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Abstract. In this paper, we research the Lp -mixed projection bodies by the Lp -mixed quermass-
integrals. First, we give an equivalent conclusion of Lp -mixed projection bodies. Further, the
Shephard type problem for the Lp -mixed projection bodies are shown.

1. Introduction

Let K n denote the set of convex bodies (compact, convex subsets with non-empty
interiors) in Euclidean space R

n . For the set of convex bodies containing the origin in
their interiors and the class of origin-symmetric convex bodies, write K n

o and K n
s ,

respectively. Let Sn−1 denote the unit sphere in R
n , denote by V (K) the n -dimensional

volume of body K . For the standard unit ball B in R
n , denote ωn = V (B) .

If K ∈ K n , then its support function, hK = h(K, ·) , is defined by (see [5])

h(K,x) = max{x · y : y ∈ K}, x ∈ R
n,

where x · y denotes the standard inner product of x and y .
For each K ∈ K n , the projection body, ΠK , of K is an origin-symmetric convex

body whose support function is defined by (see [5, 27])

hΠK(u) =
1
2

∫
Sn−1

| u · v | dS(K,v)

for all u ∈ Sn−1 , where S(K, ·) is the surface area measure of K on Sn−1 . The pro-
jection body is a very important object in the Brunn-Minkowski theory. During past
four decades, a number of important results regarding classical projection bodies were
obtained (see [1, 2, 3, 5, 6, 9, 10, 12, 14, 15, 16, 21, 23, 24, 26, 27, 34]).

The notion of the projection body was extended to mixed projection body by
Lutwak (see [12, 14]). For each K ∈ K n , the mixed projection body, ΠiK (i =
0,1, · · · ,n− 1) , of K is origin-symmetric convex body whose support function is de-
fined by

hΠiK(u) =
1
2

∫
Sn−1

| u · v | dSi(K,v) (1.1)
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for all u ∈ Sn−1 , where Si(K, ·) (i = 0,1, · · · ,n−1) is the mixed surface area measure
of K on Sn−1 . Obviously, Π0K = ΠK .

The projection bodies were extended to Lp -space by Lutwak, Yang and Zhang.
They (see [18]) introduced the notion of Lp -projection body as follows: For K ∈ K n

o
and real number p � 1, the Lp -projection body, ΠpK , of K is origin-symmetric convex
body whose support function is given by

hp
ΠpK

(u) =
1

(n+ p)cn,pωn

∫
Sn−1

| u · v |p dSp(K,v) (1.2)

for all u ∈ Sn−1 , where
cn,p = ωn+p/ω2ωnωp−1.

The positive Borel measure Sp(K, ·) on Sn−1 is called the Lp -surface area measure of
K , and has Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

The unusual normalization of definition (1.2) is chosen so that for the unit ball B , we
have ΠpB = B . In particular, for p = 1, Π1K is the classical projection body ΠK of
K under the normalization of (1.2), and ΠB = B , rather than the ωn−1B (see [18]).

Lp -projection bodies extended the classical projection bodies from the Brunn-
Minkowski theory to the Lp -Brunn-Minkowski theory. The studies of Lp -projection
bodies have received considerable attention, except see [18], for example also see [7, 8,
11, 19, 20, 25, 28, 29, 30, 31, 32, 33].

Similar to the definition of Lp -projection body, Wang and Leng in [29] gave the
definition of Lp -mixed projection body as follows: For each K ∈ K n

o , real p � 1 and
i = 0,1, · · · ,n− 1, the Lp -mixed projection body, Πp,iK , of K is origin-symmetric
convex body whose support function is defined by

hp
Πp,iK

(u) =
1

(n+ p)cn,pωn

∫
Sn−1

| u · v |pdSp,i(K,v) (1.3)

for all u∈ Sn−1 . Here the positive Borel measure Sp,i(K, ·) ( i = 0,1, · · · ,n−1) on Sn−1

is called the Lp -mixed surface area measure of K which was introduced by Lutwak (see
[17]). It turns out that the measure Sp,i(K, ·) is absolutely continuous with respect to
Si(K, ·) , and has Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·) = h1−p(K, ·). (1.4)

The case i = 0, Sp,0(K, ·) is just Lp -surface area measure Sp(K, ·) . The unusual nor-
malization of definition (1.3) is chosen so that for the unit ball B , we have Πp,iB = B .
Note that for p = 1, Π1,iK is the classical mixed projection body ΠiK of K under the
normalization of (1.3).

