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UPPER AND LOWER BOUNDS FOR THE p–ANGULAR

DISTANCE IN NORMED SPACES WITH APPLICATIONS

S. S. DRAGOMIR

Abstract. For nonzero vectors x and y in the normed linear space (X ,‖·‖) we can define the
p -angular distance by

αp [x,y] :=
∥∥∥‖x‖p−1 x−‖y‖p−1 y

∥∥∥ .

In this paper we show among others that
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for any p ∈ R and for any nonzero x,y ∈ X .
Some reverses of the triangle and the continuity of the norm inequalities are given as well.
Applications for functions f defined by power series in estimating the more general “dis-

tance” ‖ f (‖x‖)x− f (‖y‖)y‖ for certain x,y ∈ X are also provided.
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Williams’ inequality, Hile’s inequality, power series.

RE F ER EN C ES

[1] N. BOURBAKI, Integration, Herman, Paris, 1965.
[2] P. S. BULLEN, Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dor-

drecht/Boston/London, 2003.
[3] J. A. CLARKSON, Uniform convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.
[4] G. N. HILE, Entire solutions of linear elliptic equations with Laplacian principal part, Pacific J. Math.

62 (1976), 124–140.
[5] S. S. DRAGOMIR, Inequalities for the p-angular distance in normed linear spaces, Math. Inequal.

Appl. 12 (2009), no. 2, 391–401.
[6] C. F. DUNKL AND K. S. WILLIAMS, A simple norm inequality, Amer. Math. Month. 71 (1964),

53–54.
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[13] D. S. MITRINOVIĆ, J. E. PEČARIĆ AND A. M. FINK, Classical and New Inequalities in Analysis,
Dordrecht, 1993. Kluwer

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


