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BERWALD TYPE INEQUALITY FOR EXTREMAL UNIVERSAL

INTEGRALS BASED ON (α,m)–CONCAVE FUNCTION

YA-ZHI SONG, XIAO-QIU SONG, DONG-QING LI AND TIAN YUE

(Communicated by J. Pečarić)

Abstract. The aim of this work is to show a Berwald type inequality for the extremal universal
integrals based on (α ,m) concave function. Some examples are given to illustrate the validity
of these inequalities.

1. Introduction

As an important tool, the theory of fuzzy measure and fuzzy integrals introduced
by Sugeno in [1], can be used for modelling problems in non deterministic environment.
However, in several real situations, the Sugeno integral is restricted because of the
special operations. Therefore, many authors generalized the Sugeno integral by using
some other operators to replace the special operator(s) ∧ and/or ∨ and introduced
Choquet-like integral [2], Shilkret integral [3], ⊥ -integral [4], and pseudo-integral [5].
In [6] Klement provided a concept of universal integrals generalizing both the Choquet
and the Sugeno integrals.

The following Berwald inequality is well known in [7]:
Let f be a nonnegative concave function on [a,b] . Then, for all r,s such that

0 < r < s < ∞ , the following inequality hold

(1+ s)
1
s

(1+ r)
1
r

(∫ b
a f s (x)dx

b−a

) 1
s

�
(∫ b

a f r (x)dx
b−a

) 1
r

. (1.1)

In [8], Agahi proved the Berwald type inequality for Sugeno integral.

THEOREM 1. Let 0 < r < s < ∞ and f : [a,b]→ [0,∞) be a concave function and
μ be the Lebesgue measure on R . Then

(a) if f (a) < f (b) , then

(
(S)

∫ b

a
f rdμ

) 1
r

� min

{
t,

(
b− (b−a) t +a f (b)−b f (a)

f (b)− f (a)

) 1
r
}

(1.2)
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where t = (1+s)
1
s (b−a)

1
r

(1+r)
1
r

(
(S)

∫ b
a f sdμ
b−a

) 1
s

.

(b) if f (a) = f (b) , then

(
(S)

∫ b

a
f rdμ

) 1
r

� min

{
f (a) ,(b−a)

1
r

}
. (1.3)

(c) if f (a) < f (b) , then

(
(S)

∫ b

a
f rdμ

) 1
r

� min

{
t,

(
(b−a) t +a f (b)−b f (a)

f (b)− f (a)
−a

) 1
r
}

(1.4)

where t = (1+s)
1
s (b−a)

1
r

(1+r)
1
r

(
(S)

∫ b
a f sdμ
b−a

) 1
s

.

In [9], Agahi proved the Berwald type inequality for universal integral.

THEOREM 2. Let 0 < r < s < ∞ and f ∈ F ([a,b],A ) be a concave function. If
⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with neutral element e∈ (0,∞] ,
then for any monotone measure μ ∈ M (X ,A ) , we have

(a) if f (a) < f (b) , then

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−a)β +a f (b)−b f (a)

f (b)− f (a)

})) 1
r

(1.5)

where β = (1+s)
1
s (b−a)

1
r − 1

s

(1+r)
1
r

I
1
s⊗ (μ , f s) .

(b) if f (a) = f (b) , then

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (a)) . (1.6)

(c) if f (a) > f (b) , then

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−a)β +a f (b)−b f (a)

f (b)− f (a)

})) 1
r

(1.7)

where β = (1+s)
1
s (b−a)

1
r − 1

s

(1+r)
1
r

I
1
s⊗ (μ , f s) .

In this paper, we generalize Berwald inequality for smallest universal integral from
concave function to (α,m)-concave function. Specially, concave function is equivalent
to (1,1)-concave function.
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2. Preliminary results

In this section, we will review some well known results of universal integrals [6]
and (α,m) -concave function [10].

DEFINITION 1. A monotone measure μ on a measurable space (X,A ) is a func-
tion μ : A → [0,∞] satisfying

(i) μ (φ) = 0,
(ii) μ (X) > 0,
(iii) μ (A) � μ (B) , whenever A ⊆ B .

