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ULAM’S TYPE STABILITY OF A FUNCTIONAL EQUATION

DERIVING FROM QUADRATIC AND ADDITIVE FUNCTIONS

ABASALT BODAGHI AND SANG OG KIM

(Communicated by I. Raşa)

Abstract. In this paper, we continue the investigation of functional equation which is begun by
the authors in the first part. We also prove the Hyers-Ulam stability for the following mixed
quadratic-additive functional equation in quasi-Banach spaces.

f (x+my)+ f (x−my)

=

{
2 f (x)−2m2 f (y)+m2 f (2y) m is even

f (x+ y)+ f (x− y)−2(m2 −1) f (y)+(m2 −1) f (2y), m is odd.

1. Introduction

We first introduce some basic facts concerning quasi-Banach spaces which are
taken from [2] and [19]. Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following:

(i) ‖x‖ � 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0;

(ii) ‖λx‖ = |λ |‖x‖ for all x ∈ X and λ ∈ R ;

(iii) There is a constant M � 1 such that ‖x+ y‖� M(‖x‖+‖y‖) for all x,y ∈ X .

It is easily verified that the condition (iii) implies that∥∥∥∥∥ 2n

∑
j=1

x j

∥∥∥∥∥� Mn
2n

∑
j=1

∥∥x j
∥∥ and

∥∥∥∥∥2n+1

∑
j=1

x j

∥∥∥∥∥� Mn+1
2n+1

∑
j=1

∥∥x j
∥∥ ,

for all n � 1 and x1,x2, ...,x2n+1 ∈ X . The pair (X ,‖ · ‖) is called a quasi-normed
space if ‖ · ‖ is a quasi-norm on X . The smallest possible M is called the modulus of
concavity of ‖ · ‖ . A quasi-Banach space is a complete quasi-normed space. A quasi-
norm ‖ · ‖ is called a p -norm (0 < p � 1) if ‖x+ y‖p � ‖x‖p +‖y‖p , for all x,y ∈ X .
In this case, a quasi-Banach space is called a p -Banach space.
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A functional equation is called stable if any approximate solution to the functional
equation is near a true solution of that functional equation. In [22], Ulam proposed
the stability problem for functional equations concerning the stability of group homo-
morphisms. In [15], Hyers considered the case of approximate additive mappings in
Banach spaces and satisfying the well-known weak Hyers inequality controlled by a
positive constant. Bourgin [7] was the next author who treated this problem for ad-
ditive mappings (see also [1]). In [18], Th. M. Rassias provided a generalization of
Hyers’ theorem which allows the Cauchy difference to be unbounded. Gǎvruta then
generalized the Rassias’ result in [14] for the unbounded Cauchy difference. Subse-
quently, various approaches to this problem have been studied by a number of authors
(see for instance, [3], [4], [5], [8], [9], [10], [11], [12] and [20]).

In [13], Eskandani et al. determined the general solution of the following mixed
type additive and quadratic functional equation

f (x+2y)+ f (x−2y)+8 f (y)= 2 f (x)+4 f (2y). (1.1)

They investigated the Hyers-Ulam stability of the equation (1.1) in non-Archi-
medean Banach modules over a unital Banach algebra. In [17], Najati and Moghimi
established the general solution of the mixed type additive and quadratic functional
equation

f (2x+ y)+ f (2x− y) = f (x+ y)+ f (x− y)+2 f (2x)−2 f (x) (1.2)

The stability of equation (1.2) in quasi-Banach spaces and in random normed spaces is
proved in [17] and [16], respectively.

In this paper we consider the following functional equation which is introduced in
[6].

f (x+my)+ f (x−my)

=

{
2 f (x)−2m2 f (y)+m2 f (2y) m is even

f (x+ y)+ f (x− y)−2(m2−1) f (y)+ (m2−1) f (2y), m is odd
(1.3)

where m is an integer with m �= 0,±1. It is easy to check that the function f (x) =
ax2 +bx is a solution of the functional equation (1.3).

In the current work, we establish the Hyers-Ulam stability problem for the func-
tional equation (1.3) in quasi-Banach spaces.

