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SOME NORM INEQUALITIES FOR COMMUTATORS

WITH SYMBOL FUNCTION IN MORREY SPACES

SHAOGUANG SHI AND SHANZHEN LU

(Communicated by J. Pečarić)

Abstract. A version of Dini condition is introduced. Some boundedness of commutators with
symbol functions belong to Morrey spaces are discussed. The results can be seen as continuity
of our recent work [28].

1. Introduction and main results

Let −n/p � β < 1 and 1 � p < ∞ . Then the Morrey-Campanato space (called
Campanato for simplicity) Cp,β (Rn) was defined by the norm

‖ f‖Cp,β (Rn) = sup
B

‖ f‖Cp,β (B) := sup
B

1

|B| β
n

(
1
|B|
∫

B
| f − fB|pdx

)1/p

,

where fB = 1
|B|
∫
B f (x)dx , B denotes any ball contained in Rn and |B| is the Lebesgue

measure of B . Campanato spaces are useful tools in the regularity theory of PDEs as a
result of their better structures, which allow to give an integral characterization of the
spaces of Hölder continuous functions. This leads to a generalization of the classical
Sobolev embedding theorems, some of this work, see [18] and [19] for example. It is
also well known that C1,1/p−1 is the dual space of Hardy space Hp(Rn) (0 < p < 1)
(see [31]). For a recent account of the theory on Cp,β (Rn) , we refer the reader to [12],
[24], [33] and the references therein. Combining the statements in [7], [24] and [31],
we have

Cp,β (Rn)

⎧⎨
⎩

= BMO(Rn), β = 0;
= Lipβ (Rn), 0 < β < 1;
⊃ Mp,β (Rn), −n/p � β < 0,

where BMO(Rn) is the bounded mean oscillation space with the norm

‖ f‖BMO(Rn) = sup
B

1
|B|
∫

B
|b−bB|dx,
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Lipβ (Rn) is the Lipschitz space with the equivalent norm

‖ f‖Lipβ (Rn) ≈ sup
B

1

|B|1+ β
n

∫
B
| f (x)− fB|dx ≈ sup

B

(
1

|B|1+ qβ
n

∫
B
| f (x)− fB|qdx

)1/q

,

for 1 � q � ∞ and Mp,β (Rn) is the Morrey space which original form was first intro-
duced by Morrey [23] to investigate the local behavior of solutions to the second order
elliptic PDE:

‖ f‖Mp,β (Rn) = sup
B

‖ f‖Mp,β (B) = sup
B

1

|B| β
n

(
1
|B|
∫

B
| f (x)|pdx

)1/p

.

Let b be a locally integrable function on Rn and let T be an integral operator.
Then the commutator operator formed by T and b was denoted by

Tb( f ) := bT f −T(b f ).

The function b was also called the symbol function of Tb . The investigation of the
operator Tb begin with Calderón-Zygmund pioneering study of the operator T (see [3]
and [5]). They found that the theory of commutators play an important role in studying
the regularity of solutions to elliptic PDEs of the second order. The well-posedness of
solutions to many PDEs can be attributed to the corresponding commutator’s bounded-
ness for singular integral operators. However, this topic exceeds the scope of this paper,
for more information about this, see for example [4], [10], [13] and [30]. Especially
in [30], the authors simplify the proof of the famous Wu’s theorem on Navier-Stokes
equations greatly by some estimates of commutators which were obtained by Yan in
his Ph.D. thesis [32] (see also Lu and Yan’s work in [21]). Since L∞(Rn)� BMO(Rn) ,
the boundedness of Tb is worse than T (for example, the singularity, see also [26]).
Therefore, many authors want to know whether Tb shares the similar boundedness with
T . Many authors are interested in the study of commutators when the symbol functions
b belong to BMO spaces and Lipschitz spaces. For some of this classical works, we
refer the reader to [1], [16], [20] and [25].

Compared to the rich and significant results about commutators with symbol func-
tions belong to BMO spaces and Lipschitz spaces, there are some works for the case
of Morrey spaces. Recently, in [28], we gave some creative characterizations of Cam-
panato spaces via the boundedness of commutators associated with the Calderón-Zyg-
mund singular integral operator by some new methods instead of the sharp maximal
function theorem. However, the ideas used in the characterizations of [28] depend
heavily on the smoothness of the corresponding kernel functions. It is well known that
the regularity of solutions to some elliptic PDEs with smooth boundary can attribute
to the boundedness of corresponding commutators with smooth kernel in some sense.
One question arose naturally: What happens when the boundary condition be weak-
ened? The answer to the question need to study the boundedness of commutators with
rough kernels, which motivates us to extend our results in [28] to the rough kernel case.
Let us first recall some basic definitions about singular integral operators with rough
kernels.
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Let TΩ be the Calderón-Zygmund singular integral operator

