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Abstract. For x,y > 0 , a,b ∈ R with a+ b �= 0 , the generalized Muirhead mean is defined by

M(a,b;x,y) =
(

xayb+xbya

2

) 1
a+b

. In this paper, we prove that M(a,b;x,y) is Schur convex with

respect to (x,y)∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R
2 : (a−b)2 � a+b > 0 & ab �

0} and Schur concave with respect to (x,y) ∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R
2
+ :

(a−b)2 � a+b & (a,b) �= (0,0)}∪{(a,b) ∈ R
2 : a+b < 0} , where R+ : = [0,∞) .

1. Introduction

Recall that the following notion of Schur convexity (see [1]).

DEFINITION 1.1. Let E ⊆ R
n(n � 2) be a set with nonempty interior, a real-

valued function f : E → R is said to be Schur convex on E if f (x) � f (y) for each
pair of n -tuples x = (x1, · · · ,xn) and y = (y1, · · · ,yn) in E with x ≺ y , i.e.

k

∑
i=1

x[i] �
k

∑
i=1

y[i], k = 1,2, · · · ,n−1

and
n

∑
i=1

x[i] =
n

∑
i=1

y[i],

where x[i] denotes the i th largest component in x . f is called Schur concave if − f is
Schur convex.

The notion of Schur convexity was introduced by I. Schur in 1923 [2]. In the
recent past, the Schur convexity has been the subject of intensive research, many re-
markable inequalities have been established by using the Schur convexity theory [3–9].
In particular, the Schur convexity for means and symmetric functions has attracted the
attention of many researchers [10–24].
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For x,y > 0, and a,b∈R with a+b �= 0, the generalizedMuirhead mean M(a,b;x,y)
was introduced by T. Trif [25] as follows:

M(a,b;x,y) =
(

xayb + xbya

2

) 1
a+b

. (1.1)

It is easy to see that the generalized Muirhead mean M(a,b;x,y) is continuous on
the domain {(a,b;x,y) : a+b �= 0;x,y > 0} and differentiable with respect to (x,y) ∈
(0,∞)× (0,∞) for fixed a,b ∈ R with a+ b �= 0. It is of symmetry between a and b
and between x and y . Many means are the special case of the generalized Muirhead
mean, for example

Mp(x,y) = M(p,0;x,y) is the power or Hölder mean,

A(x,y) = M(0,1;x,y) is the arithmetic mean,

G(x,y) = M(a,a;x,y) is the geometric mean

and

H(x,y) = M(0,−1;x,y) is the harmonic mean.

In paper [25], the monotonicity of M(a,b;x,y) with respect to a or b was dis-
cussed, and a comparison theorem and a Minkowski-type inequality involving the gen-
eralized Muirhead mean M(a,b;x,y) were established.

The well-known Muirhead’s inequality (see [26]) implies that if x,y > 0 are fixed
then M(a,b;x,y) is Schur convex on the domain {(a,b) ∈ R

2 : a+ b > 0} and Schur
concave on the domain {(a,b) ∈ R

2 : a+ b < 0} . But no one has ever researched the
Schur convexity or Schur concavity of M(a,b;x,y) with respect to (x,y) ∈ (0,∞)×
(0,∞) for fixed a,b ∈ R with a+b �= 0.

Our purpose is to discuss the Schur convexity and Schur concavity of M(a,b;x,y)
with respect to (x,y) ∈ (0,∞)× (0,∞) for fixed a,b ∈ R with a + b �= 0. Our main
result is the following theorem.

THEOREM 1.1. The generalized Muirhead mean M(a,b;x,y) is Schur convex
with respect to (x,y)∈ (0,∞)×(0,∞) if and only if (a,b)∈ {(a,b)∈R

2 : (a−b)2 � a+
b > 0 & ab � 0} and Schur concave with respect to (x,y) ∈ (0,∞)× (0,∞) if and only
if (a,b)∈ {(a,b)∈ R

2
+ : (a−b)2 � a+b & (a,b) �= (0,0)}∪{(a,b)∈ R

2 : a+b < 0} ,
where R := [0,∞) .