Normed monotone measures on (X,A ) , i.e. monotone measures satisfying μ (X)
= 1, are also called capacities [1, 11].

For a measurable space (X,A ) , i.e. a non-empty set X equipped with a σ -
algebra A , recall that a function f : X → [0,∞] is called A -measurable if, for each
B ∈ B ([0,∞]) , the σ -algebra of Borel subsets of [0,∞] , the preimage f−1 (B) ∈ A is
a element of A .

DEFINITION 2. Let (X,A ) be a measurable space.
(i) F (X,A ) denotes the set of all A -measurable functions f : X → [0,∞) ;

(ii) For each number a ∈ (0,∞] , M
(X ,A )
a denotes the set of all monotone mea-

sures satisfying μ (X) = a ; and we take

M (X ,A ) = ∪
a∈(0,∞]

M
(X ,A )
a .

(iii) Let S be the class of all measurable spaces, and we take
D[0,∞] =

⋃
(X ,A )

M (X ,A ) ×F (X ,A ) .

D[0,∞] =
⋃

(X ,A )∈S
M (X ,A )×F (X ,A ) .

DEFINITION 3. The Sugeno [1], Shikret [3] and Choquet [12] integrals (see also
[13, 2, 14]) respectively, are given, for any measurable space (X,A ) , for any measur-
able function f ∈ F (X ,A ) and for any monotone measure μ ∈ M (X ,A ) , i.e. for any
(μ , f ) ∈ D[0,∞] , by

Ch(μ , f ) =
∫ ∞
0 μ ({ f � t})dt ,

Su(μ , f ) = sup{min(t,μ ({ f � t})) |t ∈ (0,∞]} ,
Sh(μ , f ) = sup{t ·μ ({ f � t}) |t ∈ (0,∞]} ,

where the convention 0 ·∞ = 0 is used. All these integrals map M (X ,A )×F (X ,A ) into
[0,∞] , and fixing an arbitrary f ∈ F (X ,A ) , they are non-decreasing functions from
M (X ,A ) into [0,∞] .

DEFINITION 4. Two pairs (μ1, f1)∈M (X1,A1)×F (X1,A1) and (μ2, f2)∈M (X2,A2)

×F (X2,A2) satisfying μ1 ({ f1 � t}) = μ2 ({ f2 � t}) for all t ∈ (0,∞] , will be called in-
tegral equivalent in symbols (μ1, f1) ∼ (μ2, f2) .
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DEFINITION 5. [15, 16] A function ⊗ is called a pseudo-multiplication if it sat-
isfies the following properties:

(i) it is non-decreasing in each component, i.e. for all a1,a2,b1,b2 ∈ [0,∞] with
a1 � a2,b1 � b2 we have a1⊗b1 � a2⊗b2 ;

(ii) 0 is an annihilator of ⊗ , i.e., for all a ∈ [0,∞] we have 0⊗a = a⊗0 = 0;
(iii) ⊗ has a neutral element different from 0, i.e., there exists an element e ∈

(0,∞] such that, for all a ∈ [0,∞] , we have e⊗a = a⊗ e = a .

DEFINITION 6. For a given pseudo-multiplication on [0,∞] , we suppose the ex-
istence of a pseudo-addition ⊕ : [0,∞]2 → [0,∞] which is continuous, associative, non-
decreasing and has 0 as neutral element and which is left-distributive with respect to
⊗ , i.e., for all a,b,c ∈ [0,∞] , we have (a⊕b)⊗ c = (a⊗ c)⊕ (b⊗ c) . The pair (⊕,⊗)
is called an integral operation pair.