TΩ f (x) = p.v.
∫
Rn

Ω(x− y)
|x− y|n f (y)dy,

where Ω satisfies the homogeneous condition of degree 0 and∫
Sn−1

Ω(x′)dσ(x′) = 0. (1.1)

Here, dσ is the normalized Lebesgue measure and x′ = x/|x| . We say a function Ω(x′)
on Sn−1 satisfies a version of Lq -Dini condition if

Ω ∈ Lq(Sn−1), 1 � q < ∞, (1.2)

∫ 1

0

wq(δ )
δ 2 dδ < ∞, (1.3)

where wq(δ ) is called the integral continuous modulus of Ω with degree q :

wq(δ ) = sup
‖ρ‖<δ

(∫
Sn−1

|Ω(ρx′)−Ω(x′)|qdσ(x′)
)1/q

,

here ρ is a rotation in Rn and ‖ρ‖= sup |ρx′ − x′| : x′ ∈ Sn−1. When Ω satisfies some
size conditions, the kernel of the operator TΩ has no regularity, and so the operator TΩ
is called rough singular integral operator. In recent years, a variety of operators related
to the singular integrals for Calderón-Zygmund, but lacking the smoothness required
in the classical theory, have been studied. For some corresponding works, we refer the
reader to [8], [14], [22], [27] and the references therein. The operator TΩ,b , whose
kernel has the additional roughness due to the presence of b , was first studied by R.
Fefferman ([15]) and subsequently by many other authors, such as M. Christ ([6]) and
J. Duoandikoetxea et al. ([11]).

In this paper, highly inspired by the above statements, we set up some boundedness
of TΩ,b with b belongs to Morrey space under the Lq -Dini conditions (1.2)–(1.3).

We are now in a position to state our main results as:

THEOREM 1.1. Let −n/p � β < 0,1 < max{q′,n/(1−β )}< p < ∞ , 1 < pi <
∞,−n/pi � βi < 0, 1/p = ∑2

i=1 1/pi and β = ∑2
i=1 βi , i = 1,2 . If b ∈Cp1,β1(Rn) and

Ω satisfies the Lq -Dini condition, then TΩ,b is a bounded operator from Mp2,β2(Rn) to
Cp,β (Rn) .

THEOREM 1.2. Let q′ < p < ∞, 0 < α < 1,−n/p � β < 0 , 1/s = 1/p−α/n,
b∈ Lipα and Ω satisfies the Lq -Dini condition. Then TΩ,b is a bounded operator from
Mp,β (Rn) to Ms,α+β (Rn) .

Theorem 1.1 and Theorem 1.2 can be seen as extensions of [28, Theorem 1.1 and
Theorem 1.2] to the rough kernel case.



892 S. SHI AND S. LU

REMARK 1.1. Unlike β � 0, there are essential difficulties to deal with the case
β < 0. Therefore, we have been working under the assumption that Ω satisfies the Lq -
Dini conditions (1.2)–(1.3) instead of the classical Lq -conditions (with (1.3) replaced

by
∫ 1
0

wq(δ )
δ dδ < ∞ or

∫ 1
0 log( 1

δ )wq(δ )
δ dδ < ∞). In our judgement, this condition cannot

be weakened since in the case of β < 0, there need a 1 factor contribution to guarantee
the series’s convergence(see the estimate for the term J3 in Section 2.1) instead of a
small ε (ε > 0) factor for the case of β � 0.

Throughout this paper, for x0 ∈ Rn , r > 0 and λ > 0, B = B(x0,r) denotes the
ball centered at x0 with radius r and λB = B(x0,λ r) . C is a constant which may
change from line to line. We will prove Theorem 1.1 and Theorem 1.2 in Section 2.

2. Proofs of the main results

2.1. Proof of Theorem 1.1

We begin this subsection with some lemmas about the estimates of operators on
Morrey spaces, which will be used in the proofs of our main results.

LEMMA 2.1. [29] Let p,β and Ω be as in Theorem 1.1. Then TΩ is bounded
from Mp,β (Rn) to Mp,β (Rn) .

LEMMA 2.2. [28] Let p, p1, p2,β ,β1,β2 and b be as in Theorem 1.1. Then

‖(b−bB) f χB‖Lp(Rn) � |B|1/p+β/n‖b‖Cp1,β1 (Rn)‖ f‖Mp2,β2 (Rn).

LEMMA 2.3. [28] Suppose that B∗ ⊂ B and b ∈ Cp1,β1(Rn) with 1 < p1 <
∞,−n/p1 � β1 < 0. Then the following estimate holds

|bB∗ −bB| � C‖b‖Cp1,β1 (Rn)|B∗|β1/n.

LEMMA 2.4. [9] Foe R > 0 , there exists a constant C > 0 such that

(∫
|x−y|<R

|Ω(x− y)|qdy

)1/q

� CRn/q‖Ω‖Lq(Sn−1).

