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A COMPLETELY MONOTONIC FUNCTION

RELATING TO THE qqqq–TRIGAMMA FUNCTION

JIAO-LIAN ZHAO

(Communicated by N. Elezović)

Abstract. In the paper, a function relating to the q -trigamma function is proved to be completely
monotonic. As by-products, two functions relating to the logarithmic function are also proved to
be completely monotonic.

1. Introduction

The classical Euler gamma function Γ(x) may be defined for x > 0 by

Γ(x) =
∫ ∞

0
tx−1e−t dt =

1
x

∞

∏
n=1

{(
1+

1
n

)x(
1+

x
n

)−1}
(1)

The logarithmic derivative of Γ(x) , denoted by ψ(x) = Γ′(x)
Γ(x) , is called the psi or

digamma function, and the derivatives ψ(i)(x) for i ∈ N , the set of all positive integers,
are respectively called the polygamma functions. In particular, the functions ψ ′(x) and
ψ ′′(x) are called the trigamma and tetragamma functions.

The q -analogue Γq(x) of the gamma function Γ(x) may be defined for x > 0 by

Γq(x) = (1−q)1−x
∞

∏
i=0

1−qi+1

1−qi+x (2)

when 0 < q < 1, and by

Γq(x) = (q−1)1−xq(x
2)

∞

∏
i=0

1−q−(i+1)

1−q−(i+x) (3)

when q > 1. The q -psi function ψq(x) , the q -analogue of the psi function ψ(x) , may
be defined by

ψq(x) =
Γ′

q(x)
Γq(x)

= − ln(1−q)+ lnq
∞

∑
k=0

qk+x

1−qk+x

= − ln(1−q)+ lnq
∞

∑
k=1

qkx

1−qk

(4)
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for 0 < q < 1 and x > 0, and by

ψq(x) = − ln(q−1)+ lnq

(
x− 1

2
− ∑

n�0

q−n−x

1−q−n−x

)
(5)

for q > 1 and x > 0. The functions ψ(k)
q (x) , the q -analogues of the polygamma func-

tions ψ(k)(x) , for k ∈ N are called the q -polygamma functions. The above mentioned
functions have the following relations

lim
q→1±

Γq(z) = Γ(z), Γq(x) = q(x−1
2 )Γ1/q(x), lim

q→1±
ψq(x) = ψ(x). (6)

For more information, please refer to [2, pp. 493–496] and [6, 7].
We recall from [8, Chapter XIII] and [17, Chapter IV] that a function f is said to

be completely monotonic on an interval I if f has derivatives of all orders on I and

(−1)n f (n)(x) � 0 (7)

for x ∈ I and n � 0. In [17, p. 161, Theorem 12b], it was stated that a necessary and
sufficient condition that f (x) should be completely monotonic for 0 < x < ∞ is that

f (x) =
∫ ∞

0
e−xt dα(t), (8)

where α(t) is non-decreasing and the integral converges for 0 < x < ∞ . In other words,
a function is completely monotonic on (0,∞) if and only if it is a Laplace transform of
a positive measure.

For x > 0, let

f (x) = ψ ′(x)− 1
x
− 1

2x2 . (9)

For x > 0 and 0 < q < 1, let

fq(x) = ψ ′
q(x)−

1−q
1−qx −

1
2

(
1−q
1−qx

)2

+
1
2
(1−q)(3−q). (10)

It is clear that limq→1− fq(x) = f (x) . So, we may regard fq(x) as the q -analogue of
the function f (x) .

In recent years, the complete monotonicity of the function (9) was proved, gen-
eralized, and applied in [1, 3, 5, 6, 7, 9, 16], [10, Theorem 1.1], [13, Theorem 1.3],
[14, pp. 1977–1978], [15, Theorem 2]. For more information on this topic, please refer
to related texts in the expository and survey article [12] and closely related references
therein.

In [11], it was proved that, for x > 0 and 0 < q < 1, the function

fq(x) = ψ ′
q(x)−

(1−q)qx

1−qx − 1
2

[
(1−q)qx

1−qx

]2

, (11)

an alternative q -analogue of (9), is completely monotonic on (0,∞) .
The goal of this paper is to prove the complete monotonicity of fq(x) for 0 < q < 1

on (0,∞) . Our main result may be stated as the following theorem.
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THEOREM 1. For 0 < q < 1 , the function fq(x) defined by (10) is completely
monotonic on (0,∞) .

2. Lemmas

To prove our main result, we need the following lemmas.

