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OPTIMAL CONVEX COMBINATIONS BOUNDS OF CENTROIDAL

AND HARMONIC MEANS FOR WEIGHTED GEOMETRIC

MEAN OF LOGARITHMIC AND IDENTRIC MEANS

LADISLAV MATEJÍČKA

(Communicated by J. Matkowski)

Abstract. In this paper, optimal convex combination bounds of centroidal and harmonic means
for weighted geometric mean of logarithmic and identric means are proved. We find the greatest
value λ(α) and the least value Δ(α) for each α ∈ (0,1) such that the double inequality:

λC(a,b)+(1−λ)H(a,b) < Lα (a,b)I1−α (a,b) < ΔC(a,b)+(1−Δ)H(a,b)

holds for all a,b > 0 with a �= b. Here, C(a,b), H(a,b) , L(a,b) and I(a,b) denote centroidal,
harmonic, logarithmic and identric means of two positive numbers a and b, respectively.

1. Introduction

Recently, means have been the subject of intensive research. In particular, many
remarkable inequalities for the centroidal, harmonic, logarithmic and identric means
can be found in the literature [4], [11], [12].

We recall some definitions.
The centroidal, harmonic, logarithmic, identric, and weighted geometric means of

two positive real numbers a , b , a �= b , are defined, respectively, as follows:

C(a,b) =
2(a2 +ab+b2)

3(a+b)
,

H(a,b) =
2ab

(a+b)
,

L(a,b) =
a−b

loga− logb
,

I(a,b) =
1
e

(
aa

bb

) 1
(a−b)

,

Gα(a,b) = aαb1−α for 0 � α � 1.
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Means have many applications not only in in mathematics, but in physics, economics,
meteorology,... (see for example [5], [7], [8]).

It is well-known that the following inequalities hold:

H(a,b) < L(a,b) < I(a,b) < C(a,b) for positive a �= b. (1)

In the paper [4], authors inspired by (1), proved the following theorems:

THEOREM 1.

α1C(a,b)+ (1−α1)H(a,b) < L(a,b) < β1C(a,b)+ (1−β1)H(a,b) (2)

holds for all a,b > 0 , with a �= b if and only if α1 � 0 , β1 � 1/2 .

THEOREM 2.

α2C(a,b)+ (1−α2)H(a,b) < I(a,b) < β2C(a,b)+ (1−β2)H(a,b) (3)

holds for all a,b > 0 , with a �= b if and only if α2 � 3/(2e) = 0.551819 , β2 � 5/8 .

Similar double inequality was proved by Alzer and Qiu [1]:

αA(a,b)+ (1−α)G(a,b) < I(a,b) < βA(a,b)+ (1−β )G(a,b) (4)

holds for all a,b > 0, with a �= b if and only if α � 2/3, β � 2/e = 0.73575.
From results of [4], it is natural to ask what is the greatest function λ (α), and the

least function Δ(α), for 0 � α � 1 such that the double inequality:

λ (α)C(a,b)+ (1−λ (α))H(a,b) < Lα(a,b)I1−α(a,b)
< Δ(α)C(a,b)+ (1−Δ(α))H(a,b)

holds for all a,b > 0 with a �= b , 0 � α � 1. The purpose of this paper is to find the
optimal functions λ (α) , Δ(α) . For some other details about means, see [1]–[12] and
the related references cited there in.

2. Main results

LEMMA 1. Let

g(t,α) =
3

2et
t

1−t

(
3+ t−α

(1+ t)(t ln t− t +1)
t ln t

− (1−α)
(1+ t)(lnt− t +1)

1− t

)
(5)

for 0 < t < 1 , 0 � α � 1 . Then g(t,0) > 0 , g(t,1) > 0 for 0 < t < 1 .

Proof. g(t,0) > 0 follows from s∗(t,0) > 0 (see Lemma 2).
From (5) with α = 1 we conclude that

(3+ t)t ln t− (1+ t)(t ln t− t +1) < 0. (6)
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Some calculation gives that (6) leads to the evident inequality 2t ln t−(1−t)2 < 0. �

Denote

h(t) =
(1− t)et

t
1−t

− lnt
for t ∈ (0,1). (7)

LEMMA 2. Let

s∗(t,α) = α ln(h(t))− ln

(
3(1+ t)
g(t,α)

)
= α ln

(
e(1− t)t

t
1−t

− ln t

)
− ln

(
3(1+ t)
g(t,α)

)

for 0 < t < 1 , 0 � α � 1 . Then s∗(t,0) > 0 , s∗(t,1) > 0 , s∗′′α ,α(t,α) < 0 for 0 < t < 1 ,
0 < α < 1 .