DEFINITION 7. A function I : D[0,∞] → [0,∞] is called a universal integral if the
following axioms hold:

(i) For any measurable space (X ,A ) , the restriction of the function I to M (X ,A )×
F (X ,A ) is non-decreasing in each coordinate;

(ii) there exists a pseudo-multiplication ⊗ : [0,∞]2 → [0,∞] such that for all pairs
(μ ,c ·1A) ∈ D[0,∞] , I(μ ,c ·1A) = c⊗ μ (A) ;

(iii) for all integral equivalent pairs (μ1, f1) ,(μ2, f2)∈D[0,∞] , we have I(μ1, f1)=
I(μ2, f2) .

THEOREM 3. Let ⊗ : [0,∞]2 → [0,∞] be a pseudo-multiplication on [0,∞] . Then
the smallest universal integral I and the greatest universal integral I based on ⊗ are
given by

I⊗ (μ , f ) = sup{t ⊗ μ (X ∩{ f � t}) |t ∈ (0,∞]} (2.1)

I⊗ (μ , f ) = essup
μ

f ⊗ sup{μ (X ∩{ f � t}) |t ∈ (0,∞]} (2.2)

where essupμ f = sup{ t ∈ [0,∞]|μ (X ∩{ f � t})} > 0

REMARK 1. When pseudo-multiplication are given by Min(a,b)= min(a,b) and
Prod (a,b) = a ·b , the smallest universal integral reduce to the Sugeno and Skilkret in-
tegral, i.e., Su = IMin and Sh = IProd , respectively.

REMARK 2. There is neither a smallest nor a greatest pseudo-multiplication on
[0,∞] . But, if we fix the neutral element e in [0,∞] , then the smallest pseudo-multipli-
cation ⊗e and the greatest pseudo-multiplication ⊗e with neutral element e are given
by

a⊗eb =

⎧⎨
⎩

0 i f (a,b) ∈ [0,e)2

max(a,b) i f (a,b) ∈ [e,∞]2

min(a,b) otherwise
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and

a⊗eb =

⎧⎨
⎩

min(a,b) i f min(a,b) = 0 or (a,b) ∈ [0,e)2

∞ i f (a,b) ∈ [e,∞]2

max(a,b) otherwise

PROPOSITION 1. There exists the extremal universal integral I⊗e among all uni-
versal integrals satisfying the conditions

(i) for each μ ∈ M
(X ,A )
e and each c ∈ [0,∞] we have I(μ ,c ·1X) = c ;

(ii) for each μ ∈M (X ,A ) and each A∈A we have I(μ ,e ·1X) = μ (A) given by

(I⊗e (μ , f ) = max{μ ({ f � e}) ,essin f ⊗ f }
where essin f⊗ f = sup{t ∈ [0,∞] |μ ( f � t) = μ (X)} .

REMARK 3. Restricting now to the unit interval [0,∞] we shall consider func-
tion f ∈ F (X ,A ) satisfying Ran( f ) ⊆ [0,1] (in which case we shall write shortly

f ∈ F
(X ,A )
[0,1] ). Observe that, in this case, universal integrals are restricted to the class

D[0,1] =
⋃

(X ,A )∈S M (X ,A ) ×F
(X ,A )
[0,1] .

DEFINITION 8. Assume that � : [0,1]2 → [0,1] is a semicopula or conjunctor (see
[17]). The smallest universal integral I� on the [0,1] scale related to the semicopula
� is given by

I� (μ , f ) = sup{t � μ ({ f � t}) |t ∈ [0,1]} . (2.3)

This type integral was called seminormed integral in [18]. Specially, for a fixed
strict t -norm T , the corresponding universal integral IT is the so-called Sugeno-Weber
integral in [19]

DEFINITION 9. [10] The function f : [0,b] → R is said to be (α,m) -concave,
where (α,m) ∈ [0,1]2 , if for every x,y ∈ [0,b] and t ∈ [0,1] , satisfies

f (tx+m(1− t)y) � tα f (x)+m(1− tα) f (y) . (2.4)

3. Main results

THEOREM 4. Let 0 < r < s < ∞ , α,m ∈ (0,1) and f ∈ F ([a,b],A ) be a (α,m)-
concave function. If ⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with neu-
tral element e ∈ (0,∞] , then for any monotone measure μ ∈ M (X ,A ) , we have