2. Hyers-Ulam stability of (1.3) in quasi-Banach spaces

In this section, we investigate the generalized Hyers-Ulam stability problem for
the functional equation (1.3). Let X be a quasi-Banach space. Given a p -norm, the
formula d(x,y) := ‖x− y‖p gives us a translation invariant metric on X . By the Aoki-
Rolewicz Theorem [19] (see also [2]), each quasi-norm is equivalent to some p -norm.
Since it is much easier to work with p -norms, here and subsequently, we restrict our
attention mainly to p -norms. Moreover, Tabor [21] has investigated a version of Hyers-
Rassias-Gajda Theorem in quasi-Banach spaces.
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Let m be an integer such that with m �= 0,±1. We use the abbreviation for the
given mapping f : X −→ Y as follows:

Dm f (x,y)=

⎧⎪⎨⎪⎩
f (x+my)+ f (x−my)−2 f (x)+2m2 f (y)−m2 f (2y) m is even

f (x+my)+ f (x−my)− f (x+ y)
− f (x− y)+2(m2−1) f (y)− (m2−1) f (2y), m is odd

for all x,y ∈ X .
We have the following result which is analogous to [6, Theorem 2] for the func-

tional equation (1.3). Since the proof is similar, it is omitted.

THEOREM 2.1. Let X and Y be real vector spaces. Then a mapping f : X −→Y
satisfies the functional equation (1.1) if and only if it satisfies the functional equation
Dm f (x,y) = 0 where m is an integer with m �= 0,±1 .

LEMMA 2.2. Let X and Y be real vector spaces.

(i) If an odd function f : X −→ Y satisfies the functional equation (1.3), then f is
additive;

(ii) If an even function f : X −→ Y satisfies the functional equation (1.3), then f is
quadratic.

Proof. The result follows from Theorem 2.1 and [13, Lemma 2.1 and Lemma
2.2]. �

LEMMA 2.3. Let 0 � p � 1 and let x1,x2, · · · ,xn be non-negative real numbers.
Then (

n

∑
j=1

x j

)p

�
n

∑
j=1

xp
j .

From now on, let X be a normed real linear space with norm ‖ · ‖X and Y be a
real p -Banach space with norm ‖ ·‖Y . In this section, by using an idea of Găvruta [14]
we prove the stability of (1.3) in the spirit of Hyers, Ulam and Rassias.

THEOREM 2.4. Let l ∈ {1,−1} be fixed and let φ : X×X −→ [0,∞) be a function
such that

∞

∑
k=0

1
2klp φ p(0,2klx) < ∞, lim

k→∞

1
2kl φ(2klx,2kly) = 0 (2.1)

for all x,y ∈ X . Suppose that f : X −→ Y is an odd mapping satisfying the inequality

‖Dm f (x,y)‖Y � φ(x,y) (2.2)
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for all x,y ∈ X , where m is an integer with m �= 0,±1 . Then there exists a unique
additive mapping A : X −→ Y such that

‖ f (x)−A(x)‖Y �

⎧⎨⎩ 1
2m2 (φ̃o(x))

1
p , m is even

1
2(m2−1) (φ̃o(x))

1
p , m is odd

(2.3)

where

φ̃o(x) :=
∞

∑
k= |l−1|

2

1
2klp φ p(0,2klx) (2.4)

for all x ∈ X .

Proof. Let l = 1. We prove the result only in the case that m is a non-zero even
integer. Replacing (x,y) by (0,x) in (2.2), we have

‖2 f (x)− f (2x)‖Y � 1
m2 φ(0,x) (2.5)

for all x ∈ X . Replacing x by 2nx in (2.5) and then dividing both sides by 2n+1 , we get∥∥∥∥ 1
2n f (2nx)− 1

2n+1 f (2n+1x)
∥∥∥∥

Y
� φ(0,2nx)

m22n+1 (2.6)

for all x ∈ X and all non-negative integers n . Since Y is a p -Banach space,∥∥∥∥ f (2n+1x)
2n+1 − f (2kx)

2k

∥∥∥∥p

Y
=

∥∥∥∥∥ n

∑
j=k

f (2 j+1x)
2 j+1 − f (2 jx)

2 j

∥∥∥∥∥
p

Y

�
n

∑
j=k

∥∥∥∥ f (2 j+1x)
2 j+1 − f (2 jx)

