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HÖLDER AND MINKOWSKI TYPE

INEQUALITIES WITH ALTERNATING SIGNS

PETR CHUNAEV

(Communicated by J. Pečarić)

Abstract. We obtain new inequalities with alternating signs of Hölder and Minkowski type.

1. Introduction

Most classical inequalities are essentially concerned with positive terms. On the
other hand, in different branches of analysis there is necessity to deal with sums and
series with alternating signs. The main goal of this work is to obtain inequalities of
Hölder and Minkowski type for such sums and series.

Let us start with formulating several known results. The first inequality with alter-
nating signs was due to Szegő.

THEOREM 1. (Szegő [13]) Let 0 � b2n+1 � b2n � · · · � b2 � b1 and the function
f = f (x) be convex on [0;b1] , then

f

(
2n+1

∑
k=1

(−1)k+1bk

)
�

2n+1

∑
k=1

(−1)k+1 f (bk). (1)

Later on, Bellman using a simple geometrical method proved (1), where 2n + 1
was replaced by 2n and convex f was such that f (0) � 0 (see [2] and [19]). However,
this result has been already contained in Szegő’s theorem. Indeed, it is sufficient to put
b2n+1 = 0 in (1) and take into account that f (0) in the right hand side is non-positive.
In [18], Weinberger independently obtained a particular case of Theorem 1, which can
be derived from (1) by putting f (x) = xp , p � 1. Finally, Brunk and Olkin, using
different technics, proved a weighted version of (1).

THEOREM 2. (Brunk [8], Olkin [14]) Let

0 � wn � wn−1 � . . . � w1 � 1, 0 � bn � bn−1 � · · · � b2 � b1,

and the function f = f (x) be convex on [0;b1] , then

f

(
n

∑
k=1

(−1)k+1wkbk

)
�
(

1−
n

∑
k=1

(−1)k+1wk

)
f (0)+

n

∑
k=1

(−1)k+1wk f (bk).
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Note that Theorems 1 and 2 are of Jensen type. It was shown in [3] that these
results were particular cases of more general statements. Namely, Theorem 1 follows
from the majorization theorem [10, Theorem 108], and Theorem 2 is a corollary of
Steffensen’s inequality (see [16]). Analogues of other classical inequalities for sums
with alternating signs were considered by Biernacki in [5]. He showed in particular that
Chebyshev’s sum inequality remains valid for such sums. Later on, several refinements
of Theorems 1 and 2 were obtained in [6], [12], and [15].

Note that inequalities with alternating signs have numerous applications. For in-
stance, Szegő proved Theorem 1 for purposes in generalization of Dirichlet integrals,
the result of Weinberger was motivated by certain problems in symmetrization theory,
etc. Close connection between sums with alternating signs and estimates of trigono-
metrical integrals was observed by Steffensen [16].

Now we give some notations and auxiliaries. In what follows, we denote non-
negative sequences of real numbers in bold print, e.g. a = {ak}n

k=1 or b = {bk}n
k=1 ,

where n is a positive integer or infinity (usually we omit number of elements). Some-
times properties of the sequences can be specified. Expressions like a ≡ 1 mean that
all elements of a are equal to 1. From now on, we exclude cases of sequences such
that denominators of fractions in inequalities vanish for them.

Further, let us recall some well-known inequalities for α,β � 0, which we use:

(α + β )p � 2p−1(α p + β p), p � 1 (Jensen’s inequality); (2)

(α + β )p � 2p−1(α p + β p), 0 � p � 1 (reverse Jensen’s inequality); (3)

αβ � α p

p + β q

q , 1
p + 1

q = 1, p � 1 (Young’s inequality); (4)

pβ p−1 � α p−β p

α−β � pα p−1, p � 1, α > β ; (5)

α p + β p � (α + β )p, p � 1. (6)

For the inequality (5) we refer the reader to [10, Theorem 41]. The following result will
be needed in Section 2.

LEMMA 1. Let a be non-increasing, b be non-decreasing and such that bk � B
for k = 1, . . . ,n. Then

n

∑
k=1

(−1)k+1akbk � B
n

∑
k=1

(−1)k+1ak.