(a) if f (a) � f (b) , then

I
1
r⊗ (μ, f r) �

(
β r ⊗μ

(
[a,b]∩

{
x|x � (b−ma)

(
β −mf (a)

f (b)−mf (a)

) 1
α

+ma

})) 1
r

(3.1)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.
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(b) if f (a) > f (b) , then

Case i: if m ∈
(
0, f (b)

f (a)

)

I
1
r⊗ (μ, f r) �

(
β r ⊗μ

(
[a,b]∩

{
x|x � (b−ma)

(
β −mf (a)

f (b)−mf (a)

) 1
α

+ma

})) 1
r

(3.2)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Case ii: m = f (b)
f (a)

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (b)) (3.3)

Case iii: m ∈
(

f (b)
f (a) ,1

)

I
1
r⊗ (μ, f r) �

(
β r ⊗μ

(
[a,b]∩

{
x|x � (b−ma)

(
β −mf (a)

f (b)−mf (a)

) 1
α

+ma

})) 1
r

(3.4)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Proof. Let 0 < r < s < ∞ and (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s =β . Since f : [a,b] →

[0,∞) is a (α,m)-concave function, for x ∈ [a,b] we have

f (x) = f

(
m

(
1− x−ma

b−ma

)
a+

x−ma
b−ma

b

)

� m

(
1−

(
x−ma
b−ma

)α)
f (a)+

(
x−ma
b−ma

)α
f (b) = g(x)

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ ,gr)

=
[
∨

γ>0

(
γ⊗μ

(
[a,b]∩

{
x|
[
m
(
1−( x−ma

b−ma)
α)

f (a)+( x−ma
b−ma)

α
f (b)

]
�γ

1
r

}))] 1
r

=
[
∨

γ>0

(
γ⊗μ

(
[a,b]∩

{
x|( f (b)−mf (a))(x−ma)α �(b−ma)α

(
γ

1
r −mf (a)

)}))] 1
r

(3.5)

(a) if f (a) � f (b) , then by (3.5) we have

I
1
r⊗ (μ , f r)

�

⎡
⎣ ∨

γ>0

⎛
⎝γ ⊗ μ

⎛
⎝[a,b]∩

⎧⎨
⎩x|x � (b−ma)

(
γ

1
r −mf (a)

f (b)−mf (a)

) 1
α

+ma

⎫⎬
⎭
⎞
⎠
⎞
⎠
⎤
⎦

1
r

�
(

β r ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)

(
β −mf (a)

f (b)−mf (a)

) 1
α

+ma

}))1
r

(3.6)
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(b) if f (a) > f (b) , then by (3.5) we have

Case i: if m ∈
(
0, f (b)

f (a)

)

I
1
r⊗ (μ, f r) �

(
β r ⊗μ

(
[a,b]∩

{
x|x � (b−ma)

(
β −mf (a)

f (b)−mf (a)

) 1
α

+ma

})) 1
r

(3.7)

Case ii: m = f (b)
f (a)

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (b)) (3.8)

Case iii: m ∈
(

f (b)
f (a) ,1

)

I
1
r⊗ (μ, f r) �

(
β r ⊗μ

(
[a,b]∩

{
x|x � (b−ma)

(
β −mf (a)

f (b)−mf (a)

) 1
α

+ma

})) 1
r

(3.9)

and the proof is completed. �

EXAMPLE 1. Consider X = [0,1] and ⊗ = min with neutral element 1. Let μ =
m2 , where m is the Lebesge measure on X . Take the function f (x) =

√
x , f (x) is a(

2
3 , 1

3

)
-concave function. In fact,

√
x = f

(
x ·1+

1
3

(1− x) ·0
)

� 3
√

x2 + 1
3

(
1− 3

√
x2
)
·0 = 3

√
x2

for x ∈ [0,1] . Let r = 1
2 ,s = 2, a straightforward calculus shows that

(i) Imin (μ , f r) = sup
{

t ∧μ
(
[0,1]∩{x � t4

})∣∣t ∈ (0,1]
}

= 0.6588,
(ii) Imin (μ , f s) = sup{ t ∧μ ([0,1]∩{x � t})|t ∈ (0,1]} = 0.3820,

Therefore

0.4340 =
(

I2
min

(
μ , f

1
2

))
�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
(1+2)