2 j

∥∥∥∥p

Y

� 1
m2p

n

∑
j=k

φ p(0,2 jx)
2( j+1)p . (2.7)

for all x ∈ X and all integers n � k � 0. Thus the sequence
{

f (2nx)
2n

}
is Cauchy by

(2.1) and (2.7). Since Y is complete, this sequence converges for all x ∈ X . So one can
define the mapping A : X −→ Y so that

lim
n→∞

f (2nx)
2n = A(x) (x ∈ X). (2.8)

It follows from (2.1) and (2.8) that

‖DmA(x,y)‖Y � lim
n→∞

1
2n ‖Dm f (2nx,2ny)‖Y � lim

n→∞

φ(2nx,2ny)
2n = 0.
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for all x,y∈ X . Hence, the mapping A satisfies in (1.3). Thus, by the part (i) of Lemma
2.2, this mapping is additive. Putting k = 0 and letting n go to infinity in (2.7), we
see that (2.3) holds when m is non-zero even. For the uniqueness of A , assume that
A : X −→ Y is another additive mapping that satisfies (2.3). Then

‖A(x)−A (x)‖p
Y = lim

n→∞

1
2np‖ f (2nx)−A (2nx)‖p

Y

� lim
n→∞

1

2(n+1)pm2p

∞

∑
k=0

1
2kp φ p(0,2k+nx)

=
1

m2p2p lim
n→∞

∞

∑
k=n

1
2kp φ p(0,2kx),

for all x ∈ X . The above relations and (2.1) imply that A = A . Similar to the above
considerations, we can obtain the result for the odd case. For l = −1, we obtain∥∥∥ f (x)−2n f

( x
2n

)∥∥∥p

Y
� 2

2pm2

n

∑
j=1

2 jpφ p
(
0,

x
2 j

)
(2.9)

from which one can prove the result by a similar technique. �

COROLLARY 2.5. Let α,r,s, p and q be non-negative real numbers such that
p+q �= 1 �= r,s. Suppose that f : X −→ Y is an odd mapping fulfilling

‖Dm f (x,y)‖Y � α(‖x‖p
X‖y‖q

X +‖x‖r
X +‖y‖s

X) (2.10)

for all x,y ∈ X , where m is an integer with m �= 0,±1 . Then there exists a unique
additive mapping A : X −→ Y such that

‖ f (x)−A(x)‖ �

⎧⎪⎨⎪⎩
α‖x‖s

X

m2 p
√

|2p−2sp| , m is even

α‖x‖s
X

(m2−1) p
√

|2p−2sp| , m is odd
(2.11)

for all x ∈ X .

Proof. The result follows from Theorem 2.4 by letting φ(x,y) = α(‖x‖p
X‖y‖q

X +
‖x‖r

X +‖y‖s
X) . �

In analogy with Theorem 2.4 we have the following result for the stability of func-
tional equation (1.3) when f is an even mapping.

THEOREM 2.6. Let l ∈ {1,−1} be fixed and let φ : X×X −→ [0,∞) be a function
such that

∞

∑
k=0

1
4klp φ p(2klx,2kly) < ∞, lim

k→∞

1
4kl φ(2klx,2kly) = 0 (2.12)
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for all x,y ∈ X . Suppose that f : X −→Y is an even mapping with f (0) = 0 satisfying
the inequality

‖Dm f (x,y)‖Y � φ(x,y) (2.13)

for all x,y ∈ X , where m is an even integer with m �= 0 . Then there exists a unique
quadratic mapping Q : X −→ Y such that

‖ f (x)−Q(x)‖Y � M
[
φ̃e(x)

] 1
p

(2.14)

where

φ̃e(x) :=
∞

∑
k= |l−1|

2

1
4klp Φp(2klx) (2.15)

in which Φ(x) = 1
4

[
φ(0, x

m )+ φ(x, x
m)
]

for all x ∈ X .