2. Preliminary Results

In this section we introduce and establish two lemmas, which will be used in the
proof of Theorem 1.1.

LEMMA 2.1. (see [1]) Let E ⊂ R
2 be a symmetric convex set with nonempty

interior intE and ϕ : E → R be a continuous and symmetric function on E . If ϕ is
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differentiable on intE , then ϕ is Schur convex (or Schur concave, respectively) on E if
and only if

(y− x)
(

∂ϕ
∂y

− ∂ϕ
∂x

)
� 0 (or � 0, respectively)

for all (x,y) ∈ intE .

LEMMA 2.2. Let a and b be two real numbers such that a > b and a+ b �= 0 .
Let us define the function f : [1,∞) → R ,

f (t) =
1

a+b
(ata−b−bta−b+1−at +b), for t � 1.

Then the following statements hold:
(1) If b > 0 and (a−b)2 < a+b, then f (t) � 0 for all t � 1 ;
(2) If b > 0 and (a−b)2 > a+b, then there exist t1,t2 ∈ (1,∞) such that f (t1) < 0

and f (t2) > 0 ;
(3) If b < 0 and (a−b)2 < a+b, then there exist t3,t4 ∈ (1,∞) such that f (t3) < 0

and f (t4) > 0 ;
(4) If a+b > 0 , b < 0 and (a−b)2 > a+b, then f (t) � 0 for all t � 1 ;
(5) If a+b < 0 , then f (t) � 0 for all t � 1 .

Proof. Let g(t) = a−b
a+b(a(a− b− 1)− b(a− b+ 1)t) . Then simple computation

leads to
f (1) = 0, (2.1)

f ′(t) =
1

a+b

(
a(a−b)ta−b−1−b(a−b+1)ta−b−a

)
,

f ′(1) =
(a−b)2− (a+b)

a+b
, (2.2)

f ′′(t) = ta−b−2g(t),

g(1) =
a−b
a+b

(
(a−b)2− (a+b)

)
(2.3)

and

g′(t) = −b(a−b)(a−b+1)
a+b

. (2.4)

(1) If b > 0 and (a−b)2 < a+b , then (2.2)–(2.4) imply

f ′(1) < 0, (2.5)

g(1) < 0 (2.6)

and
g′(t) < 0. (2.7)

Therefore, Lemma 2.2 (1) follows from (2.1) and (2.5)–(2.7).
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(2) If b > 0 and (a−b)2 > a+b , then from (2.2) we clearly see that f ′(1) > 0.
Then the continuity of f ′(t) implies that there exists δ1 > 0 such that

f ′(t) > 0 (2.8)

for t ∈ [1,1+ δ1) . From (2.1) and (2.8) we know that f (t) > 0 for t ∈ (1,1+ δ1) .
On the other hand, it is easy to see that lim

t→+∞
f (t) = −∞ . Hence Lemma 2.2 (2) is

true.
(3) If b < 0 and (a−b)2 < a+b , then (2.5) again holds. Then the continuity of

f ′(t) implies that there exists δ2 > 0 such that

f ′(t) < 0 (2.9)

for t ∈ [1,1+ δ2) . From (2.1) and (2.9) we know that f (t) < 0 for t ∈ (1,1+ δ2) .
On the other hand, we clearly see that lim

t→+∞
f (t) = +∞ . Hence Lemma 2.2 (3) is

true.
(4) If a+b > 0, b < 0 and (a−b)2 > a+b , then (2.2)–(2.4) lead to

f ′(1) > 0, (2.10)

g(1) > 0 (2.11)

and
g′(t) > 0. (2.12)

Therefore, Lemma 2.2(4) follows from (2.1) and (2.10)–(2.12).
(5) If a+ b < 0, then inequalities (2.5)–(2.7) again hold. Therefore, Lemma 2.2

(5) follows from (2.1) and (2.5)–(2.7).