LEMMA 1. For i ∈ N and q ∈ (0,1) , we have

ψ(i)
q (x) = (lnq)i+1

∞

∑
k=1

kiqkx

1−qk . (12)

Proof. This follows from the definition of ψq(x) by (4), direct differentiation, and
the induction. �

LEMMA 2. For q ∈ (0,1) and x ∈ (0,∞) , we have

∞

∑
k=1

kq(k−1)x =
1

(1−qx)2 . (13)

Proof. This can be deduced from the series expansion

1
(1− x)2 =

∞

∑
i=0

(i+1)xi (14)

for x ∈ (0,1) and replacement of x by qx in (14). �

LEMMA 3. For 0 < q < 1 and x ∈ (0,∞) , we have

ψ ′
q(x)−ψ ′

q(x+1) = (lnq)2
∞

∑
k=1

kqkx. (15)

Proof. By Lemma 1 for n = 1, we have

ψ ′
q(x)−ψ ′

q(x+1) = (lnq)2
∞

∑
k=1

kqkx

1−qk − (lnq)2
∞

∑
k=1

kqkqkx

1−qk

= (lnq)2
∞

∑
k=1

kqkx(1−qk)
1−qk

= (lnq)2
∞

∑
k=1

kqkx.

Lemma 3 is thus proved. �
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REMARK 1. In [4, p. 1245, Theorem 4.4], the identity

ψ(k−1)
q (x+1)−ψ(k−1)

q (x) = − dk−1

dxk−1

(
qx

1−qx

)
lnq (16)

for x ∈ (0,∞) and k ∈ N was deduced. It is not difficult to see that the identity (15) is
a special case of (16).

LEMMA 4. For 0 < q < 1 and i ∈ N , the limit

lim
x→∞

[ fq(x)](i−1) = 0 (17)

is valid, where fq(x) is defined by (10).

Proof. It is apparent that limx→∞ fq(x) = 0.
Differentiating and making use of (12) and (13) result in

[ fq(x)](i) = ψ(i+1)
q (x)−

(
1−q
1−qx

)(i)

−
[

(1−q)2

2(1−qx)2

](i)

= ψ(i+1)
q (x)− (1−q)

(
∞

∑
�=0

qx�

)(i)

− (1−q)2

2

[
∞

∑
�=0

(�+1)qx�

](i)

= ψ(i+1)
q (x)− (1−q)(lnq)i

∞

∑
�=1

�iqx�− (1−q)2

2
(lnq)i

∞

∑
�=1

(�+1)�iqx�

→ 0

as x → ∞ for 0 < q < 1. The proof of Lemma 4 is complete. �

LEMMA 5. The function

h(t) = (ln t)2 + t(t−1)(t−2) lnt +
1
2
(t−1)3 (18)

is completely monotonic on (0,1] .

Proof. A straightforward computation yields

[
(ln t)2](i) =

(−1)i−12(i−1)! lnt
ti

+
i−1

∑
k=1

(−1)ii!
k(i− k)

1
ti

=
(−1)i−12(i−1)! lnt

ti
+

(−1)i2(i−1)!
ti

i−1

∑
k=1

1
k

=
(−1)i2(i−1)!

ti

[
i−1

∑
k=1

1
k
− lnt

]
,
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[t(t−1)(t−2) lnt]′ = t2−3t +2+
(
3t2−6t +2

)
ln t,

[t(t−1)(t−2) lnt]′′ = 6(t−1) lnt +5t +
2
t
−9,

[t(t−1)(t−2) lnt](3) = 11− 2
t2

− 6
t

+6lnt,

[t(t−1)(t−2) lnt](i+3) =
(−1)i+12(i+1)!

ti+2 +
(−1)i+16i!

ti+1 +
(−1)i−16(i−1)!

ti

=
(−1)i+12(i−1)![i(i+1)+3it+3t2]

ti+2 .

Accordingly,

h′(t) =
5t2

2
−6t +

7
2

+
(

3t2−6t +
2
t

+2

)
ln t,

h′′(t) =
8t3−12t2 +2t +2+2

(
3t3−3t2−1

)
ln t

t2
,

h(3)(t) =
14t3−6t2−2t−6+

(
6t3 +4

)
ln t

t3
,

h(i+3)(t) =
(−1)i+12(i+2)!

ti+3

[
i+2

∑
k=1

1
k
− lnt

]
+

(−1)i+12(i−1)![i(i+1)+3it+3t2]
ti+2

=
(−1)i+12(i+2)!

ti+3

[
i+2

∑
k=1

1
k
− lnt +

i(i+1)t +3it2 +3t3

i(i+1)(i+2)

]

for i ∈ N . It is clear that

(−1)i+3h(i+3)(t) =
2(i+2)!

ti+3

[
i+2

∑
k=1

1
k
− lnt +

i(i+1)t +3it2 +3t3

i(i+1)(i+2)

]
> 0 (19)

on the interval (0,1] for i ∈ N . This implies that h(3)(t) is strictly increasing on (0,1] .
From h(3)(1) = h′′(1) = h′(1) = h(1) = 0, we obtain h(3)(t) � 0, h′′(t) � 0, h′(t) � 0,
and h(t) � 0 on (0,1] . In conclusion, the function h(t) is completely monotonic on
(0,1] . Lemma 5 is proved. �

LEMMA 6. The function

p(t) = (ln t)2 +(t−2)(t−1)2 (20)

is completely monotonic on (0,1] .