Proof. From

s∗
′

α (t,α) = ln(h(t))+
g′α(t,α)
g(t,α)

we have

s∗
′′

α ,α(t,α) = −g′2α (t,α)
g2(t,α)

< 0.

Now we show s∗(t,0) > 0. The inequality is equivalent to

u(t) = g(t,0)−3(1+ t)> 0 for t ∈ (0,1). (8)

Inequality (8) will be proved if we show

(3+ t)(1− t)− (1+ t)(lnt− t +1) > 2e(1+ t)(1− t)t
t

1−t . (9)

Rewriting inequality (9) we obtain

r(t) = 2(1− t)− (1+ t) lnt−2(1− t2)e1+ t ln t
1−t > 0 for t ∈ (0,1).

Denote

v(t) = ln(2(1− t)− (1+ t) lnt)− ln(2(1− t2))− 1− t + t ln t
1− t

. (10)

Because v(1) = 0 to show (10) it suffices to prove v′(t) < 0 for t ∈ (0,1) .
Simple calculation gives

v′(t) = − 3t +1+ t ln t
t(2(1− t)− (1+ t) lnt)

+
2t

1− t2
− 1− t + lnt

(1− t)2 .

The inequality v′(t) < 0 is equivalent to

w(t) = ln2 t− 2(1− t)
1+ t

ln t− (1− t)2(t2 +6t +1)
t(1+ t)2 < 0.
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Simple calculation leads to w(t) < 0 if and only if(
ln t− 1− t

1+ t

)2

<
(1− t)2

(1+ t)2

(
t2 +7t +1

t

)
.

From this we have that, it suffices to show that

− 1+ t
1− t

lnt <

√
t2 +7t +1

t
−1. (11)

Inequality (11) is equivalent to

o(t) =
1− t
1+ t

(√
t2 +7t +1

t
−1

)
+ lnt > 0.

We show that o′(t) < 0 for t ∈ (0,1) . Simple calculation gives

o′(t) =
2
√

t2 +7t +1
(1+ t)2 − 2(t2 +7t +1)

(1+ t)2
√

t
+

(1− t)(t2−1)
(1+ t)2t

√
t

+

√
t2 +7t +1

t
.

To prove inequality (8) we first show that

(t2 +7t +1)(1+4t + t2)2 <
1
4t

(1+4t +26t2 +4t3 + t4)2. (12)

Inequality (12) can be rewriting as

m(t) = −t8−4t7−8t6 +84t5−142t4 +84t3−8t2−4t−1 < 0.

It is easy to see that

m(t) = −(1− t)4(t4 +8t3 +34t2 +8t +1) < 0 for t ∈ (0,1).

Now we prove s∗(t,1) > 0 for t ∈ (0,1) . The inequality s∗(t,1) > 0 is equivalent to

h(t)g(t,1)−3(1+ t)> 0 for t ∈ (0,1). (13)

Inequality (13) can be rewriting as

ln2 t +
1− t
1+ t

ln t− (1− t)2

2t
< 0.

Simple calculation leads to(
lnt +

1− t
2(1+ t)

)2

<
(1− t)2

4(1+ t)2

(
2t2 +5t +2

t

)
. (14)

Inequality (14) will be shown if we prove that

− lnt− 1− t
2(1+ t)

<
(1− t)
2(1+ t)

√
2t2 +5t +2

t
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because of 2(1+ t) lnt +1− t < 0.
Indeed, if we denote z(t) = ln t + (1− t)/(2(1 + t)) then z(1) = 0 and z′(t) =

2lnt +2/t +1 > 0. It follows from z′(1) = 3 and z′′(t) = 2(t−1)/(t2) < 0. Denote

a(t) =
1− t

2(1+ t)

(√
2t2 +5t +2

t
+1

)
+ lnt > 0.

From a(1) = 0 it suffices to show that a′(t) < 0 for t ∈ (0,1) . Simple calculation gives

a′(t) = −
√

2t2 +5t +2√
t(1+ t)2

+
t2 + t +1
t(1+ t)2 +

(1− t)
√

t(t2−1)
2t2(1+ t)

√
2t2 +5t +2

.