Proof. Since the sequences a and {B−bk} are non-increasing, we have

B
n

∑
k=1

(−1)k+1ak −
n

∑
k=1

(−1)k+1akbk =
n

∑
k=1

(−1)k+1ak(B−bk) � 0.

It is easily seen that equality holds, for example, if b ≡ B . �
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2. Hölder type inequalities

In this section, we show that there is no a direct analog of Hölder’s inequality in
case with alternating signs, but it is possible to obtain one of reverse Hölder’s inequality.
Note that reverse Hölder’s inequalities for non-negative terms are well studied (see e.g.
[20] and references there in).

THEOREM 1. Let a and b be positive non-increasing and such that

0 < a � ak � A < ∞, 0 < b � bk � B < ∞, k = 1, . . . ,n,

then for p,q > 1 , 1
p + 1

q = 1 , we have

0 �
(
∑n

k=1(−1)k+1aq
k

)1/q (∑n
k=1(−1)k+1bp

k

)1/p

∑n
k=1(−1)k+1akbk

� Ca,b, (7)

where Ca,b = Aq−1/b+Bp−1/a and Ca,b ∈ (1;∞) . The left hand side of (7) should be
read as there exists no positive constant, depending on a,A,b,B, p or q, which bounds
the fraction in (7) from below.

Proof. From now on, FH stands for the fraction in (7). The fact that there exist no
positive constants bounding FH from below, can be shown by the following example.
Let n be even and a = {a1,a1,a3,a3, . . . ,an,an, . . .} be positive and non-decreasing.
The sequence b is arbitrary except such that b2k−1−b2k = 0 for all k = 1, . . . ,n/2. It
follows that

FH =
0 · (∑n

k=1(−1)k+1bp
k

)1/p

∑n/2
k=1 a2k−1(b2k−1−b2k)

= 0.

Thus FH cannot be bounded from below by a positive absolute constant or a constant
depending on p , q , maximum or minimum elements of a and b .

Now we prove the right hand side of (7). Here NH denotes the numerator of FH .
From (4) we have

NH � 1
q

n

∑
k=1

(−1)k+1aq
k +

1
p

n

∑
k=1

(−1)k+1bp
k .

Note that any sum with alternating signs can be written in the form

n

∑
k=1

(−1)k+1αk =
N

∑
k=1

(α2k−1 −α2k), (8)

where N = n/2 if n is even and N = (n + 1)/2 if n is odd (we also assume that
αn+1 = 0).
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Therefore from the right hand side of (5) we obtain

NH � 1
q

N

∑
k=1

(aq
2k−1−aq

2k)+
1
p

N

∑
k=1

(bp
2k−1−bp

2k)

� 1
q

N

∑
k=1

qaq−1
2k−1(a2k−1−a2k)+

1
p

N

∑
k=1

pbp−1
2k−1(b2k−1−b2k)

� Aq−1
n

∑
k=1

(−1)k+1ak +Bp−1
n

∑
k=1

(−1)k+1bk

=
n

∑
k=1

(−1)k+1
(

Aq−1

bk
+

Bp−1

ak

)
akbk.

In the last expression, sequences {Aq−1/bk + Bp−1/ak} and {akbk} are non-
decreasing and non-increasing, correspondingly, since a and b are non-increasing.
Hence by Lemma

NH � max
k

{
Aq−1

bk
+

Bp−1

ak

} n

∑
k=1

(−1)k+1akbk � Ca,b

n

∑
k=1

(−1)k+1akbk.