Proof. Let l = 1. Putting x = 0 in (2.13) and interchanging y into x , we have

‖2 f (mx)+2m2 f (x)−m2 f (2x)‖Y � φ(0,x) (2.16)

for all x ∈ X . Substituting x,y by mx,x in (2.13), respectively, we get

‖ f (2mx)−2 f (mx)+2m2 f (x)−m2 f (2x)‖Y � φ(mx,x) (2.17)

for all x ∈ X . It follows from (2.16) and (2.17) that

‖ f (2mx)−4 f (mx)‖Y � M [φ(0,x)+ φ(mx,x)]

for all x ∈ X . Thus we have ∥∥∥∥ f (2x)
4

− f (x)
∥∥∥∥

Y
� MΦ(x) (2.18)

for all x ∈ X and all non-negative integers n for which

Φ(x) =
1
4

[
φ
(
0,

x
m

)
+ φ

(
x,

x
m

)]
(x ∈ X). (2.19)

Replacing x by 2nx in (2.18) and then dividing both sides by 4n , we get∥∥∥∥ 1
4n+1 f (2n+1x)− 1

4n f (2nx)
∥∥∥∥

Y
� M

4n Φ(2nx) (2.20)

for all x ∈ X and all non-negative integers n . Since Y is a p -Banach space,∥∥∥∥ f (2n+1x)
4n+1 − f (2kx)

4k

∥∥∥∥p

Y
=

∥∥∥∥∥ n

∑
j=k

f (2 j+1x)
4 j+1 − f (2 jx)

4 j

∥∥∥∥∥
p

Y

�
n

∑
j=k

∥∥∥∥ f (2 j+1x)
4 j+1 − f (2 jx)

4 j

∥∥∥∥p

Y

� Mp
n

∑
j=k

Φp(2 jx)
4 jp . (2.21)
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for all x ∈ X and all integers n � k � 0. Now since 0 < p � 1, by Lemma 2.3 we
deduce from (2.19) that

Φp(x) � 1
4p

[
φ p
(
0,

x
m

)
+ φ p

(
x,

x
m

)]
(2.22)

for all x ∈ X . Therefore it follows from (2.12) and (2.22) that ∑∞
j=1

Φp(2 jx)
4 jp < ∞ for

all x ∈ X . The last inequality and (2.21) imply that
{

f (2nx)
4n

}
is a Cauchy sequence.

Due to the completeness of Y , the sequence
{

f (2nx)
4n

}
is convergent to the mapping

Q : X −→ Y , that is

Q(x) = lim
n→∞

f (2nx)
4n (x ∈ X). (2.23)

Letting k = 0 and passing to the limit n −→ ∞ in (2.21), we get

‖Q(x)− f (x)‖p
Y � Mp

∞

∑
j=0

Φp(2 jx)
4 jp . (2.24)

for all x ∈ X . Therefore (2.14) follows from (2.22) and (2.24) when m is even. Now,
we show that Q is quadratic. Employing (2.12), (2.13) and (2.23), we obtain

‖DmQ(x,y)‖Y = lim
n→∞

1
4n ‖Dm f (2nx,2ny)‖Y � lim

n→∞

1
4n φ(2nx,2ny) = 0.

Hence, the mapping Q satisfies (1.3). It follows from the part (ii) of Lemma 2.2 that
the mapping Q is quadratic. Since limn→∞ ∑∞

k=n
1

4kp Φp(2kx) = 0, the proof of the the
uniqueness of Q is similar to the proof of Theorem 2.4. For l = −1, one can deduce
that ∥∥∥ f (x)−4n f

( x
2n

)∥∥∥p

Y
� Mp

n

∑
j=1

4 jpΦp
( x

2 j

)
(2.25)

for all x ∈ X . The above process can be repeated to get the result. �

COROLLARY 2.7. Let α and s be non-negative real numbers such that s �= 2 .
Suppose that f : X −→ Y is an even mapping fulfilling

‖Dm f (x,y)‖Y � α(‖x‖s
X +‖y‖s

X)

for all x,y ∈ X , where m is an even integer with m �= 0 . Then there exists a unique
quadratic mapping Q : X −→ Y such that

‖ f (x)−Q(x)‖Y � M

(
1+

2
|m|s

)
α‖x‖s

X
p
√|4p−2sp|

for all x ∈ X .
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Proof. Defining φ(x,y) = α(‖x‖s
X + ‖y‖s

X) and applying Theorem 2.6, one can
obtain the desired result. �

THEOREM 2.8. Let l ∈ {1,−1} be fixed and let φ : X×X −→ [0,∞) be a function
satisfying

∞

∑
k=0

1
m2klp φ p(mklx,mkly) < ∞, lim

k→∞

1
m2kl φ(mklx,mkly) = 0 (2.26)

for all x,y ∈ X . Suppose that f : X −→Y is an even mapping with f (0) = 0 satisfying
the inequality (2.13) for all x,y ∈ X , where m is an odd integer with m �= ±1 . Then
there exists a unique quadratic mapping Q : X −→ Y such that