1
2

(1+ 1
2 )

2 I
1
2
min

(
μ , f 2

)) 1
2

∧
⎛
⎜⎝1−

(
(1+2)

1
2

(1+ 1
2 )

2 I
1
2
min

(
μ , f 2

)) 3
2

⎞
⎟⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2

= 0.2037.

As some special cases of (α,m)-convex functions, we get the following results.

THEOREM 5. Let 0 < r < s < ∞ and f ∈F ([a,b],A ) be a (0,0)-concave function.
If ⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with neutral element e ∈
(0,∞] , then for any monotone measure μ ∈ M (X ,A ) , we have

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (b)) . (3.10)
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Proof. Let r ∈ (0,∞) . Since f : [a,b] → [0,∞) is a (0,0) -concave function, for
x ∈ [a,b] we have

f (x) = f

(
0 ·
(

1− x−0 ·a
b−0 ·a

)
a+

x−0 ·a
b−0 ·a b

)

�0 ·
(

1−
(

x−0 ·a
b−0 ·a

)0
)

f (a)+
(

x−0 ·a
b−0 ·a

)0

f (b) = f (b)

Thus,

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (b)) . (3.11)

and the proof is completed. �

EXAMPLE 2. Consider X = [0,1] and ⊗ = min with neutral element 1. Let μ =
m2 , where m is the Lebesge measure on X . Take the function f (x) = 1− x , f (x) is a
decreasing function. Let r = 1

2 , a straightforward calculus shows that
Imin (μ , f s) = sup{ t ∧μ ([0,1]∩{x � t})|t ∈ (0,1]} = 0.3820,

therefore

0.1459 = I2
min

(
μ , f

1
2

)
� I2

min

(
μ , f

1
2 (1)

)
= 0

THEOREM 6. Let 0 < r < s < ∞ , α ∈ (0,1) and f ∈ F ([a,b],A ) be a (α,0)-
concave function. If ⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with neu-
tral element e ∈ (0,∞] , then for any monotone measure μ ∈ M (X ,A ) , we have

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � b

(
β

f (b)

) 1
α
})) 1

r

(3.12)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Proof. Let 0 < r < s < ∞ , α ∈ (0,1) . Since f : [a,b]→ [0,∞) is a (α,0)-concave
function, for x ∈ [a,b] we have

f (x) = f

(
0 ·
(

1− x−0 ·a
b−0 ·a

)
a+

x−0 ·a
b−0 ·a b

)

�0 ·
(

1−
(

x−0 ·a
b−0 ·a

)α)
f (a)+

(
x−0 ·a
b−0 ·a

)α
f (b) =

( x
b

)α
f (b)
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I
1
r⊗ (μ , f r) �I

1
r⊗
(

μ ,
( x

b

)α
f (b)

)
=
[
∨

γ>0

(
γ ⊗ μ

(
[a,b]∩

{
x|
( x

b

)α
f (b) � γ

1
r

}))] 1
r

=

[
∨

γ>0

(
γ ⊗ μ

(
[a,b]∩

{
x|x � bγ

1
αr

f (b)
1
α

}))] 1
r

�
(

β r ⊗ μ

(
[a,b]∩

{
x|x � b

(
β

f (b)

) 1
α
})) 1

r

(3.13)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s

and the proof is completed. �

EXAMPLE 3. Consider X = [0,1] and ⊗ = min with neutral element 1. Let μ =
m2 , where m is the Lebesge measure on X . Take the function f (x) = 3

√
x , f (x) is a( 1

3 ,0
)
-concave function. Let r = 1

2 ,s = 3, a straightforward calculus shows that

(i) Imin

(
μ , f

1
2

)
= sup

{
t ∧μ

(
[0,1]∩{x � t6

})∣∣ t ∈ (0,1]
}

= 0.7268,

(ii) Imin
(
μ , f 3

)
= sup{ t ∧μ ([0,1]∩{x � t})| t ∈ (0,1]} = 0.3820.