The following imbedding theorem for Lp spaces over domains with finite volume
is very useful in the estimate of inequalities, which can be found in many books on the
Sobolev spaces.

LEMMA 2.5. Suppose that |Ω| = ∫
Ω 1dx < ∞ and 1 � p � q � ∞ . If f ∈ Lq(Ω) ,

then f ∈ Lp(Ω) and
‖ f‖Lp(Ω) � C|Ω|1/p−1/q‖ f‖Lq(Ω).

Inspired by the idea in [17], we can get the following estimates for the kernel Ω(x)
on circles.
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LEMMA 2.6. Suppose that Ω satisfies (1.1) and the Lq -Dini condition (1.2)–
(1.3) . Then for any R > 0 and x ∈ Rn , when |x| < R/2 , there exists constant C > 0
such that(∫

R<|y|�2R

∣∣∣∣Ω(x− y)
|x− y|n − Ω(y)

|y|n
∣∣∣∣
q

dy

)1/q

� CR−n/q′ |x|
R

{
1+

∫ 2|x|
R

|x|
R

wq(δ )
δ 2 dδ

}
. (2.1)

Proof. We conclude from the fact |x− y| ∼ |y| that∣∣∣∣Ω(x− y)
|x− y|n − Ω(y)

|y|n
∣∣∣∣� C

{
|Ω(y)| |x|

|y|n+1 +
|Ω(y− x)−Ω(y)|

|y|n
}

,

hence that(∫
R<|y|�2R

∣∣∣∣Ω(x− y)
|x− y|n − Ω(y)

|y|n
∣∣∣∣
q

dy

)1/q

� C

(∫
R<|y|�2R

∣∣∣∣ |Ω(y)||x|
|y|n+1

∣∣∣∣
q

dy

)1/q

+C

(∫
R<|y|�2R

∣∣∣∣ |Ω(y− x)−Ω(y)|
|y|n

∣∣∣∣
q

dy

)1/q

:= I1 + I2.

It follows from Ω ∈ Lq(Sn−1) and Lemma 2.4 that

I1 � C‖Ω‖Lq(Sn−1)|x|R−(n+1)Rn/q = CR−n/q′ |x|
R

.

For the term I2 , by the method of rotation, we have that

I2 � C

(∫ 2R

R
t−nq+n−1

∫
Sn−1

∣∣Ω(ty′ − x)−Ω(y′)
∣∣q dσ(y′)dt

)1/q

� CR−n/q′
(∫ 2R

R

∫
Sn−1

∣∣∣∣Ω
(

y′ −α
|y′ −α|

)
−Ω(y′)

∣∣∣∣
q

dσ(y′)
dt
t

)1/q

,

where α = x/t . Applying a result of Calderón-Weiss-Zygmund (see [2]) to |α| =
|x|/t < 1/2 and 1 � q < ∞ , we conclude that∫

Sn−1

∣∣∣∣Ω
(

y′ −α
|y′ −α|

)
−Ω(y′)

∣∣∣∣
q

dσ(y′) � C sup
‖ρ‖<α

∫
Sn−1

∣∣Ω(ρx′)−Ω(x′)
∣∣q dσ(x′)

� Cwq
q

( |x|
R

)
.

Here we use the property that w(δ ) is nondecreasing in δ . Thus

I2 � CR−n/q′wq

( |x|
R

)(∫ 2R

R
t−1dt

)1/q

� C′R−n/q′wq

( |x|
R

)
(ln2)1/q

� C′R−n/q′wq

( |x|
R

)∫ 2|x|
R

|x|
R

dδ
δ

� C′R−n/q′ |x|
R

∫ 2|x|
R

|x|
R

wq(δ )
2dδ
δ 2

� C′′R−n/q′ |x|
R

∫ 2|x|
R

|x|
R

wq(δ )/δ 2dδ .
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On account of the above remarks, we have obtained (2.1) . �

Now, we come to the proof of Theorem 1.1. For a ball B = B(x0,r) ⊂ Rn . Take
f ∈ Mp2,β2(Rn) and f1 = f χ2B , f2 = f − f1 . After noticing TΩ,b f = TΩ,(b−bB) f , we
have

(
1

|B|1+pβ/n

∫
B
|TΩ,b f (y)− (TΩ,b f )B|pdy

)1/p

=
(

1

|B|1+pβ/n

∫
B
|TΩ,(b−bB) f (y)− (TΩ,(b−bB) f )B|pdy

)1/p

�
(

1

|B|1+pβ/n

∫
B
|TΩ,(b−bB) f (y)−TΩ(b−bB) f2(x0)|pdy

)1/p

�
(

1

|B|1+pβ/n

∫
B
|(b−bB)TΩ f (y)|pdy

)1/p

+
(

1

|B|1+pβ/n

∫
B
|TΩ(b−bB) f1(y)|pdy

)1/p

+
(

1

|B|1+pβ/n

∫
B
|(TΩ(b−bB) f2)(y)− (TΩ(b−bB) f2)(x0)|p dy

)1/p

:= J1 + J2 + J3.