3. Proof of Theorem 1.1

Proof of Theorem 1.1. We use Lemma 2.1 to discuss the nonegativity and nonpos-
itivity of (y− x)( ∂M

∂y − ∂M
∂x ) for all (x,y) ∈ (0,∞)× (0,∞) and fixed (a,b) ∈ R

2 with

a+b �= 0. Since (y− x)( ∂M
∂y − ∂M

∂x ) = 0 for x = y and it is symmetric with respect to x
and y , hence we assume y > x in the following discussion.

Let

E1 = {(a,b) ∈ R
2 : (a−b)2 � a+b > 0 & ab � 0},

E2 = {(a,b) ∈ R
2
+ : (a−b)2 � a+b & (a,b) �= (0,0)}∪{(a,b)∈ R

2 : a+b < 0}
and

E3 = {(a,b) ∈ R
2 : b < 0 & (a−b)2 < a+b}

∪{(a,b) ∈ R
2 : a < 0 & (a−b)2 < a+b}

∪{(a,b) ∈ R
2 : a > b > 0 & (a−b)2 > a+b}

∪{(a,b) ∈ R
2 : b > a > 0 & (a−b)2 > a+b}.
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Then E1 ∪E2 ∪E3 = {(a,b) ∈ R
2 : a + b �= 0} . It is obvious that Theorem 1.1

is true if once we prove that M(a,b;x,y) is Schur convex, Schur concave, and neither
Schur convex nor Schur concave with respect to (x,y) ∈ (0,∞)2 for (a,b) ∈ E1,E2 and
E3 , respectively.

From (1.1) we get the following identity

(y− x)
(

∂M
∂y

− ∂M
∂x

)
= 2−

1
a+b xayb−1(y− x)

(
xayb + xbya

) 1
a+b−1

f
(y

x

)
(3.1)

for y > x > 0, where f is defined as in Lemma 2.2. Further, it is sufficed to study the
sign of f

( y
x

)
, we divide our discussion into three cases.

Case 1. (a,b)∈E1 . Let E11 = {(a,b)∈R
2 : a+b > 0,b < 0 & (a−b)2 > a+b}

and E12 = {(a,b) ∈ R
2 : a+b > 0,a < 0 & (a−b)2 > a+b} .

From Lemma 2.2 (4) and the assumption y > x we know that f
( y

x

)
� 0 for

(a,b) ∈ E11 , then (3.1) and Lemma 2.1 together with the continuity and symmetry of
M(a,b;x,y) with respect to (a,b) imply that M(a,b;x,y) is Schur convex with respect
to (x,y) ∈ (0,∞)× (0,∞) for (a,b) ∈ E1 .

Case 2. (a,b) ∈ E2 . Let E21 = {(a,b) ∈ R
2 : a > b > 0 & (a− b)2 < a+ b} ,

E22 = {(a,b)∈R
2 : b > a > 0 & (a−b)2 < a+b} , E23 = {(a,b)∈R

2 : a > b & a+b <
0} and E24 = {(a,b) ∈ R

2 : b > a & a+b < 0} .
From Lemmas 2.2 (1) and 2.2 (5) together with the assumption y > x we clearly

see that f
( y

x

)
� 0 for (a,b) ∈ E21 ∪E23 , then (3.1) and Lemma 2.1 together with the

continuity and symmetry of M(a,b;x,y) with respect to (a,b) lead to the conclusion
that M(a,b;x,y) is Schur concave with respect to (x,y) ∈ (0,∞)× (0,∞) for (a,b) ∈
E2 .

Case 3. Let E31 = {(a,b) ∈ R
2 : b < 0 & (a− b)2 < a + b} , E32 = {(a,b) ∈

R
2 : a < 0 & (a− b)2 < a+ b} , E33 = {(a,b) ∈ R

2 : a > b > 0 & (a− b)2 > a+ b}
and E34 = {(a,b) ∈ R

2 : b > a > 0 & (a−b)2 > a+b} .
From Lemmas 2.2 (3) and 2.2 (2) together with assumption y > x we clearly see

that f
( y

x

)
is neither nonpositivity nor nonnegativity for (a,b) ∈ E31 or E33 , then (3.1)

and Lemma 2.1 together with the symmetry of M(a,b;x,y) with respect to (a,b) show
that M(a,b;x,y) is neither Schur convex nor Schur concave with respect to (x,y) ∈
(0,∞)× (0,∞) for (a,b) ∈ E3 . �

4. Applications

In this section, we establish some inequalities by use of Theorem 1.1 and the
theory of majorization.