Therefore

0.5282 =
(
I2
min

(
μ , f

1
2

))
�

⎛
⎜⎜⎜⎜⎜⎜⎝

(
(1+3)

1
3

(1+ 1
2 )

2 I
1
3
min

(
μ , f 3

)) 1
2

∧
⎛
⎝1−

(
(1+3)

1
3

(1+ 1
2 )

2 I
1
3
min

(
μ , f 3

))3
⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎠

2

= 0.1613.

THEOREM 7. Let 0 < r < s < ∞ and f ∈F ([a,b],A ) be (1,0) -concave function. If
⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with neutral element e∈ (0,∞] ,
then for any monotone measure μ ∈ M (X ,A ) , we have

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � bβ

f (b)

})) 1
r (3.14)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Proof. Let 0 < r < s < ∞ . Since f : [a,b] → [0,∞) is a (1,0) -concave function,
for x ∈ [a,b] we have

f (x) = f

(
0 ·
(

1− x−0 ·a
b−0 ·a

)
a+

x−0 ·a
b−0 ·a b

)

�0 ·
(

1−
(

x−0 ·a
b−0 ·a

))
f (a)+

(
x−0 ·a
b−0 ·a

)
f (b) =

( x
b

)
f (b)
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I
1
r⊗ (μ , f r) �I

1
r⊗

(
μ ,

(
f (b)x

b

)r)
=
[
∨

γ>0

(
γ ⊗ μ

(
[a,b]∩

{
x| f (b)x

b
� γ

1
r

}))] 1
r

=

[
∨

γ>0

(
γ ⊗ μ

(
[a,b]∩

{
x|x � bγ

1
r

f (b)

}))] 1
r

�
(

β r ⊗ μ
(
[a,b]∩

{
x|x � bβ

f (b)

})) 1
r (3.15)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s

and the proof is completed. �

EXAMPLE 4. Consider X = [0,1] and ⊗ = min with neutral element 1. Let μ =
m2 , where m is the Lebesge measure on X . Take the function f (x) = 3

√
x , f (x) is a

(1,0) -concave function. Let r = 1
2 ,s = 3, a straightforward calculus shows that

(i) Imin

(
μ , f

1
2

)
= sup

{
t ∧μ

(
[0,1]∩{x � t6

})∣∣ t ∈ (0,1]
}

= 0.7268,

(ii) Imin
(
μ , f 3

)
= sup{ t ∧μ ([0,1]∩{x � t})| t ∈ (0,1]} = 0.3820.

Therefore

0.5282 =
(
I2
min

(
μ , f

1
2

))
�

⎛
⎜⎜⎜⎜⎜⎝

(
(1+3)

1
3

(1+ 1
2 )

2 I
1
3
min

(
μ , f 3

)) 1
2

∧(
1−

(
(1+3)

1
3

(1+ 1
2 )

2 I
1
3
min

(
μ , f 3

)))2

⎞
⎟⎟⎟⎟⎟⎠

2

= 0.0649.

THEOREM 8. Let 0 < r < s < ∞ , m ∈ (0,1) and f ∈ F ([a,b],A ) be a (1,m)-
concave function. If ⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with neu-
tral element e ∈ (0,∞] , then for any monotone measure μ ∈ M (X ,A ) , we have

Case i: if f (a) � f (b)

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)(β −mf (a))

f (b)−mf (a)
+ma

})) 1
r

(3.16)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Case ii: if f (a) > f (b)
(a)m ∈

(
0, f (b)

f (a)

)

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)(β −mf (a))

f (b)−mf (a)
+ma

})) 1
r

(3.17)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.
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(b)m = f (b)
f (a)

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (b)) . (3.18)

(c)m ∈
(

f (b)
f (a) ,1

)