From (1.3), if i = 0, then Πp,0K = ΠpK . This means that Lp -mixed projection
body is an extension of Lp -projection body in the Lp -Brunn-Minkowski theory.
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According to (1.3) and (1.4), we easily know that for λ > 0 and n− i �= p � 1,

Πp,iλK = λ
n−i−p

p Πp,iK. (1.5)

In this paper, we continuously research the Lp -mixed projection bodies. First, as-
sociated with Lp -mixed quermassintegrals (see [17]), we give an equivalent conclusion
of the Lp -mixed projection bodies as follows:

THEOREM 1.1. If K,L ∈ K n
o , p � 1 and i = 0,1, · · · ,n−1 , then

Πp,iK = Πp,iL ⇐⇒ Wp,i(K,Q) = Wp,i(L,Q), (1.6)

for any Q ∈ K n
s .

Here Wp,i(M,N) ( i = 0,1, · · · ,n−1) denotes the Lp -mixed quermassintegrals of
M and N , Wp,0(M,N) is just the Lp -mixed volume Vp(M,N) (see [17]). Let i = 0
in Theorem 1.1, we immediately obtain the following equivalent conclusion of the Lp -
projection bodies.

COROLLARY 1.1. If K,L ∈ K n
o , p � 1 , then

ΠpK = ΠpL ⇐⇒ Vp(K,Q) = Vp(L,Q),

for any Q ∈ K n
s .

Further, we study the Shephard type problems for the Lp -mixed projection bodies.
Recall that Wang and Leng (see [29]) gave an affirmation of the Shephard type problems
for the Lp -mixed projection bodies as follows:

THEOREM 1.A. Let K,L ∈ K n
o , i = 0,1, · · · ,n−1 and n− i �= p > 1 . If L is an

Lp -mixed projection body and Πp,iK ⊆ Πp,iL , then for 0 � i < n− p,

Wi(K) � Wi(L);

for n− p < i < n,
Wi(K) � Wi(L);

with equality if and only if K = L.

Here Wi(Q) denotes the quermassintegrals of Q ∈ K n .
Using the Lp -mixed quermassintegrals, we give a general form of Theorem 1.A

as follows:

THEOREM 1.2. Let K,L ∈ K n
o , i = 0,1, · · · ,n−1 and n− i �= p > 1 . If

Πp,iK ⊆ Πp,iL,

then for any Lp -mixed projection body Q,

Wp,i(K,Q) � Wp,i(L,Q), (1.7)

with equality if and only if K = L.

Moreover, as the application of Theorem 1.1, we also obtain an improved version
of Theorem 1.A.
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THEOREM 1.3. Let K ∈ K n
o , L ∈ K n

s , i = 0,1, · · · ,n−1 and n− i �= p > 1 . If
Πp,iK = Πp,iL , then for 0 � i < n− p,

Wi(K) � Wi(L); (1.8)

for n− p < i < n,
Wi(K) � Wi(L). (1.9)

Equality hold in (1.8) and (1.9) if and only if K = L.

In this paper, the proof of Theorem 1.1 is given in the Section 3; Theorems 1.2–1.3
are proven in the Section 4.

