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Abstract. In this short note, we present a refinement of the well-known arithmetic-geometric
mean inequality. As application of our result, we obtain an operator inequality.

1. Introduction

For two invertible positive operators A and B , the geometric mean A#B and the
relative operator entropy S (A|B) are defined by

A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2,

S (A|B) = A1/2 log
(
A−1/BA−1/2

)
A1/2.

It is know that

A#B � A+B
2

. (1.1)

For more information on geometric mean, the relative operator entropy, and operator
inequality the reader is referred to [1, 3, 4, 5, 7, 8].

The well-known arithmetic-geometric mean inequality says that if a,b � 0, then

√
ab � a+b

2
.

In this short note, we prove that if a,b > 0, then(
1+

(loga− logb)2

8

)√
ab � a+b

2
, (1.2)

which is a refinement of the arithmetic-geometric mean inequality. As an application
of inequality (1.2), we present an improvement of inequality (1.1).
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2. Proof

In this section, we give the proof of inequality (1.2) by using Taylor’s theorem and
an inequality due to Bhatia[2, Lemma 1].

Proof. Let

f (x) =
axb1−x +a1−xbx

2
, 0 � x � 1.

It is easy to see that the function f (x) is twice differentiable in (0,1) . Simple calcula-
tions show that

f
′
(x) = (loga− logb)

axb1−x−a1−xbx

2
, x ∈ (0,1) ,

f
′′
(x) = (loga− logb)2 f (x) , x ∈ (0,1) .

So, for a given x ∈
(

0,
1
2

)
, by Taylor’s theorem, there exists ξ ∈

(
x,

1
2

)
such that

f (x) =
√

ab+(loga− logb)2 aξ b1−ξ +a1−ξbξ

4

(
x− 1

2

)2

. (2.1)

Bhatia[1, Lemma 1] proved that

f (x) � (1−α (x))
√

ab+ α (x)
a+b

2
, (2.2)

where
α (x) = (1−2x)2 , x ∈ (0,1) .

It follows from (2.1) and (2.2) that for any x ∈
(

0,
1
2

)
, there exists ξ (x) ∈

(
x,

1
2

)
such that

√
ab+(loga− logb)2 aξ (x)b1−ξ (x) +a1−ξ (x)bξ (x)

4

(
x− 1

2

)2

� (1−α (x))
√

ab+ α (x)
a+b

2
,

which is equivalent to

α (x)
√

ab+ α (x)(loga− logb)2 aξ (x)b1−ξ (x) +a1−ξ (x)bξ (x)

16
� α (x)

a+b
2

.

That is,
√

ab+(loga− logb)2 aξ (x)b1−ξ (x) +a1−ξ (x)bξ (x)

16
� a+b

2
.

So, the arithmetic-geometricmean inequality and the last inequality complete the proof.
�
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3. Remarks

Recently, Furuichi [6, Theorem 1] proved that if a,b > 0, then

S

(√
b
a

)√
ab � a+b

2
, (3.1)

where

S (t) =
t

1
t−1

e log t
1

t−1

, t > 0, S (1) = lim
t→1

S (t) = 1

is the Specht’s ratio. After seeing the inequalities (1.2) and (3.1), it is hard not to be

curious about the relationship between 1+
(loga− logb)2

8
and S

(√
b
a

)
. We may

ask whether one of the the following inequalities holds:

1+
(loga− logb)2

8
� S

(√
b
a

)
,

1+
(loga− logb)2

8
� S

(√
b
a

)
.

The answer is no. In fact, if we choose a = 1 and b = 100, then we have

1+
(loga− logb)2

8
= 3.6509 > 1.8571 = S

(√
b
a

)
.

On the other hand, if we choose a = 1 and b = 100000, then we have

1+
(loga− logb)2

8
= 24.8585 < 53.5719 = S

(√
b
a

)
.

Next, we further discuss the relationship between between 1+
(loga− logb)2

8

and S

(√
b
a

)
. Let

F (t) = 1+
(logt)2

2
, t > 0.

Then

F

(√
b
a

)
= 1+

(loga− logb)2

8
.
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Simple calculations show that the function F (t) has the following properties.
1. F (t) = F

( 1
t

)
for all t > 0.

2. F (t) is a monotone increasing function on (1,∞) .
3. F (t) is a monotone decreasing function on (0,1) .

The image of F (t) and S (t) as follows. So, if
1
x0

�
√

b
a

� x0 , where x0 ≈ 227,

then

F

(√
b
a

)
� S

(√
b
a

)
,

otherwise

F

(√
b
a

)
< S

(√
b
a

)
.
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Figure 1: F (t) and S(t) , 1 < t < 300 .

4. An application

In this section, we present a refinement of inequality (1.1) by using inequality
(1.2).

THEOREM 4.1. Let A and B be invertible positive operators. Then

A#B+K∗ (A#B)K � A+B
2

,

where

K =
√

2
4

A−1S (A|B) .
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Proof. Let T = A−1/2BA−1/2 . By inequality (1.2), we have

√
a+

1
8

loga
√

a loga � a+1
2

.

So,

T 1/2 +
1
8

log(T )T 1/2 log(T ) � T + I
2

.

Multiplying A1/2 to the above inequality from left hand side and right hand side, we
have

A#B+
1
8
A1/2 log

(
A−1/2BA−1/2

)
A1/2A−1 (A#B)A−1A1/2 log

(
A−1/2BA−1/2

)
A1/2.

This completes the proof. �
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