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RIGOROUS MULTIPLICATIVE PERTURBATION BOUNDS

FOR THE GENERALIZED CHOLESKY FACTORIZATION

AND THE CHOLESKY–LIKE FACTORIZATION

HANYU LI AND YANFEI YANG

(Communicated by M. Niezgoda)

Abstract. The generalized Cholesky factorization and the Cholesky-like factorization are two
generalizations of the classic Cholesky factorization. In this paper, the rigorous multiplicative
perturbation bounds for the two factorizations are derived using the matrix equation and the
refined matrix equation approaches. The corresponding first-order multiplicative perturbation
bounds, as special cases, are also presented.

1. Introduction

Let R
m×n be the set of m× n real matrices and R

m×n
r be the subset of R

m×n

consisting of matrices with rank r . Let Ir be the identity matrix of order r . For a
matrix A ∈ R

m×n , we denote by AT and A[〈i〉] the transpose and the i-th leading
principal submatrix of A , respectively.

First, consider the following block matrix K ∈ R
(m+n)×(m+n)

K =
[

A BT

B −C

]
, (1.1)

where A ∈ R
m×m
m is symmetric positive definite, B ∈ R

n×m
n , and C ∈ R

n×n is sym-
metric positive semi-definite. The matrix K frequently arises in the system called an
augmented system or an equilibrium system [7]. For this matrix, there always exists the
following factorization

K = LJm+nL
T , (1.2)

where

L =
[

L11 0
L21 L22

]
, Jm+n =

[
Im 0
0 −In

]
,
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L11 ∈ R
m×m
m and L22 ∈ R

n×n
n are lower triangular, and L21 ∈ R

n×m
n . This factorization

is called the generalized Cholesky factorization and L is referred to as the generalized
Cholesky factor [19].

Now, we consider the skew-symmetric matrix B ∈ R
2n×2n . If all even leading

principal submatrices of B are nonsingular, i.e., B[〈2i〉] (i = 1, · · · ,n) are nonsingular,
then B has the following factorization

B = RT Ĵ2nR, (1.3)

where R = (ri j) ∈ R
2n×2n is upper triangular with r2 j−1,2 j = 0,r2 j−1,2 j−1 > 0 and

r2 j,2 j = ±r2 j−1,2 j−1 for j = 1,2, · · · ,n , and

Ĵ2n = diag(J0, · · · ,J0), J0 =
[

0 1
−1 0

]
.

Thus, R has 2×2 blocks of the form

[
r 0
0 ±r

]
running down the main diagonal. The

factorization (1.3) is called the Cholesky-like factorization and R is referred to as the
Cholesky-like factor [1].

For these two factorizations, some authors studied their algorithms, error analysis,
and perturbation analysis [1, 5, 6, 8, 14, 16, 17, 19]. In this paper, using the classic
and refined matrix equation approaches from [3], we consider the rigorous perturbation
bounds for these two factorizations with respect to multiplicative perturbation. That is,
the original matrices K and B are respectively perturbed to

K̃ = QKQT (1.4)

and

B̃ = STBS, (1.5)

where Q∈ R
(m+n)×(m+n) and S∈ R

2n×2n are called the multiplicative perturbation ma-
trices. The multiplicative perturbations naturally arise from matrix scaling, a technical
often used to improve the conditioning of a matrix. So they have important applica-
tions. Of course, the multiplicative perturbation can be turned into additive perturba-
tion. However, in this case, the perturbation will lose their nature and the obtained
additive perturbation bounds will not reveal the special structure of multiplicative per-
turbation. There were many works on the multiplicative perturbation analysis in the
past. For example, some authors considered the multiplicative perturbation analysis of
the polar decomposition [9, 10], the eigendecomposition of a Hermitian matrix and the
singular value decomposition [11–13], and the QR factorization [2]. Recently, Fang [5]
presented some multiplicative perturbation bounds for the generalized Cholesky factor-
ization using the classic matrix equation approach. These results will be improved in
this paper.

