proof of the theorem. �

6. Further results

In this section we highlight some of the results that can be obtained using the
estimates obtained in the previous sections. Namely, we consider the truncated maximal
operators corresponding to the operators stated in the paragraphs (I), (II), and (III) in the
introduction section. The truncated maximal operators corresponding to the operators
in (9), (11), and (17) are given, respectively by

(TΩ,Φ)∗( f )(x) = sup
ε>0

∣∣∣∣
∫
|y|>ε

Ω
(
y′
) |y|−n f (x−Φ(y))dy

∣∣∣∣ ,
(TΦ,φ f )∗( f )(x,xn+1) = sup

ε>0

∣∣∣∣
∫
|y|>ε

f (x−Φ(y) ,xn+1−φ (|y|))Ω
(
y′
) |y|−n dy

∣∣∣∣ ,
and

(Tψ,φ f )∗( f )(x,xn+1) = sup
ε>0

∣∣∣∣
∫
|y|>ε

f
(
x−ψ (|y|)y′,xn+1−φ (|y|))Ω

(
y′
) |y|−n dy

∣∣∣∣ .
Our results concerning these operators are the following:
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THEOREM 6.1. Suppose that Ω∈Fα
(
Sn−1

)
for some α > 1

2 and satisfy (1). Sup-
pose also that Φ(y) = P(|y|)⊗ y′ is as in (10). Then (TΩ,Φ)∗ is bounded in Lp

(
Rd
)

for p ∈ ( 2+2α
1+2α ,2+2α

)
. The Lp bounds of (TΩ,Φ)∗ are independent of the coefficients

of the polynomial mappings Pj , 1 � j � d .

THEOREM 6.2. Suppose that Ω ∈ Fα
(
S1
)

for some α > 1
2 and satisfy (1). Sup-

pose also that P1 (t) = P2 (t) = ... = Pd (t) = P(t) and ϕ (y′) = (ϕ1 (y′) , ...ϕd (y′)) is
real analytic on S1 . Then (TΩ,Φ)∗ is bounded on Lp

(
Rd
)

for p ∈ ( 2+2α
1+2α ,2+2α

)
.

THEOREM 6.3. Let n � 2 , Φ = P be a real valued polynomial in n−variables,
and φ be a real valued polynomial on R with φ(0) = 0 . If Ω ∈ W 0 (n,α) for some
α > 1

2 , then the operator (TΦ,φ f )∗ is bounded on Lp
(
Rn+1

)
for p ∈ ( 2+2α

1+2α ,2+2α
)
.

Moreover, the Lp bounds are independent of the coefficients of φ and P .

THEOREM 6.4. Suppose that Φ(y) = P(|y|)⊗ y′ where P(t) = (P1(t), ...,Pd(t))
is a polynomial mapping. Suppose also that φ is a real valued polynomial on R .

(i) If n = 2, and Ω ∈ Fα
(
Sn−1

)
for α > 1

2 , then (TΦ,φ f )∗ is bounded on Lp
(
R3
)

for p ∈ ( 2+2α
1+2α ,2+2α

)
.

(ii) If n � 3, and Ω ∈W 0 (n,1,α) , then (TΦ,φ f )∗ is bounded on Lp
(
Rn+1

)
for

p ∈ ( 2+2α
1+2α ,2+2α

)
.

In both (i) and (ii), the Lp bounds on the operator norm are independent of the
coefficient of φ and Pj .

THEOREM 6.5. Let ψ ,φ ∈C1 [0,∞) be convex increasing, ψ (0) = φ (0) = φ ′ (0)
= 0 , and ψ ′ (0) �= 0 . Let ϕ(t) = φ(ψ−1(t)) and assume that ϕ ′ is convex and increas-
ing. If Ω ∈ Fα

(
Sn−1

)
for some α > 1

2 and satisfies (1), then (Tψ,φ f )∗ is bounded on
Lp
(
Rn+1

)
for all p ∈ ( 2+2α

1+2α ,2+2α
)
.

It should be noticed here that proofs of the above results can be constructed by
using the same estimates obtained in the proofs of the corresponding results in Sections
3, 4, and 5, and adapting a similar argument as in [2] (see also [12]). We omit the
details.
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