‖ f (2x)−2 f (x)−Q(x)‖Y � M2

m2

⎡⎣ ∞

∑
j= |l−1|

2

Ψp(mjx)
m2 jp

⎤⎦
1
p

(2.27)

where the mappings Q(x) and Ψ(x) are defined by

Q(x) = lim
n→∞

1
m2n { f (2mnx)−2 f (mnx)}

and

Ψ(x) = [φ(0,x)+ φ(x,x)+ φ(mx,x)] (2.28)

for all x ∈ X .

Proof. We bring the details only for the case l = 1. Other case is similar. Replac-
ing (x,y) by (0,x) in (2.13), we have

‖2 f (mx)+2(m2−2) f (x)− (m2−1) f (2x)‖Y � φ(0,x) (2.29)

for all x ∈ X . Putting x = y by in (2.13), we get

‖ f ((m+1)x)+ f ((m−1)x)+2(m2−1) f (x)−m2 f (2x)‖Y � φ(x,x) (2.30)

for all x ∈ X . Once more, interchanging (x,y) into (mx,x) in (2.13), we have

‖ f (2mx)− f ((m+1)x)− f ((m−1)x)+2(m2−1) f (x)− (m2−1) f (2x)‖Y � φ(mx,x)
(2.31)

for all x ∈ X . It follows from (2.29), (2.30) and (2.31) that

‖ f (2mx)−2 f (mx)+2m2 f (x)−m2 f (2x)‖Y � M2 [φ(0,x)+ φ(x,x)+ φ(mx,x)]

for all x ∈ X . The above relation implies that∥∥∥∥g(mx)
m2 −g(x)

∥∥∥∥
Y

� M2

m2 Ψ(x) (x ∈ X) (2.32)
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where g(x) = f (2x)− 2 f (x) and Ψ(x) = [φ(0,x)+ φ(x,x)+ φ(mx,x)] for all x ∈ X .
In general for any positive integer n , we get∥∥∥∥ 1

m2n g(mnx)−g(x)
∥∥∥∥p

Y
� M2p

m2p

n−1

∑
j=0

Ψp(mjx)
m2 jp (2.33)

for all x ∈ X . In order to prove the convergence of the sequence
{

g(mnx)
m2n

}
, replace x

by mkx and divide by m2k in (2.33). For any k,n > 0, we have∥∥∥∥g(mn+kx)
m2(n+k) − g(mkx)

m2k

∥∥∥∥p

Y
� M2p

m2p

n−1

∑
j=0

Ψp(mj+kx)
m2( j+k)p (2.34)

for all x ∈ X . Similar to the first part the right hand side of the inequality (2.34) tends

to 0 as k tends to infinity. Thus the sequence
{

g(mnx)
m2n

}
is Cauchy. The completeness

of Y allows us to assume that there exists a map Q : X −→ Y such that

Q(x) = lim
n→∞

g(mnx)
m2n (x ∈ X). (2.35)

Letting n → ∞ in (2.33) and using (2.35), we see that (2.27) holds when m is an odd
integer with m �= ±1. On the other hand it follows from (2.13), (2.26) and (2.35) that

1
m2n ‖Dmg(mnx,mny)‖Y =

1
m2n ‖Dm f (2mnx,2mny)−2Dm f (mnx,mny)‖Y

� M
m2n ‖Dm f (2mnx,2mny)‖Y +

2M
m2n ‖Dm f (mnx,mny)‖Y

� M
φ(2mnx,2mny)

m2n +2M
φ(mnx,mny)

m2n

for all x,y ∈ X . Taking n → ∞ in the above inequality and using (2.26), we observe
that DmQ(x,y) = 0 for all x,y ∈ X . Therefore, by the part (ii) of Lemma 2.2, Q is a
quadratic mapping. The rest of the proof is similar to the proof of Theorem 2.6. �

COROLLARY 2.9. Let α and s be non-negative real numbers such that s �= 2 .
Suppose that f : X −→ Y is an even mapping fulfilling