To simplify the presentation, we now introduce some notation which will be used
in this paper. Given a matrix A ∈ R

m×n
r , ‖A‖2 and ‖A‖F denote its spectral norm and
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Frobenius norm, respectively. From [18], we have

‖XYZ‖2 � ‖X‖2 ‖Y‖2 ‖Z‖2 , ‖XYZ‖F � ‖X‖2 ‖Y‖F ‖Z‖2 , (1.6)

whenever the matrix product XYZ is defined. In addition, if A is square and nonsingu-
lar, we denote its condition number as κ(A) =

∥∥A−1
∥∥

2 ‖A‖2 .
For any matrix A = (ai j) ∈ R

n×n , define

up(A) =

⎡
⎢⎢⎢⎣

1
2a11 a12 · · · a1n

0 1
2a22 · · · a2n

...
...

. . .
...

0 0 · · · 1
2ann

⎤
⎥⎥⎥⎦ . (1.7)

The symbol is taken from [3, 4]. Obviously,

‖up(A)‖F � ‖A‖F . (1.8)

If AT = A , then

‖up(A)‖F � (1/
√

2)‖A‖F. (1.9)

The inequality can be found in [3] and [4]. Let Dn ∈ R
n×n denote the set of all n× n

positive definite diagonal matrices. Then, for any Dn = diag(δ1,δ2, . . . ,δn) ∈ Dn ,

up(ADn) = up(A)Dn. (1.10)

Furthermore, from [4, Lemma 5.1],

‖up(A)+D−1
n up(AT )Dn‖F �

√
1+ ζ 2

Dn
‖A‖F , ζDn = max

1�i< j�n
{δ j/δi}. (1.11)

For any 2n×2n skew-symmetric matrix B = (bi j) , define

upb(B) =

⎡
⎢⎢⎢⎣

1
2B11 B12 · · · B1n

1
2B22 · · · B2n

. . .
...

1
2Bnn

⎤
⎥⎥⎥⎦ , (1.12)

where

Bii =
[

0 b2i−1,2i
−b2i−1,2i 0

]
, Bi j =

[
b2i−1,2 j−1 b2i−1,2 j
b2i,2 j−1 b2i,2 j

]
, i < j, Bi j = −BT

ji, i > j.

The notation follows from [8]. Clearly,

‖upb(B)‖F � ‖B‖F . (1.13)
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Meanwhile, from [8], it follows that

‖upb(B)‖F � (1/
√

2)‖B‖F . (1.14)

Let D̂2n ∈ R
2n×2n denote the set of all 2n×2n positive definite diagonal matrices with

2×2 main diagonal blocks of the form

[
d 0
0 d

]
, d > 0. Then for any matrix

D̂2n =

⎡
⎢⎢⎣

D11
D22

. . .
Dnn

⎤
⎥⎥⎦ ∈ D̂2n, Dii =

[
di 0
0 di

]
, di > 0, i = 1,2, . . . ,n, (1.15)

it is easy to verify that

upb(B)D̂2n = upb(BD̂2n). (1.16)

Moreover, the following property for “upb” also holds.

LEMMA 1.1. For any matrix C ∈ R
2n×2n and D̂2n ∈ D̂2n defined by (1.15),

φ ≡ ‖upb(C)+ D̂−1
2n upb(CT )D̂2n‖F �

√
1+ ζ 2

D̂2n
‖C‖F , (1.17)

where ζD̂2n
= max

1�i< j�n
{d j/di} .

Proof. Obviously,

φ2 =
n

∑
i=1

‖Cii‖2
F +

n−1

∑
j=2

j−1

∑
i=1

‖Ci j +D−1
ii CjiD j j‖2

F

�
n

∑
i=1

‖Cii‖2
F +

n−1

∑
j=2

j−1

∑
i=1

(‖Ci j‖F +(d−1
i d j)‖Cji‖F

)2
.

This result with
(‖Ci j‖F +(d−1

i d j)‖Cji‖F
)2 � (1+(d−1

i d j)2)(‖Ci j‖2
F +‖Cji‖2

F) , which
is derived by the Cauchy-Schwarz theorem, leads to

φ2 �
n

∑
i=1

‖Cii‖2
F +

n−1

∑
j=2

j−1

∑
i=1

(1+(d−1
i d j)2)(‖Ci j‖2

F +‖Cji‖2
F)

� ‖C‖F + ζ 2
D̂2n

n−1

∑
j=2

j−1

∑
i=1

(‖Ci j‖2
F +‖Cji‖2

F)

� (1+ ζ 2
D̂2n

)‖C‖2
F .