2. Lp -mixed quermassintegrals

For K,L ∈ K n and ε > 0, the Minkowski combination, K + εL ∈ K n , of K and
L is defined by (see [5])

h(K + εL, ·) = h(K, ·)+ εh(L, ·).
For p � 1, K,L ∈ K n

o and ε > 0, the Firey Lp -combination (also called the
Lp -Minkowski combination), K +p ε ·L ∈ K n

o , of K and L is defined by (see [4, 17])

h(K +p ε ·L, ·)p = h(K, ·)p + εh(L, ·)p, (2.1)

where “ ·” in ε ·L denotes the Firey scalar multiplication.
If K ∈ K n , the quermassintegrals, Wi(K) (i = 0,1, · · · ,n) , of K is defined by

(see [13])

Wi(K) =
1
n

∫
Sn−1

hK(v)dSi(K,v). (2.2)

Here Si(K, ·) is the mixed surface area measure of K , if i = 0, then S0(K, ·) is the
surface area measure S(K, ·) of K (see [13]).

From definition (2.2), we easily see that

W0(K) =
1
n

∫
Sn−1

hK(v)dS(K,v) = V (K). (2.3)

Associated with the Firey Lp -combination, Lutwak (see [17]) defined the Lp -
mixed quermassintegrals (who are called mixed p -quermassintegrals) as follows: For
K,L
∈ K n

o , and real p � 1, the Lp -mixed quermassintegral Wp,i(K,L) (i = 0,1, · · · ,n−1)
is defined by

n− i
p

Wp,i(K,L) = lim
ε−→0+

Wi(K +p ε ·L)−Wi(K)
ε

.

Obviously, for p = 1, W1,i(K,L) =Wi(K,L) (see [17]). If i = 0, by (2.3) then the
Lp -mixed quermassintegrals Wp,0(K,L) is just the Lp -mixed volume Vp(K,L) , namely

Wp,0(K,L) = Vp(K,L).
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In [17], Lutwak showed that for each K ∈ K n
o , p � 1, i = 0,1, · · · ,n− 1, there

exist positive Borel measures Sp,i(K, ·) on Sn−1 , such that the Lp -mixed quermassin-
tegrals Wp,i(K,L) has the following integral representation

Wp,i(K,L) =
1
n

∫
Sn−1

hp
L(v)dSp,i(K,v) (2.4)

for all L ∈ K n
o . Here Sp,i(K, ·) is the Lp -mixed surface area measure of K . From

(2.4), the integral representation of Lp -mixed volume Vp(K,L) is given by

Vp(K,L) =
1
n

∫
Sn−1

hp
L(v)dSp(K,v). (2.5)

From (2.2) and (2.4), we immediately have that for each K ∈ K n
o and p � 1,

Wp,i(K,K) = Wi(K). (2.6)

The Minkowski inequality for the Lp -mixed quermassintegrals Wp,i can be stated
that (see [17]):

THEOREM 2.A. For K,L ∈ K n
o , and p > 1 , i = 0,1, · · · ,n−1 , then

Wp,i(K,L)n−i � Wi(K)n−i−pWi(L)p, (2.7)

with equality if and only if K and L are dilates.

An immediate consequence of inequality (2.7) is that (see [17])

THEOREM 2.B. For K,L ∈ K n
o , n− i �= p > 1 and i = 0,1, · · · ,n−1 , if for any

Q ∈ K n
o ,

Wp,i(K,Q) = Wp,i(L,Q) or Wp,i(Q,K) = Wp,i(Q,L),

then K = L.

3. An equivalent conclusion of Lp -mixed projection bodies

In this section, we will give an equivalent conclusion of Lp -mixed projection bod-
ies, i.e., we give the proof of Theorem 1.1.

Proof of Theorem 1.1. From (1.3), we have for all u ∈ Sn−1 ,

hp
Πp,iK

(u) =
1

(n+ p)cn,pωn

∫
Sn−1

| u · v |pdSp,i(K,v)

=
1

(n+ p)cn,pωn

∫
Sn−1

| u · (−v) |pdSp,i(K,−v)

=
1

(n+ p)cn,pωn

∫
Sn−1

| u · v |pdSp,i(−K,v) = hp
Πp,i(−K)(u).