We conclude the proof by observing that Ca,b ∈ (1,∞) . Indeed, it is easily seen
that Ca,b → ∞ as a → 0 or b → 0. We have Ca,b > 1, because, on the one hand, from
(4) taking into account that a � A , b � B we have

Ca,b � aq−1

b
+

bp−1

a
>

aq/q+bp/p
ab

� 1,

and, on the other hand, Ca,b → 1 from above as b → ∞ if a ≡ 1 and p is sufficiently
close to 1. �

REMARK 1. From Theorem 1, it is seen that Ca,b tends to infinity as a → 0 or
b → 0. Now we give an example of sequences that confirms it. Following the notation
of Theorem 1, we suppose that the number of terms in the sums is odd, a ≡ 1 and
b = b2n+1 = 0 in b . It gives

FH =

(
∑2n+1

k=1 (−1)k+1aq
k

)1/q (
∑2n+1

k=1 (−1)k+1bp
k

)1/p

∑2n+1
k=1 (−1)k+1akbk

=

(
∑2n

k=1(−1)k+1bp
k

)1/p

∑2n
k=1(−1)k+1bk

.

From (8) and the left hand side of (5) we deduce that

FH =

(
∑n

k=1(b
p
2k−1−bp

2k)
)1/p

∑n
k=1(b2k−1−b2k)

� p1/p
(

b2n

∑n
k=1(b2k−1−b2k)

)1−1/p

,
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where the power is positive since p > 1 and, therefore, for a fixed positive b2n the sum
in the denominator can be made sufficiently small due to an appropriate choice of the
sequence b . Consequently, FH can be arbitrarily large.

On the other hand, in some particular cases FH can be bounded from above by an
absolute constant even if a and b are decreasing to zero as n → ∞ . For instance, for
harmonic series we have:(

∞

∑
k=1

(−1)k+1

kqα

)1/q( ∞

∑
k=1

(−1)k+1

kpβ

)1/p

�
∞

∑
k=1

(−1)k+1

kα+β , α > 0, β > 0. (9)

Indeed, since ∑∞
k=1(−1)k+1k−s = (1− 21−s)ζ (s) for s > 0, in order to prove (9) it is

sufficient to note that the function

F(α,β ) =

(
(1−21−qα)ζ (qα)

)1/q ((1−21−pβ)ζ (pβ )
)1/p

(1−21−(α+β ))ζ (α + β )

has a maximum at qα = pβ and moreover maxF(α,β ) = 1. The following inequality
for geometric series holds:

(
∞

∑
k=1

(−1)k+1

aqk

)1/q( ∞

∑
k=1

(−1)k+1

bpk

)1/p

�
∞

∑
k=1

(−1)k+1

(ab)k , a > 1, b > 1. (10)

Certainly, the left and right hand sides of the inequality equal (1+aq)−
1
q (1+bp)−

1
p

and (1+ab)−1 respectively. Consequently, we have 1 + ab � (1 + aq)
1
q (1 + bp)

1
p ,

which is true by Hölder’s inequality.

It is clear that if p = q = 2 then the constant Ca,b from Theorem 1 is equal to
A/b+B/a � a/b+b/a � 2. Now we obtain a more precise constant for the case when
the sequences a and b satisfy some additional conditions.

PROPOSITION 1. Under the assumptions on the sequences a and b of Theorem 1,
if moreover the sequence {ak/bk} is monotone,

0 � ∑n
k=1(−1)k+1a2

k ∑n
k=1(−1)k+1b2

k

(∑n
k=1(−1)k+1akbk)

2 � c2
a,b, (11)

where ca,b = 1
2 max{A/a + a/A;B/b + b/B} and ca,b ∈ [1;∞) . The left hand side

of (11) should be read as there exists no positive constant, depending on a,A,b or B,
which bounds the fraction in (11) from below.

Proof. The left hand side inequality follows by the same method as in the proof of
Theorem 1. Note that one can also find related examples on non-existence of a direct
analogue of Cauchy’s inequality for sums with alternating signs in [5].
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Now we prove the right hand side of (11). Since (11) is linear homogeneous, we
may consider the sequences a′ = a/A and b′ = b/B such that

0 < a/A � a′k � 1, 0 < b/B � b′k � 1, k = 1, . . . ,n,

instead of a and b . Let NC denote the numerator of the fraction in (11) for a′ and b′ .
Applying (4) with p = q = 2 yields

NC � 1
4

(
n

∑
k=1

(−1)k+1(a′k
2 +b′k

2)

)2

=
1
4

(
n

∑
k=1

(−1)k+1
(

a′k
b′k

+
b′k
a′k

)
a′kb

′
k

)2

.