The following Corollary 4.1 follows from Theorem 1.1 immediately.

COROLLARY 4.1. The power mean Mp(x,y) =

⎧⎨
⎩

(
xp+yp

2

) 1
p
, p �= 0,√

xy, p = 0
of order p

is Schur convex with respect to (x,y) ∈ (0,∞)2 if and only if p � 1 and Schur concave
with respect to (x,y) ∈ (0,∞)2 if and only if p � 1 .
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COROLLARY 4.2. Let us consider two real numbers a and b, such that a+b �= 0 .
Then

(1) M(a,b;(1−α)x + αy,αx + (1−α)y) � M(a,b;x,y) for all (x,y) ∈ (0,∞)2

and α ∈ [0,1] if and only if (a,b) ∈ E1 .
In particular, taking α = 1/2 , we have

A(x,y) � M(a,b;x,y), for x,y > 0 and (a,b) ∈ E1;

(2) M(a,b;(1−α)x + αy,αx + (1−α)y) � M(a,b;x,y) for all (x,y) ∈ (0,∞)2

and α ∈ [0,1] if and only if (a,b) ∈ E2 .
In particular, taking α = 1/2 , we have

A(x,y) � M(a,b;x,y), for x,y > 0 and (a,b) ∈ E2.

Proof. Corollary 4.2 follows from Theorem 1.1 and the fact that
(
(1−α)x+ αy,αx+(1−α)y

)≺ (x,y)

for all (x,y) ∈ (0,∞)× (0,∞) and α ∈ [0,1] .

As a geometric application of Theorem 1.1 we have the following Corollary 4.3.
�

COROLLARY 4.3. Let a,b ∈ R with a+b �= 0 , A = A1A2A3 be a triangle in R
2

with vertexes A1,A2,A3 , and P be an arbitrary point in the interior of A. If B1,B2 and
B3 are the intersection points of the straight line A1P with segment A2A3 , straight line
A2P with segment A1A3 and straight line A3P with segment A1A2 , respectively, then

(1) M(a,b; PB1
A1B1

, PB2
A2B2

) � PA3
2A3B3

and M(a,b; PA1
A1B1

, PA2
A2B2

) � 1− PA3
2A3B3

for (a,b) ∈
E1 ;

(2) M(a,b; PB1
A1B1

, PB2
A2B2

) � PA3
2A3B3

and M(a,b; PA1
A1B1

, PA2
A2B2

) � 1− PA3
2A3B3

for (a,b) ∈
E2 .

Proof. We clearly see that

PB1

A1B1
+

PB2

A2B2
+

PB3

A3B3
= 1. (4.1)

Equation (4.1) implies
(

PA3

2A3B3
,

PA3

2A3B3

)
≺

(
PB1

A1B1
,

PB2

A2B2

)
(4.2)

and (
1− PA3

2A3B3
,1− PA3

2A3B3

)
≺

(
PA1

A1B1
,

PA2

A2B2

)
(4.3)

Therefore, Corollary 4.3 follows from (1.1) and Theorem 1.1 together with (4.2)
and (4.3). �
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[26] G. H. HARDY, J. E. LITTLEWOOD & G. PÓLYA, Inequalities, Cambridge University Press, Cam-
bridge, 1934.

(Received July 18, 2013) Wei-Ming Gong
School of Mathematics and Computation Science

Hunan City University
Yiyang 413000, China

Hui Sun
School of Mathematics and Computation Science

Hunan City University
Yiyang 413000

China

Yu-Ming Chu
School of Mathematics and Computation Science

Hunan City University
Yiyang 413000, China

e-mail: chuyuming@hutc.zj.cn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