Taking the square root gives (1.17). �
In addition, the following two lemmas are also necessary later in this paper.
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LEMMA 1.2. [3] Let a,b > 0 . Let c(·) be a continuous function of a parameter
t ∈ [0,1] such that b2−4ac(t) > 0 holds for all t . Suppose that a continuous function
x(t) satisfies the quadratic inequality ax(t)2 − bx(t)+ c(t) � 0 . If c(0) = x(0) = 0 ,
then x(1) � (1/2a)(b−√

b2−4ac(1)) .

LEMMA 1.3. [8] If R = (ri j) ∈ R
2n×2n is upper triangular and has 2×2 blocks

of the form

[
ri 0
0 ri

]
running down the main diagonal, then B = Ĵ2nR−(Ĵ2nR)T is skew-

symmetric matrix and has the 2×2 main diagonal blocks

[
0 2ri

−2ri 0

]
. Moreover,

Ĵ2nR = upb(B). (1.18)

2. Perturbation bounds for the generalized Cholesky factorization

In this section, we consider the rigorous multiplicative perturbation bounds for
the generalized Cholesky factorization. The main results are given in the following
theorem.

THEOREM 2.1. Suppose that K ∈ R
(m+n)×(m+n) is defined by (1.1) and has the

factorization (1.2). Let Q = Im+n +E ∈ R
(m+n)×(m+n) . If

κ(L)‖E‖F < (
√

6−2)/2, (2.1)

then K̃ = QKQT has the unique generalized Cholesky factorization

K̃ = QKQT = (L+ ΔL)Jm+n(L+ ΔL)T , (2.2)

and

‖ΔL‖F

‖L‖2
� (

√
3+

√
6) inf

Dm+n∈Dm+n

√
1+ ζ 2

Dm+n
κ(Dm+nL

−1)‖Q− Im+n‖F . (2.3)

Proof. For any t ∈ [0,1] , let Q(t) = Im+n + tE . Then considering (1.2),

(Im+n + tE)K(Im+n + tE)T

= L(Jm+n + tJm+nL
T ET L−T + tL−1ELJm+n + t2L−1ELJm+nL

T ET L−T )LT .

Using (1.6) and (2.1), we have

‖tJm+nL
T ET L−T + tL−1ELJm+n + t2L−1ELJm+nL

T ET L−T‖F

� 2‖L−1EL‖F +‖L−1EL‖2
F � 2κ(L)‖E‖F + κ2(L)‖E‖2

F < 1/2 < 1.

According to [17, Lemma 2.1] i.e., [15, Lemma 6], we have

Jm+n+tJm+nL
T ET L−T +tL−1ELJm+n+t2L−1ELJm+nL

T ET L−T = (I+Γ)Jm+n(I+ΓT ),
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where Γ is lower triangularwith zero diagonals. Thus, we obtain that K̃(t)= Q(t)KQT (t)
has the unique generalized Cholesky factorization

K̃(t) = Q(t)KQT (t) = (Im+n + tE)K(Im+n + tE)T

= (L+ ΔL(t))Jm+n(L+ ΔL(t))T , (2.4)

which, with ΔL(1) = ΔL , implies (2.2).
Next, we consider (2.3). From (2.4) and (1.2), it follows that

tLJm+nL
T ET + tELJm+nL

T + t2ELJm+nL
T ET = LJm+nΔLT (t)+ ΔL(t)Jm+nL

T

+ ΔL(t)Jm+nΔLT (t).