In the last expression, the sequence {ck +1/ck} , where ck = a′k/b′k , is non-decreasing.
Indeed, {ak/bk} is monotone (non-increasing or non-decreasing), consequently, {ck}
is also monotone and moreover c1 = 1. Since f (x) = x+1/x is convex for x ∈ (0;∞)
and has a minimum at x = 1, the sequence { f (ck)} = {ck + 1/ck} is non-decreasing.
From this by Lemma, we thus obtain

NC � 1
4

(max{ f (ck)})2

(
n

∑
k=1

(−1)k+1a′kb
′
k

)2

.

By convexity, maxx∈[x1,x2] f (x) = max{ f (x1), f (x2)} for each segment x ∈ [x1,x2] , 0 <
x1 � x2 < ∞ . Hence, on account of the properties of a′ and b′ , we have a/A � ck � B/b
and consequently

max{ f (ck)} = max{a/A+A/a;B/b+b/B}.

This implies the right hand side of (11). It is easily seen that equality holds if both
sequences are constant. The fact that ca,b � 1 is obvious. �

The inequality (11) is an analogue of the following inequality for non-negative
terms, where the left hand side is just Cauchy’s inequality and the right hand side is a
particular case of a general result due to Zhuang.

THEOREM 3. (Cauchy (1821), Zhuang [20]) Let a and b be positive and such
that 0 < a � ak � A < ∞ and 0 < b � bk � B < ∞ for k = 1, . . . ,n, then

1 � ∑n
k=1 a2

k ∑n
k=1 b2

k

(∑n
k=1 akbk)

2 � ς2
a,b,

where ςa,b = 1
2 max(A/b+b/A;a/B+B/a) and ςa,b ∈ [1;∞) .
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REMARK 2. Assume that a≡ 1, b is such that 0 < b � bk � B < ∞ for all k , and
n is odd in Theorem 1. Then it is clear that under these assumptions Theorems 1 and 1
can be summarized as follows

1 �
(
∑2n+1

k=1 (−1)k+1bp
k

)1/p

∑2n+1
k=1 (−1)k+1bk

�
(
b−1 +Bp−1) , p � 1.

Let us write this inequality in another form. Suppose bk = xr
k , p = R/r , where R and r

are positive integer numbers and R � r . Raising all expressions to the power 1/r and
taking into account that x−r +XR−r � x−r(1+XR) implies

1 �
(
∑2n+1

k=1 (−1)k+1xR
k

)1/R

(
∑2n+1

k=1 (−1)k+1xr
k

)1/r
� 1

x

(
1+XR)1/r

, r,R ∈ N, r � R, (12)

where 0 < x � xk � X < ∞ for each k = 1, . . . ,2n+1. Note that the right hand side of
(12) cannot be appreciably improved from the point of view of Remark 1.

Following [18], we explain a geometrical meaning of (12), which has some appli-
cations in theory of symmetrization. Let xk be the radii of concentric spheres in a space
of dimension R . Then the value in the numerator is the radius of a single sphere having
the total volume contained between the spheres of radius x1 and x2 , x3 and x4 , etc.,
and the value in the denominator is the equivalent radius in the same sense in a space
of dimension r . Hence (12) states that the fraction of radii of these spheres cannot be
small since it is bounded by a constant and can be as large as it is allowed by boundaries
for the radii and dimensions r and R .

3. Minkowski type inequalities

In this section, we obtain sharp Minkowski type inequalities with alternating signs
and sharp reverse Minkowski’s inequality for non-negative terms.

THEOREM 2. Let a and b be non-negative non-increasing sequences. Then

0 �
(
∑n

k=1(−1)k+1ap
k

)1/p +
(
∑n

k=1(−1)k+1bp
k

)1/p

(∑n
k=1(−1)k+1(ak +bk)p)1/p

� 21−1/p, p � 1. (13)

The constant 21−1/p is best possible. The left hand side of (13) should be read as there
exists no positive constant, depending only on p, which bounds the fraction in (13)
from below. The fraction becomes reciprocal if 0 < p < 1 .