This yields
Πp,iK = Πp,i(−K). (3.1)



884 W. WANG AND X. WAN

Using (3.1), we know for all u ∈ Sn−1 ,

hp
Πp,iK

(u) =
1
2
hp

Πp,iK
(u)+

1
2
hp

Πp,i(−K)(u)

=
1

2(n+ p)cn,pωn

∫
Sn−1

| u · v |p[dSp,i(K,v)+dSp,i(−K,v)]

=
1

2(n+ p)cn,pωn

∫
Sn−1

| u · v |p[dSp,i(K,v)+dSp,i(K,−v)]. (3.2)

Thus, if Πp,iK = Πp,iL , by (3.2) then for all u ∈ Sn−1 ,∫
Sn−1

| u · v |p[dSp,i(K,v)+dSp,i(K,−v)−dSp,i(L,v)−dSp,i(L,−v)] = 0.

Let
μ(v) = Sp,i(K,v)+Sp,i(K,−v)−Sp,i(L,v)−Sp,i(L,−v),

we see that μ(v) is finite even Borel measure and∫
Sn−1

| u · v |pdμ(v) = 0

for all u ∈ Sn−1 . Hence μ(v) = 0, i.e.

Sp,i(K,v)+Sp,i(K,−v) = Sp,i(L,v)+Sp,i(L,−v) (3.3)

for all v ∈ Sn−1 .
But Q ∈ K n

s gives hQ(v) = h−Q(v) = hQ(−v) for all v ∈ Sn−1 , thus by (2.4) we
get

Wp,i(K,Q) =
1
n

∫
Sn−1

hp
Q(v)dSp,i(K,v)

and

Wp,i(K,Q) =
1
n

∫
Sn−1

hp
Q(−v)dSp,i(K,−v)

=
1
n

∫
Sn−1

hp
Q(v)dSp,i(K,−v).

Therefore, combining with (3.3), we have that for Q ∈ K n
s ,

Wp,i(K,Q) =
1
2n

∫
Sn−1

hp
Q(v)[dSp,i(K,v)+dSp,i(K,−v)]

=
1
2n

∫
Sn−1

hp
Q(v)[dSp,i(L,v)+dSp,i(L,−v)] = Wp,i(L,Q).

Conversely, for Q ∈ K n
s , let Q = [−u,u] for all u ∈ Sn−1 , then for all v ∈ Sn−1 ,

hQ(v) =| u · v | . Thus

Wp,i(K,Q) =
1
n

∫
Sn−1

hp
Q(v)dSp,i(K,v)

=
1
n

∫
Sn−1

| u · v |p dSp,i(K,v)

=
1
n
(n+ p)cn,pωnh

p
Πp,iK

(u).
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From this, if for any Q ∈ K n
s ,

Wp,i(K,Q) = Wp,i(L,Q),

then for all u ∈ Sn−1 ,
hp

Πp,iK
(u) = hp

Πp,iL
(u).

This gives Πp,iK = Πp,iL . �

As an application of Theorems 1.1, we get the following interesting fact.

THEOREM 3.1. Let i = 0,1, · · · ,n− 1 and n− i �= p > 1 . If K,L ∈ K n
s and

Πp,iK = Πp,iL , then K = L.

Proof. Using Theorem 1.1, if Πp,iK = Πp,iL , then for any Q ∈ K n
s ,

Wp,i(K,Q) = Wp,i(L,Q).

Since K,L ∈ K n
s , thus using Theorem 2.B, we obtain K = L . �

4. The Shephard type problems

The Shephard problems for projection bodies were shown in [5]. Ryabogin and
Zvavitch in [25] gave the Shephard type problems of Lp -projection bodies. Recently,
Wang and Wan in [33] researched the Shephard type problems for general Lp -projection
bodies. Here we will give the Shephard type problems for the Lp -mixed projection
bodies which are stated by Theorems 1.2–1.3.