Premultipling the above equation by L−1 and postmultipling it by L−T leads to

Jm+nΔLT (t)L−T +L−1ΔL(t)Jm+n = Jm+nΔLT (t)L−T +(Jm+nΔLT (t)L−T )T

= Jm+nL
T ET L−T + tL−1ELJm+n + t2L−1ELJm+nL

T ET L−T

−L−1ΔL(t)Jm+nΔLT (t)L−T . (2.5)

Since Jm+nΔLT (t)L−T is upper triangular, by the symbol (1.7), from (2.5), we have

Jm+nΔLT (t)L−T = up
(
tJm+nL

T ETL−T + tL−1ELJm+n
)

+up
(
t2L−1ELJm+nL

T ETL−T −L−1ΔL(t)Jm+nΔLT (t)L−T )
. (2.6)

Taking the Frobenius norm on the both sides of (2.6) and using (1.6) and (1.9) gives

‖L−1ΔL(t)‖F � (1/
√

2)‖tL−1ELJm+n + tJm+nL
T ET L−T‖F +(1/

√
2)‖tL−1ELJm+n‖2

F

+(1/
√

2)‖L−1ΔL(t)‖2
F

�
√

2‖tL−1EL‖F +(1/
√

2)‖tL−1EL‖2
F +(1/

√
2)‖L−1ΔL(t)‖2

F . (2.7)

Let x(t) = ‖L−1ΔL(t)‖F and c(t) = 2‖tL−1EL‖F + ‖tL−1EL‖2
F . Then (2.7) can be

rewritten as

x2(t)−
√

2x(t)+ c(t) � 0.

Since

Δ = 2−4c(t) � 2−8‖L−1EL‖F −4‖L−1EL‖2
F � 2−8κ(L)‖E‖F −4κ2(L)‖E‖2

F > 0,

x(t) and c(t) are continuous with t ∈ [0,1] , and c(0) = x(0) = 0, from Lemma 1.2, it
is seen that

‖L−1ΔL‖F � (1/
√

2)
(

1−
√

1−4‖L−1EL‖F −2‖L−1EL‖2
F

)
. (2.8)
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Let L = L̂Dm+n for any Dm+n ∈ Dm+n . Then, from (2.6) with t = 1 and (1.10), we
have

Jm+nΔLT L̂−T = up
(
Jm+nL

T ET L̂−T +D−1
m+n(L̂

−1ELJm+n)Dm+n

)
+up

(
L−1ELJm+nL

T ET L̂−T −L−1ΔLJm+nΔLT L̂−T
)

. (2.9)

Taking the Frobnius norm on the both sides of (2.9) and using (1.11), (1.8), and (1.6)
yields

‖L̂−1ΔL‖F �
√

1+ ζ 2
Dm+n

‖L̂−1EL‖F +‖L−1EL‖F‖L̂−1EL‖F

+‖L−1ΔL‖F‖L̂−1ΔL‖F . (2.10)

Considering (2.8), (2.1), (1.6), and
√

1+ ζ 2
Dm+n

> 1, from (2.10), we obtain

‖L̂−1ΔL‖F �

√
2
(√

1+ ζ 2
Dm+n

+ κ(L)‖E‖F

)
‖L̂−1EL‖F

√
2−1+

√
1−4‖L−1EL‖F −2‖L−1EL‖2

F

(2.11)

� (2+
√

2)
(√

1+ ζ 2
Dm+n

+ κ(L)‖E‖F

)
‖L̂−1EL‖F (2.12)

� (
√

3+
√

6)
√

1+ ζ 2
Dm+n

‖L̂−1EL‖F . (2.13)

Combining (2.13) with

‖ΔL‖F � ‖L̂‖2‖L̂−1ΔL‖F and E = Q− Im+n, (2.14)

and noting (1.6) leads to (2.3). �

REMARK 2.1. If

κ(L)‖E‖F <
√

2−1, (2.15)

we can verify that

2κ(L)‖E‖F + κ2(L)‖E‖2
F < 1,

which guarantees that K̃(t) = Q(t)KQT (t) has the unique generalized Cholesky factor-
ization (2.4). As a result, the condition of the existence and uniqueness of the general-
ized Cholesky factorization (2.2) can be weakened to (2.15).

REMARK 2.2. With (2.11), (2.12) and (2.14), the following rigorous multiplica-
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tive perturbation bounds can also be derived:

‖ΔL‖F

‖L‖2
�

√
2 inf

D̂m+n∈D̂m+n

(√
1+ζ 2

Dm+n
+κ(L)‖Q− Im+n‖F

)
κ(Dm+nL−1)‖Q− Im+n‖F

√
2−1+

√
1−4κ(L)‖Q− Im+n‖F −2κ2(L)‖Q− Im+n‖2

F

(2.16)

� (2+
√

2) inf
Dm+n∈Dm+n

(
√

1+ζ 2
Dm+n

+κ(L)‖Q− Im+n‖F )κ(Dm+nL−1)‖Q− Im+n‖F .