Proof. Direct differentiation gives

p′(t) = 5−8t +3t2 +
2ln t

t
,
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p′′(t) =
2
t2

+6t−8− 2lnt
t2

,

p(3)(t) = 6− 6
t3

+
4lnt
t3

,

p(i+3)(t) =
[
(ln t)2](i+3) =

(−1)i+12(i+2)!
ti+3

[
i+2

∑
k=1

1
k
− lnt

]

for i ∈ N . For t ∈ (0,1] , it is obvious that

(−1)i+3p(i+3)(t) =
2(i+2)!

ti+3

[
i+2

∑
k=1

1
k
− lnt

]
> 0, i ∈ N.

This implies that p(3)(t) is strictly increasing on (0,1] . From p(3)(1) = p′′(1) =
p′(1) = p(1) = 0, it is derived that p(3)(t) � 0, p′′(t) � 0, p′(t) � 0, and p(t) � 0
on (0,1] . In a word, the function p(t) is completely monotonic on (0,1] . The proof of
Lemma 6 is complete. �

3. Proof of Theorem 1

Now it is time to supply a proof of Theorem 1.
Direct calculation and utilization of Lemmas 2 and 3 yield

fq(x)− fq(x+1) = ψ ′
q(x)−ψ ′

q(x+1)− 1−q
1−qx−

(1−q)2

2(1−qx)2 +
1−q

1−qx+1 +
(1−q)2

2(1−qx+1)2

= (lnq)2
∞

∑
k=1

kqkx +(1−q)
(

1
1−qx+1 −

1
1−qx

)

+
1
2
(1−q)2

[
1

(1−qx+1)2 − 1
(1−qx)2

]

= (lnq)2
∞

∑
k=1

kqkx +(1−q)

[
∞

∑
k=0

qk(x+1)−
∞

∑
k=0

qkx

]

+
1
2
(1−q)2

[
∞

∑
k=0

(k+1)qk(x+1)−
∞

∑
k=0

(k+1)qkx

]

= (lnq)2
∞

∑
k=1

kqkx +(1−q)
∞

∑
k=0

(
qk −1

)
qkx

+
1
2
(1−q)2

∞

∑
k=0

(k+1)
(
qk −1

)
qkx

=
∞

∑
k=1

{
1
2
(1−q)[(1−q)(k+1)+2]

(
qk −1

)
+(lnq)2k

}
qkx.

Let

gq(t) =
1
2
(1−q)[(1−q)(t+1)+2]

(
qt −1

)
+(lnq)2t
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for 0 < q < 1 and t ∈ (0,∞) . Then

g′q(t) = (lnq)2 +
1
2
(lnq)(q−1)qt[t(q−1)+q−3]+

1
2
(qt −1)(1−q)2,

g′′q(t) =
1
2
(q−1)qt(lnq)[(q−1)t lnq+2q+q lnq−3lnq−2]

� 1
2
(q−1)qt(lnq)ϕ(t,q),

ϕ(1,q) = 2[q−1+(q−2) lnq],

dϕ(1,q)
dq

= 2

[
2

(
1− 1

q

)
+ lnq

]
< 0.

Since ϕ(1,q) is decreasing with respect to q ∈ (0,1) and ϕ(1,1) = 0, so ϕ(1,q) > 0
for q ∈ (0,1) . It is obvious that ϕ(t,q) is increasing with respect to t , so ϕ(t,q) > 0
for (t,q) ∈ [1,∞)× (0,1) . Hence, the second derivative g′′q(t) is positive for (t,q) ∈
[1,∞)× (0,1) and g′q(t) is increasing with respect to t ∈ [1,∞) . From Lemma 5, we
have

g′q(1) = (lnq)2 +q
(
q2−3q+2

)
lnq+

1
2
(q−1)3 > 0,

hence g′q(t) > 0 for (t,q)∈ (1,∞)×(0,1) , equivalently, the function gq(t) for 0 < q <
1 is increasing with respect to t ∈ [1,∞) . By virtue of Lemma 6, we have

gq(1) = (q−2)(q−1)2+(lnq)2 > 0

for q ∈ (0,1) . Thus, the function gq(t) is positive for (t,q) ∈ [1,∞)× (0,1) . As a
result,

di−1[ fq(x)− fq(x+1)]
dxi−1 =

∞

∑
k=1

ki−1gq(k)qkx(lnq)i−1

for i ∈ N . This means that

(−1)i−1[ fq(x)− fq(x+1)](i−1) =
∞

∑
k=1

ki−1gq(k)qkx[(−1)i−1(lnq)i−1]> 0

which can be rearranged as

(−1)i−1[ fq(x)](i−1) > (−1)i−1[ fq(x+1)](i−1).

By induction and Lemma 4, it follows that

(−1)i−1[ fq(x)](i−1) > (−1)i−1[ fq(x+1)](i−1) > (−1)i−1[ fq(x+2)](i−1)

> · · · > (−1)i−1[ fq(x+ k)](i−1) � (−1)i−1 lim
k→∞

[ fq(x+ k)](i−1) = 0

for (i,k)∈N
2 . So the function fq(x) for 0 < q < 1 is completely monotonic on (0,∞) .

The proof of Theorem 1 is complete.
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