Combining Hölder’s inequality with Lemma 2.1, we can assert that

J1 � 1

|B|1/p+β/n

(∫
B
|b(y)−bB|p1dy

)1/p1
(∫

B
|TΩ f (y)|p2dy

)1/p2

� C‖b‖Cp1,β1 (Rn)‖TΩ f‖Mp2,β2 (Rn)

� C‖b‖Cp1,β1 (Rn)‖ f‖Mp2,β2 (Rn).

Lemma 2.2 shows that we can estimate J2 as

J2 � 1

|B|1/p+β/n
‖(b−bB) f1‖Lp � C‖b‖Cp1,β1 (Rn)‖ f‖Mp2,β2 (Rn).

We now turn to the estimate for the term J3 . It is easy to check that

|(TΩ(b−bB) f2)(y)−TΩ((b−bB) f2)(x0)|

=
∣∣∣∣
∫

Rn

(
Ω(y− z)
|y− z|n − Ω(x0 − z)

|x0− z|n
)

(b(z)−bB) f2(z)dz

∣∣∣∣
� C

∞

∑
k=2

∫
(2kB)\(2k−1B)

∣∣∣∣Ω(y− z)
|y− z|n − Ω(x0− z)

|x0− z|n
∣∣∣∣(|b(z)−b2kB|+ |bB−b2kB|)| f (z)|dz

:= K1 +K2.
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By Lemma 2.5, we have

K1 �
∞

∑
k=2

(∫
(2kB)\(2k−1B)

∣∣∣∣Ω(y− z)
|y− z|n − Ω(x0− z)

|x0 − z|n
∣∣∣∣
q

dz

)1/q(∫
2kB

|(b−b2kB) f (z)|q′dz

)1/q′

�
∞

∑
k=2

1
2k

(
1+

∫ 1/2k−1

1/2k

wq(δ )
δ 2 dδ

)(
1

|2kB|
∫

2kB
|(b(z)−b2kB) f (z)|q′dz

)1/q′

� C
∞

∑
k=2

1
2k

∥∥∥M(|(b−b2kB) f |q′)1/q′
∥∥∥

Lp

and

K2 �
∞

∑
k=2

(∫
2kB\2k−1B

∣∣∣∣Ω(y− z)
|y− z|n − Ω(x0− z)

|x0− z|n
∣∣∣∣
q

dz

)1/q(∫
2kB

|(bB −b2kB) f (z)|q′dz

)1/q′

� C
∞

∑
k=2

1
2k

(
1

|2kB|
∫

2kB
|(bB −b2kB) f (z)|q′dz

)1/q′

.

Having disposed of this preliminary step, we can now obtain that

J3 � 1

|B|1/p+β/n

∞

∑
k=2

1
2k ‖M(|(b−b2kB) f |q′)1/q′ ‖Lp

+
1

|B|1/p+β/n

∞

∑
k=2

1
2k

(∫
B

∣∣∣∣∣
(

1
|2kB|

∫
2kB

|bB −b2kB| f (z)||q
′
dz

)1/q′
∣∣∣∣∣
p

dy

)1/p

� 1

|B|1/p+β/n

∞

∑
k=2

1
2k ‖(b−b2kB) f‖Lp+

1

|B|1/p+β/n

∞

∑
k=2

1
2k ‖b‖Cp1,β1 (Rn)‖(M(| f |q′))1/q′ ‖Lp

� C
∞

∑
k=2

1

2k(1−1/p−β/n)‖b‖Cp1,β1 (Rn)‖ f‖Mp2,β2 (Rn)

+C
∞

∑
k=2

1

2k(1−1/p−β2/n) ‖b‖Cp1,β1 (Rn)‖ f‖Mp2,β2 (Rn)

� C‖b‖Cp1,β1 (Rn)‖ f‖Mp2,β2 (Rn),

where we have used Lemma 2.3 and Lemma 2.5. We have thus proved Theorem
1.1. �

2.2. Proof of Theorem 1.2

After noticing

|TΩ,b f (x)| �
∫
Rn

|b(x)−b(y)||Ω(x− y)
|x− y|n || f (y)|dy

�
∫
Rn

| f (y)|
|x− y|n−α dy

� Iα(| f (x)|),
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the proof of Theorem 1.2 is a by-product of the following lemma

LEMMA 2.7. [29] Let p,s,β ,α and Ω be as in Theorem 1.2. Then Iα is bounded
from Mp,β (Rn) to Ms,α+β (Rn) .
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