LEMMA 4.1. If K,L ∈ K n
o , p � 1 and i, j = 0,1, · · · ,n−1 , then

Wp,i(K,Πp, jL) = Wp, j(L,Πp,iK). (4.1)

Proof. Using formula (2.4) and definition (1.3), we have that

Wp,i(K,Πp, jL) =
1
n

∫
Sn−1

hp
Πp, jL

(u)dSp,i(K,u)

=
1
n

∫
Sn−1

1
(n+ p)cn,pωn

∫
Sn−1

| u · v |pdSp, j(L,v)dSp,i(K,u)

=
1
n

∫
Sn−1

hp
Πp,iK

(v)dSp, j(L,v)

= Wp, j(L,Πp,iK). �

Proof of Theorem 1.2. Since Πp,iK ⊆ Πp,iL , thus by (2.4) we know for any M ∈
K n

o ,
Wp, j(M,Πp,iK) � Wp, j(M,Πp,iL),
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this together with (4.1), then

Wp,i(K,Πp, jM) � Wp,i(L,Πp, jM).

Hence, for any Lp -mixed projection body Q , taking Q = Πp, jM , we get

Wp,i(K,Q) � Wp,i(L,Q),

this is (1.7). According to Theorem 2.B, we see that equality holds in (1.7) if and only
if K = L for n− i �= p , this equality condition implies Πp,iK = Πp,iL . �

Let Q = L in Theorem 1.2, and together with the Minkowski’s inequality (2.7) of
the Lp -mixed quermassintegrals, we easily get Theorem 1.A.

Using (4.1), we can prove a reversed form of Theorem 1.2 as follows:

THEOREM 4.1. Let K,L ∈K n
o , i, j = 0,1, · · · ,n−1 and n− i �= p > 1 . If for any

Lp -mixed projection body Q,

Wp,i(K,Q) � Wp,i(L,Q), (4.2)

then
Wj(Πp,iK) � Wj(Πp,iL). (4.3)

Equality hold in (4,2) and (4.3) if and only if K = L.

Proof. Since for any Lp -mixed projection body Q ,

Wp,i(K,Q) � Wp,i(L,Q),

thus let Q = Πp, jM ( j = 0,1, · · · ,n−1) for any M ∈ K n
o , we have

Wp,i(K,Πp, jM) � Wp,i(L,Πp, jM),

this together with (4.1), then

Wp, j(M,Πp,iK) � Wp, j(M,Πp,iL).

Taking M = Πp,iL in above inequality and using inequality (2.7), we get

Wj(Πp,iL) � Wp, j(Πp,iL,Πp,iK) � Wj(Πp,iL)
n−p− j

n− j Wj(Πp,iK)
p

n− j . (4.4)

According to the equality condition of inequality (2.7), we see that equality holds in
second inequality of (4.4) if and only if Πp,iK and Πp,iL are dilates. From (4.4), we
give (4.3).

By Theorem 2.B we know that equality holds in (4.2) if and only if K = L for
n− i �= p , this means that equality holds in first inequality of (4.4) if and only if K = L .
But K = L implies Πp,iK and Πp,iL are dilates, hence equality hold in (4.2) and (4.3)
if and only if K = L . �
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Proof of Theorem 1.3. Since Πp,iK = Πp,iL , thus, by Theorem 1.1 we know for
any Q ∈ K n

s ,
Wp,i(K,Q) = Wp,i(L,Q). (4.5)

But L ∈ K n
s , then let Q = L in (4.5), and use (2.6) and inequality (2.7), we have

Wi(L) = Wp,i(K,L) � Wi(K)
n−i−p

n−i Wi(L)
p

n−i , (4.6)

i.e.,

Wi(K)
n−i−p

n−i � Wi(L)
n−i−p

n−i .

Thus for 0 � i < n− p ,
Wi(K) � Wi(L);

for n− p < i < n ,
Wi(K) � Wi(L).

This give (1.8) and (1.9).
According to the equality condition of inequality (2.7), we see that equality holds

in (4.6) if and only if K and L are dilates. Therefore, let K = λL , by Πp,iK = Πp,iL
and (1.5) we see λ = 1, i.e., K = L . Hence, equality hold in (1.8) and (1.9) if and only
if K = L . �
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