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)(β −mf (a))

f (b)−mf (a)
+ma

})) 1
r

(3.19)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Proof. Let 0 < r < s < ∞ , m∈ (0,1) . Since f : [a,b]→ [0,∞) is a (1,m)-concave
function, for x ∈ [a,b] we have

f (x) = f

(
0 ·
(

1− x−0 ·a
b−0 ·a

)
a+

x−0 ·a
b−0 ·a b

)

�m

(
1−

(
x−ma
b−ma

))
f (a)+

(
x−ma
b−ma

)
f (b) = g(x)

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ ,gr)

=
[
∨

γ>0

(
γ⊗μ

(
[a,b]∩

{
x|[m(1−( x−ma

b−ma )) f (a)+( x−ma
b−ma) f (b)]�γ

1
r

}))] 1
r

=
[
∨

γ>0

(
γ⊗μ

(
[a,b]∩

{
x|( f (b)−mf (a))(x−ma)�(b−ma)

(
γ

1
r −mf (a)

)}))] 1
r

(3.20)

(a) if f (a) � f (b) , then by (3.20) we have

I
1
r⊗ (μ , f r)

�
[
∨

γ>0

(
γ ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)

(
γ 1

r −mf (a)
f (b)−mf (a)

)
+ma

}))] 1
r

�
(

β r ⊗ μ
(
[a,b]∩

{
x|x � (b−ma)(β−mf (a))

f (b)−mf (a) +ma
})) 1

r (3.21)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

(b) if f (a) > f (b) , then by (3.20) we have

Case i: if m ∈
(
0, f (b)

f (a)

)

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)(β−mf (a))

f (b)−mf (a) +ma
})) 1

r (3.22)
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where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

Case ii: m = f (b)
f (a)

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (b)) (3.23)

Case iii: m ∈
(

f (b)
f (a) ,1

)

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−ma)(β−mf (a))

f (b)−mf (a) +ma
})) 1

r (3.24)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s

and the proof is completed. �

REMARK 4. Example 4 can be used to illustrate (a) of Theorem 8. In fact,

3
√

x = f (x ·1+m(1− x) ·0) � f (1)x+m(1− x) f (0) = x

for all x,m ∈ [0,1] .

THEOREM 9. Let 0 < r < s < ∞ , α ∈ (0,1) ,m = 1 and f ∈ F ([a,b],A ) be a
(α,1) -concave function. If ⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞]
with neutral element e ∈ (0,∞] , then for any monotone measure μ ∈M (X ,A ) , we have

(a) if f (a) < f (b) , then

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−a)α

(
(β− f (a))
f (b)− f (a)

) 1
α +a

}))1
r

(3.25)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

(b) if f (a) = f (b) , then

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (a)) . (3.26)

(c) if f (a) > f (b) , then

I
1
r⊗ (μ , f r) �

(
β r ⊗ μ

(
[a,b]∩

{
x|x � (b−a)α

(
(β− f (a))
f (b)− f (a)

) 1
α +a

}))1
r

(3.27)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.
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Proof. Let 0 < r < s < ∞ , α ∈ (0,1) . Since f : [a,b]→ [0,∞) is a (α,1)-concave
function, for x ∈ [a,b] we have

f (x) = f

((
1− x−a

b−a

)
a+

x−a
b−a

b

)

�
(

1−
(

x−a
b−a

)α)
f (a)+

(
x−a
b−a

)α
f (b) = g(x)

I
1
r⊗ (μ, f r) � I

1
r⊗ (μ,gr)

=
[
∨

γ>0

(
γ ⊗μ

(
[a,b]∩

{
x|
[(

1−
(

x−a
b−a

)α)
f (a)+

(
x−a
b−a

)α
f (b)

]
� γ

1
r

}))] 1
r

=
[
∨

γ>0

(
γ ⊗μ

(
[a,b]∩

{
x|( f (b)− f (a))(x−a)α � (b−a)α

(
γ

1
r − f (a)

)}))] 1
r

(3.28)

(a) if f (a) < f (b) , then by (3.28) we have

I
1
r⊗ (μ , f r)

�

⎡
⎣ ∨

γ>0

⎛
⎝γ ⊗ μ

⎛
⎝[a,b]∩

⎧⎨
⎩x|x � (b−a)

(
γ 1

r − f (a)
f (b)− f (a)

) 1
α

+a

⎫⎬
⎭
⎞
⎠
⎞
⎠
⎤
⎦

1
r

�
(

β r ⊗ μ

(
[a,b]∩

{
x|x � (b−a)

(
(β− f (a))
f (b)− f (a)

) 1
α +a

})) 1
r

(3.29)

where β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s
.