Proof. Throughout the proof, FM denotes the fraction in (13). We begin by prov-
ing the left hand side of (13), i.e. by proving of non-existence of positive constant de-
pending on p only, which bounds FM from below. To prove this, it is sufficient to make
the following observation. For each p > 1 there exists a sequence such that FM tends
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to zero. Indeed, suppose that n � 2, a = {1,1,0, . . . ,0, . . .} and b = {b,0, . . . ,0, . . .}
with some b > 0. From the left hand side of (5), we deduce that

FM =
b

((1+b)p−1)1/p
� b

(pb)1/p
< b1− 1

p .

In this way FM → 0 as b → 0 since 1−1/p > 0 for all p > 1.
Let us prove the right hand side of (13). From (2) we have⎛

⎝( n

∑
k=1

(−1)k+1ap
k

)1/p

+

(
n

∑
k=1

(−1)k+1bp
k

)1/p
⎞
⎠

p

� 2p−1

(
n

∑
k=1

(−1)k+1(ap
k +bp

k )

)
.

Now it is enough to show that

n

∑
k=1

(−1)k+1(ap
k +bp

k ) �
n

∑
k=1

(−1)k+1(ak +bk)p, p � 1, (14)

and extract the p th root. The inequality (14) is equivalent to

n

∑
k=1

(−1)k+1 ((ak +bk)p− (ap
k +bp

k )
)

� 0,

which holds since (ak + bk)p − (ap
k + bp

k ) � (ak+1 + bk+1)p − (ap
k+1 + bp

k+1) for each
k = 1, . . . ,n−1. The latter follows from the implication

f (ak,y) � f (ak+1,y), f (x,bk) � f (x,bk+1) ⇒ f (ak,bk) � f (ak+1,bk+1), (15)

which is true since the function f (x,y) = (x + y)p − (xp + yp) with p � 1 is non-
decreasing for x � 0 and y � 0 as a function of x or of y with a fixed y or x respec-
tively, since f ′x � 0 and f ′y � 0. This completes the proof of (14).

The precision of the constant 21−1/p is come out from the following example. Let
a = {1,1,1,0, . . . ,0, . . .} , b = {b, p

√
bp−1,0, . . . ,0, . . .} , b > 1, and n � 3. Then

FM =
2(

(1+b)p− (1+ p
√

bp−1)p +1
)1/p

= 21−1/p− εb,

where εb is positive and limb→∞ εb = 0 since (1+ b)p − (1+ p
√

bp−1)p = 1+ o(1) ,
o(1) > 0, as b → ∞ .

For 0 < p < 1 the fraction FM should be replaced by 1/FM . Indeed, we then
use (3) instead of (2) and reversed version of (14) since f (x,y) = (xp + yp)− (x+ y)p ,
0 < p < 1, is non-decreasing for x � 0 and y � 0 as a function of x or of y , hence the
implication (15) is still valid for this function. �

REMARK 3. We leave it to the reader to verify that (13) has a weighed version if

put ak = w1/p
k αk and bk = w1/p

k βk , where sequences {αk} , {βk} and weights {wk}
are non-increasing and moreover w1 � 1.
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REMARK 4. By Theorem 2, for 0 < p < 1 we have

(
n

∑
k=1

(−1)k+1(ak +bk)p

) 1
p

� 2
1
p−1

⎛
⎝( n

∑
k=1

(−1)k+1ap
k

) 1
p

+

(
n

∑
k=1

(−1)k+1bp
k

) 1
p
⎞
⎠ ,

where the constant is sharp. Because of this inequality, it is reasonable to suppose that
a real non-negative functional

‖x‖ =

(
n

∑
k=1

(−1)k+1|xk|p
)1/p

, 0 < p < 1,

is a quasi-norm on an appropriate (vector) space E of decreasing non-negative se-
quences x = {xk}n

k=1 (including x = 0) since it satisfies the axioms:

1. ‖x‖ = 0 if and only if x = 0;

2. ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ E ;

3. there exist K > 0 such that ‖x+y‖� K (‖x‖+‖y‖) for all x,y∈ E (in our case
K = 21/p−1 � 1).