‖Dm f (x,y)‖Y � α(‖x‖s
X +‖y‖s

X)

for all x,y ∈ X , where m is an odd integer with m �= ±1 . Then there exists a unique
quadratic mapping Q : X −→ Y such that

‖ f (2x)−2 f (x)−Q(x)‖Y � M2(4+ |m|s) α‖x‖s
X

p
√
|m2p−msp|

for all x ∈ X .
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THEOREM 2.10. Let l ∈ {1,−1} be fixed and let φ : X ×X −→ [0,∞) be a func-
tion satisfying (2.1) and (2.12) for all x,y ∈ X . Suppose that f : X −→ Y is a mapping
with f (0) = 0 satisfying the inequality

‖Dm f (x,y)‖Y � φ(x,y) (2.36)

for all x,y ∈ X , where m is a non-zero even integer. Then there exist a unique additive
mapping A : X −→ Y and a unique quadratic mapping Q : X −→ Y such that

‖ f (x)−A(x)−Q(x)‖ � M
4m2

(
φ̃o(x)+ φ̃o(−x)

) 1
p
+

M2

2

(
φ̃e(x)+ φ̃e(−x)

) 1
p

(2.37)

for all x ∈ X , where φ̃o(x) and φ̃e(x) are defined in (2.4) and (2.15), respectively.

Proof. We decompose f into the even part and odd part by setting

fe(x) =
f (x)+ f (−x)

2
, fo(x) =

f (x)− f (−x)
2

.

Obviously, f (x) = fe(x)+ fo(x) and fe(0) = 0 for all x ∈ X . Then

‖Dm fe(x,y)‖Y ,‖Dm fo(x,y)‖Y � Ψ(x,y)

where Ψ(x,y) = M
2

(
φ(x,y)+ φ(−x,−y)

)
for all x ∈ X . So

lim
k→∞

1
2kl

Ψ(2klx,2kly) = 0 and lim
k→∞

1
4kl

Ψ(2klx,2kly) = 0 (2.38)

for all x,y ∈ X . Since

Ψp(x,y) � Mp

2p

(
φ p(x,y)+ φ p(−x,−y)

)
(x,y ∈ X) (2.39)

we have

∞

∑
k=0

1
2klp

Ψp(0,2klx) < ∞ and
∞

∑
k=0

1
4klp

Ψp(2klx,2kly) < ∞ (2.40)

for all x,y ∈ X . Hence, in view of Theorems 2.4 and 2.6, there exists a unique additive
mapping A : X −→ Y and a unique quadratic mapping Q : X −→ Y such that

‖ fo(x)−A(x)‖Y � 1
2m2

[
Φ̃o(x)

] 1
p

and ‖ fe(x)−Q(x)‖Y � M
[
Φ̃e(x)

] 1
p

(2.41)

where Φ̃o(x) := ∑∞
k= |l−1|

2

1
2kl p Ψp(0,2klx) and Φ̃e(x) := ∑∞

k= |l−1|
2

1
4kl p Ψp

e (2klx) for all x ∈
X . We also have

Φ̃o(x) � Mp

2p

(
φ̃o(x)+ φ̃o(−x)

)
and Φ̃e(x) � Mp

2p

(
φ̃e(x)+ φ̃e(−x)

)
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for all x ∈ X . Hence, the relations in (2.41) imply that

‖ fo(x)−A(x)‖Y � M
4m2

(
φ̃o(x)+ φ̃o(−x)

) 1
p

(2.42)

and

‖ fe(x)−Q(x)‖Y � M2

2

(
φ̃e(x)+ φ̃e(−x)

) 1
p

(2.43)

for all x ∈ X . Therefore (2.37) follows from (2.42) and (2.43). �

COROLLARY 2.11. Let α and s be nonnegative real numbers such that s �= 1,2 .
Suppose that f : X −→ Y is a mapping fulfilling

‖Dm f (x,y)‖Y � α(‖x‖s
X +‖y‖s

X)

for all x,y ∈ X , where m is an even integer with m �= 0 . Then there exist a unique
additive mapping A : X −→ Y and a unique quadratic mapping Q : X −→ Y such that

‖ f (x)−A(x)−Q(x)‖Y �
[

M
2m2

p

√
2

|2p−2sp| +
M2

2

(
1+

2
|m|s

)
p

√
2

|22p−2sp|

]
α‖x‖s

X

for all x ∈ X .
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