(2.17)

In comparison, the bound (2.16) is better than (2.17), which in turn is better than (2.3).
However, the above two bounds are more complicated.

REMARK 2.3. We can derive the first-ordermultiplicative perturbation bound from
(2.16) as follows:

‖ΔL‖F

‖L‖2
� inf

D̂m+n∈D̂m+n

√
1+ ζ 2

Dm+n
κ(Dm+nL

−1)‖Q− Im+n‖F

= inf
D̂m+n∈D̂m+n

√
1+ ζ 2

Dm+n
κ(Dm+nL

−1)‖E‖F . (2.18)

Obviously, (2.3) is a constant multiple of (2.18).

REMARK 2.4. The following rigorous multiplicative perturbation bound is pre-
sented in [5, Theorem 2]:

‖ΔL‖F

‖L‖2
� ‖Q− Im+n‖F . (2.19)

Clearly, it is better than (2.3). However, the bound is only valid for the multiplicative
perturbation matrices which are lower triangular with positive diagonal elements. In
this case, the exact value of ΔL can be got easily by considering the fact that ΔL = QL−
L . While (2.3) is valid for all of multiplicative perturbation matrices whenever they
satisfy the condition (2.1). Moreover, numerical experiment indicated that the bounds

(2.3) and (2.19) may have the same order of magnitude. For example, let L =
[

1 0
γ 1

]
and Dm+n = diag(γ,γ) with 0 < γ < 1. Then we have that

√
1+ ζ 2

Dm+n
κ(D−1

m+nL) =√
2.

REMARK 2.5. The following first-order multiplicative perturbation bounds are
presented in [5, Theorem 3]:

‖ΔL(t)‖F

‖L‖2
�
√

2‖L−1‖2
2‖tΔQ‖2‖K‖F , (2.20)

‖ΔL(t)‖F

‖L‖2
�
√

2‖L−1‖2
2‖tΔQ‖F‖K‖2, (2.21)
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where t ∈ (−ε,ε) and ε is assumed to be small enough. Obviously, if we set tΔQ = E ,
the two bounds are the same as (2.18) in form. However, the bound (2.18) can be much

better than (2.20) and (2.21). For example, let L =
[

1 0
γ γ

]
and Dm+n = diag(1,γ) with

0 < γ � 1. Then we have that
√

2‖L−1‖2
2‖K‖2 = O(1/γ2) ,

√
2‖L−1‖2

2‖K‖F = O(1/γ)

and
√

1+ ζ 2
Dm+n

κ(D−1
m+nL) = O(γ) . These results show that the bound (2.18) can be

arbitrarily smaller than (2.20) and (2.21). Furthermore, in [5, Theorem 3], the author
only presents the existence of ε instead of a accurate value of ε . While, the condition
(2.1) above clearly presents the constraint on the multiplicative perturbation matrix.

3. Perturbation bounds for the Cholesky-like factorization

Now we consider the rigorousmultiplicative perturbation bounds for the Cholesky-
like factorization. Some detailed deductions are omitted since they are similar to those
for the generalized Cholesky factorization.

THEOREM 3.1. Suppose that the skew-symmetric matrix B∈R
2n×2n has the Cho-

lesky-like factorization (1.3). Let S = I2n +F ∈ R
2n×2n . If

κ(R)‖F‖F < (
√

6−2)/2, (3.1)

then

B̃ = STBS = (I2n +F)T B(I2n +F) = (R+ ΔR)T Ĵ2n(R+ ΔR), (3.2)

and

‖ΔR‖F

‖R‖2
� (

√
3+

√
6) inf

D̂2n∈D̂2n

√
1+ ζ 2

D̂2n
κ(D̂2nR

−1)‖S− I2n‖F . (3.3)

Proof. For any t ∈ [0,1] , let S(t) = I2n + tF ∈ R
2n×2n . Then

ST (t)BS(t) = (I2n + tF)T B(I2n + tF) = RT (Ĵ2n +M(t))R, (3.4)

where M(t) = tĴ2nRFR−1 + tR−TFT RT Ĵ2n + t2R−T FT RT Ĵ2nRFR−1 . Using (1.6) and
(3.1), we have

‖M(t)‖2 < 1/2 < 1,

which implies (see [18])

‖M(t)[〈2k〉]‖2 < 1, k = 1,2, . . . ,n.