(b) if f (a) = f (b) , then

I
1
r⊗ (μ , f r) � I

1
r⊗ (μ , f r (a)) . (3.30)

(c) if f (a) > f (b) , then by (3.28) we have

I
1
r⊗ (μ , f r)

�

⎡
⎣ ∨

γ>0

⎛
⎝γ ⊗ μ

⎛
⎝[a,b]∩

⎧⎨
⎩x|x � (b−a)

(
γ

1
r − f (a)

f (b)− f (a)

) 1
α

+a

⎫⎬
⎭
⎞
⎠
⎞
⎠
⎤
⎦

1
r

�
(

β r ⊗ μ

(
[a,b]∩

{
x|x � (b−a)

(
(β− f (a))
f (b)− f (a)

) 1
α +a

})) 1
r

(3.31)

β = (b−a)
1
r (1+s)

1
s

(1+r)
1
r

(
I⊗(μ, f s)

b−a

) 1
s

and the proof is completed. �
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EXAMPLE 5. Consider X = [0,1] and ⊗ = min with neutral element 1. Let μ =
m2 , where m is the Lebesge measure on X . Take the function f (x) = 3

√
x , f (x) is a(

1
2 ,1

)
-concave function. Let r = 1

2 ,s = 3, a straightforward calculus shows that

(i) Imin

(
μ , f

1
2

)
= sup

{
t ∧μ

(
[0,1]∩{x � t6

})∣∣ t ∈ (0,1]
}

= 0.7268,

(ii) Imin
(
μ , f 3

)
= sup{ t ∧μ ([0,1]∩{x � t})| t ∈ (0,1]} = 0.3820.

Therefore

0.5282 =
(
I2
min

(
μ , f

1
2

))
�

⎛
⎜⎜⎜⎜⎜⎜⎝

(
(1+3)

1
3

(1+ 1
2 )

2 I
1
3
min

(
μ , f 3

)) 1
2

∧⎛
⎝1−

(
(1+3)

1
3

(1+ 1
2 )

2 I
1
3
min

(
μ , f 3

))2
⎞
⎠

2

⎞
⎟⎟⎟⎟⎟⎟⎠

2

= 0.2966.

REMARK 5. Let 0 < r < s < ∞ , α = 1,m = 1 and f ∈ F ([a,b],A ) be a (α,m)-
concave function. If ⊗ : [0,∞]2 → [0,∞] is a pseudo-multiplication on [0,∞] with
neutral element e ∈ (0,∞] , then for any monotone measure μ ∈ M (X ,A ) , then we
obtain the Berwald type inequality for universal integral based on concave function in
[9].

REMARK 6. Case i: If ⊗ is minimum in Theorem 4 and (α,m) ∈ [0,1]2 , then
we obtain the Berwald type inequalities for Sugeno integral based on (α,m)-concave
function encompassing some special cases, specially, if we take α = 1, m = 1 and μ
is the Lebesgue measure on R , then we have the results of [8].

Case ii: If ⊗ is standard product in Theorem 4 and (α,m)∈ [0,1]2 , then we obtain
the Berwald type inequalities for Shilkret integral based on (α,m) -concave function
including some special cases.

Case iii: We consider on [0,1] in Theorem 4. If ⊗ = � is semicopula (t -
seminorm), e = 1 and (α,m)∈ [0,1]2 , then we obtain the Berwald type inequalities for
seminormed integral based on (α,m)-concave function containing some special cases.
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