However, the space E equipped with regular operations of vector addition and scalar
multiplication is not a vector space (the axiom on existence of an additive inverse el-
ement is not satisfied) but just a cone for which quasi-norms are usually defined in a
different way and with K = 1 (see, e.g., [17]).

Using the same technics as in the proof of Theorem 2, we can easily obtain reverse
Minkowski’s inequality with a sharp constant being independent of the sequences.

PROPOSITION 2. Let a and b be non-negative and belong to lp , p � 1 , then

1 �
(
∑∞

k=1 ap
k

)1/p +
(
∑∞

k=1 bp
k

)1/p

(∑∞
k=1(ak +bk)p)1/p

� 21−1/p, p � 1. (16)

Both constants are best possible.

Proof. The left hand side of (16) is just Minkowski’s inequality. Now we prove
the right hand side. From (2) it follows that⎛

⎝
(

∞

∑
k=1

ap
k

)1/p

+

(
∞

∑
k=1

bp
k

)1/p
⎞
⎠

p

� 2p−1

(
∞

∑
k=1

(ap
k +bp

k )

)
.

Applying the inequality (6) and extracting the p th root of both sides give (16).
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The constant 21−1/p cannot be replaced by smaller one. Indeed, if n is positive in-
teger, then for a = {1, . . . ,1,0,0, . . .} (first n elements are units) and b = {n1/p,0,0, . . .}
we obtain after some simplifications

(
∑n

k=1 ap
k

)1/p +
(
∑n

k=1 bp
k

)1/p

(∑n
k=1(ak +bk)p)1/p

= 2

(
1− 1

n
+
(

1+
1

n1/p

)p)−1/p

= 21−1/p− εn,

where positive εn → 0 as n → ∞ . �

REMARK 5. Analogously we can obtain integral version of (16) :

1 � ‖ f‖p +‖g‖p

‖ f +g‖p
� 21−1/p, p � 1, (17)

where f ,g > 0 belong to usual Lp -space with the norm ‖ f‖p = (
∫

f p)1/p , p � 1.

To the best of our knowledge, the right hand side of (16) (and (17)) is not contained
in common books on inequalities. However it can be also obtained from the following
result of theory of quasi-normed spaces:

1 � ‖g+ f‖p

‖g‖p +‖ f‖p
� 21/p−1, g, f ∈ Lp, 0 < p < 1, (18)

where f ,g > 0 belong to quasi-Banach space Lp with the quasi-norm ‖ f‖p = (
∫

f p)1/p ,
0 < p < 1 (see, for example, [4, Appendix H], cf. Remark 4). Indeed, it is sufficient to
apply to (18) quasi-linearization technics as in [1, §22].

Let us now compare the constant 21−1/p from (16) with ones in [7] and [9], where
reverse integral Minkowski’s inequalities for positive functions were obtained in terms
of boundaries of their quotient. At first we formulate a result from [7].

THEOREM 4. (Bougoffa [7] (a discrete version)) Let a and b be positive and such
that 0 < m � ak/bk � M < ∞ , k = 1, . . . ,n, then

(
n

∑
k=1

ap
k

)1/p

+

(
n

∑
k=1

bp
k

)1/p

� Cm,M

(
n

∑
k=1

(ak +bk)p

)1/p

, p � 1,

where Cm,M = 1+ 1
m+1 − 1

M+1 and Cm,M ∈ [1;2) .

Obviously the right hand side of (16) is more precise for all a and b as above if

p < ln2 /(ln2− lnCm,M).

For example, let m be close to zero and M be large enough, then Cm,M = 2 (1− εm,M) ,
where positive εm,M is small. Hence, the constant in the right hand side of (16) is
stronger for all p ∈ [1; p∗) , where p∗ := − ln2/ ln(1− εm,M) can be arbitrarily large
for sufficiently small εm,M .
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REMARK 6. Finally, we mention that it would be interesting to obtain inequalities
with alternating sings for another monotone type sequences such as convex and general
monotone (see, for example, [11]).
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