Obviously, ‖Ĵ2n[〈2k〉]‖2 = 1. So ‖M(t)[〈2k〉]Ĵ2n[〈2k〉]‖2 < 1. As a result, I2k−M(t)[〈2k〉]Ĵ2n[〈2k
is nonsingular. Therefore,

(Ĵ2n +M(t))[〈2k〉] = Ĵ2n[〈2k〉](I2k −M(t)[〈2k〉]Ĵ2n[〈2k〉])
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is also nonsingular since Ĵ2n[〈2k〉] is nonsingular. Furthermore, Ĵ2n +M(t) is skew-
symmectric. Thus, from [1], we have

Ĵ2n +M(t) = R̂T (t)Ĵ2nR̂(t), (3.5)

where R̂(t) is upper triangular with 2×2 main diagonal blocks:[
r̂ii(t) 0

0 ±r̂ii(t)

]
, r̂ii(t) > 0, i = 1,2, . . . ,n.

Substituting (3.5) into (3.4) gives

ST (t)BS(t) = (I2n + tF)T B(I2n + tF) = (R̂(t)R)T Ĵ2n(R̂(t)R). (3.6)

Considering the structures of R and R̂(t) , it is easy to check that (3.6) is the Cholesky-
like factorization of ST (t)BS(t) . We can rewritten (3.6) as

ST (t)BS(t) = (I2n + tF)T B(I2n + tF) = (R+ ΔR(t))T Ĵ2n(R+ ΔR(t)), (3.7)

where R+ ΔR(t) = R̂(t)R . Setting ΔR(1) = ΔR , from (3.7), we obtain (3.2).
Next, we consider (3.3). Similar to the proof of Theorem 2.1, from (3.7), we get

tĴ2nRFR−1 + tR−TFT RT Ĵ2n + t2R−T FT RT Ĵ2nRFR−1

= Ĵ2nΔR(t)R−1 +R−TΔRT (t)Ĵ2n +R−TΔRT (t)Ĵ2nΔR(t)R−1.

Considering the forms of Ĵ2n and R and by Lemma 1.3 and the symbol defined by
(1.12), from the above equation we have

Ĵ2nΔR(t)R−1 = upb
(
tĴ2nRFR−1 + tR−TFT RT Ĵ2n + t2R−TFT RT Ĵ2nRFR−1

)
−upb

(
R−T ΔRT (t)Ĵ2nΔR(t)R−1

)
. (3.8)

Taking the Frobenuis norm on the both sides of (3.8) and using (1.14) and (1.6) yields

‖ΔR(t)R−1‖F �
√

2‖tRFR−1‖F +(1/
√

2)‖tRFR−1‖2
F +(1/

√
2)‖ΔR(t)R−1‖2

F . (3.9)

Similar to the proof of Theorem 2.1, from (3.9), we have

‖ΔRR−1‖F � (1/
√

2)
(

1−
√

1−4‖RFR−1‖F −2‖RFR−1‖2
F

)
. (3.10)

Let R = R̂D̂2n with D̂2n ∈ D̂2n . Then from (3.8) with t = 1 and using (1.16), it follows
that

Ĵ2nΔRR̂−1 = upb
(
Ĵ2nRFR̂−1 +D−1

2n (R̂−T FT RT Ĵ2n)D2n

)
+upb

(
R−TFT RT Ĵ2nRFR̂−1−R−T ΔRT Ĵ2nΔRR̂−1

)
. (3.11)
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Taking the Frobenius norm on the both sides of (3.11), by Lemma 1.1 and using (1.6)
and (1.13), we get