The inequality a′(t) < 0 is equivalent to

2
√

t(1+ t + t2)
√

2t2 +5t +2 < 1+4t +8t2 +4t3 + t4,

which can be rewriting as

4t(1+ t + t2)2(2t2 +5t +2) < (1+4t +8t2 +4t3 + t4)2. (15)

Easy computation leads that inequality (15) is

1−4t2 +6t4−4t6 + t8 = (t2−1)4 > 0.

The proof is complete. �
Our main result reads as follows

THEOREM 3. The double inequality

λC(a,b)+ (1−λ )H(a,b) < Lα(a,b)I1−α(a,b) < ΔC(a,b)+ (1−Δ)H(a,b) (16)

holds for all a,b > 0 with a �= b , α ∈ (0,1 > if and only if λ (α) � 0 and Δ(α) �
(5−α)/8 .

Proof. Suppose a,b > 0 with a > b , α ∈ (0,1) , t = b/a < 1. Using

C(a,b)
a

=
2(1+ t + t2)

3(1+ t)
,

H(a,b)
a

=
2t

1+ t
,

L(a,b)
a

=
1− t
− lnt

,
I(a,b)

a
=

1

et
t

1−t

we can write inequality (16) in the form

λ (α)
(

2(1+ t + t2)
3(1+ t)

− 2t
1+ t

)
<

(
1− t
− lnt

)α( 1

et
t

1−t

)1−α
− 2t

1+ t

< Δ(α)
(

2(1+ t + t2)
3(1+ t)

− 2t
1+ t

)
.
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Denote

F(t,α) =
3(1+ t)
2(1− t)2

((
1− t
− ln t

)α( 1

et
t

1−t

)1−α
− 2t

1+ t

)
. (17)

We show F ′
t (t,α) > 0, λ (α) = lim

t→0+
F(t,α) and Δ(α) = lim

t→1−
F(t,α) .

Rewriting (17) we have

F(t,α) =
3(1+ t)

2e(1− t)2t
t

1−t

(
(1− t)et

t
1−t

− ln t

)α

− 3t
(1− t)2 .

Using elementary calculations we obtain

F ′
t (t,α) =

1
(1− t)3 (h(t)αg(t,α)−3(1+ t)),

where h(t) is defined in (7) and g(t,α) is defined in (5). It implies that it suffices to
prove h(t)αg(t,α)−3(1+ t) > 0 for t ∈ (0,1) , α ∈ (0,1) . It follows from Lemma 1
and Lemma 2, because of 0 < h(t) < 1 is a increasing function for t ∈ (0,1) . Indeed,
h(0) = 0, h(1) = 1 and

h′(t) =
et

t
1−t

t ln2 t
(1− t− t ln2 t) =

et
t

1−t

t ln2 t
Q(t) > 0,

Q(1) = 0, Q′(t) = −(1+ ln2 t) < 0. Now we find functions λ (α) and Δ(α) . Using

lim
t→0+

e−
t(1−α) lnt

1−t = 1 we have λ (α) = 0 for all α ∈ (0,1) .

Now we show Δ(α) = (5−α)/8 for α ∈ (0,1) .
We have

Δ(α) = lim
t→1−

3
2

(1+ t)
(1− t)2

⎛
⎝( (1− t)

− ln t

)α t−
t(1−α)

1−t

e1−α − 2t
1+ t

⎞
⎠ .

Denote

S(t,α) =
(

(1− t)
− ln t

)α
, H(t,α) =

t−
t(1−α)

1−t

e1−α . (18)

Using Taylor’s series for (18) and for the function 2t/(1+ t) in the point t = 1 for
given α ∈ (0,1) we obtain

S(t,α) = 1− α
2

(1− t)+
3α2−5α

24
(1− t)2 + s(α)(1− t)3,

H(t,α) = 1− 1−α
2

(1− t)+
3α2−2α −1

24
(1− t)2 + j(α)(1− t)3,

2t
1+ t

= 1+
+∞

∑
k=1

(
1
2k

− 1
2k−1

)
(1− t)k = 1− 1

2
(1− t)− 1

4
(1− t)2 + i(α)(1− t)3,
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where s(α) , j(α) , i(α) are suitable functions. It implies

Δ(α) = lim
t→1−

F(t,α) = 3 lim
t→1−

1
(1− t)2

(
S(t,α)H(t,α)− 2t

1+ t

)

= 3 lim
t→1−

1
(1− t)2

(
5−α
24

(1− t)2
)

=
5−α

8
.

The proof is complete. �
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02001 Púchov, Slovakia
e-mail: ladislav.matejicka@tnuni.sk

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