‖ΔRR̂−1‖F �
√

1+ ζ 2
D̂2n

‖RFR̂−1‖F +‖RFR−1‖F‖RFR̂−1‖F +‖ΔRR−1‖F‖ΔRR̂−1‖F ,

which combined with (3.10) and
√

1+ ζ 2
D̂2n

> 1 yields

‖ΔRR̂−1‖F �

√
2

(√
1+ ζ 2

D̂2n
+ κ(R)‖F‖F

)
‖RFR̂−1‖F

√
2−1+

√
1−4‖RFR−1‖F −2‖RFR−1‖2

F

,

� (2+
√

2)
(√

1+ ζ 2
D̂2n

+ κ(R)‖F‖F

)
‖RFR̂−1‖F ,

� (
√

3+
√

6)
√

1+ ζ 2
D̂2n

‖RFR̂−1‖F . (3.12)

Combining (3.12) with ‖ΔR‖F � ‖ΔRR̂−1‖F‖R̂‖2 and F = S− I2n , and using (1.6)
leads to (3.3). �

REMARK 3.1. The proof of this theorem shows that the condition of the existence
of the Cholesky-like factorization (3.2) can be weakened to:

κ(R)‖F‖F <
√

2−1. (3.13)

REMARK 3.2. Similar to Remarks 2.2 and 2.3, we can get the following rigorous
and first-order multiplicative perturbation bounds for the Cholesky-like factorization:

‖ΔR‖F

‖R‖2
�

√
2 inf

D̂2n∈D̂2n

(√
1+ ζ 2

D̂2n
+ κ(R)‖F‖F

)
κ(D2nR−1)‖F‖F

√
2−1+

√
1−4κ(R)‖F‖F −2κ2(R)‖F‖2

F

, (3.14)

‖ΔR‖F

‖R‖2
� (2+

√
2) inf

D̂2n∈D̂2n

(√
1+ ζ 2

D̂2n
+ κ(R)‖S− I2n‖F

)
κ(D̂2nR

−1)‖S− I2n‖F ,

(3.15)

‖ΔR‖F

‖R‖2
� inf

D̂2n∈D̂2n

√
1+ ζ 2

D̂2n
κ(D̂2nR

−1)‖S− I2n‖F . (3.16)

Clearly, the difference between the bounds (3.3) and (3.16) is a constant
√

3+
√

6. And
in comparison, the bound (3.14) is better than (3.15), which in turn is better than (3.3).
However, the bounds (3.15) and (3.16) are more complicated.

REMARK 3.3. In [8, Theorem 2.2] and [8, Theorem 2.3], the authors presented
the following first-order and rigorous perturbation bounds for the Cholesky-like factor-
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ization with respect to additive perturbation:

‖ΔR‖F

‖R‖2
� 1√

2
‖R−1‖2

2‖B‖Fε, (3.17)

‖ΔR‖F

‖R‖2
� 1

2
(1−

√
1−4‖R−1‖2

2‖ΔB‖F), (3.18)

where ε � ‖ΔB‖F
‖B‖F

, ΔB is the perturbation matrix, and the condition for the bound (3.18)
to hold is

4‖R−1‖2
2‖ΔB‖F < 1. (3.19)

After turning the multiplicative perturbation into the additive perturbation, we find that
the bounds (3.16) and (3.3) can be much smaller than the ones (3.17) and (3.18). The
following is a simple example. Let R = F = D̂2n = diag(1,1,γ,γ) with 0 < γ � 1.
Then √

1+ ζ 2
D̂2n

κ(D̂2nR
−1)‖S− I2n‖F = Θ(γ),

1√
2
‖R−1‖2

2‖B‖Fε � 1√
2
‖R−1‖2

2‖ΔB‖F = Θ(
1
γ
),

1
2
(1−

√
1−4‖R−1‖2

2‖ΔB‖F) = Θ(
1
γ
),

which demonstrate the fact that we expect.

4. Concluding remarks

In this paper, some new rigorous multiplicative perturbation bounds and the corre-
sponding first-order perturbation bounds for the generalized Cholesky factorization and
the Cholseky-like factorization are obtained. In comparison, these bounds either can be
much shaper than the ones presented in [5, 8] or have a broader range of applications.

Acknowledgement. The authors would like to thank the editors and the referees for
their valuable comments and helpful suggestions, which improved the presentation of
this paper.
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