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NEUMAN–SÁNDOR MEAN, ASYMPTOTIC

EXPANSIONS AND RELATED INEQUALITIES

NEVEN ELEZOVIĆ AND LENKA VUKŠIĆ

Abstract. The subject of this paper is a systematic study of inequalities of the form

(1−μ)M1 + μM3 � M2 � (1−ν)M1 +νM3

which cover Neuman-Sándor mean and some classical means. Furthermore, following inequali-
ties with optimal parameters were proved:
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[6] T. BURIĆ, N. ELEZOVIĆ, New asymptotic expansions of the gamma function and improvements of

Stirling’s type formulas, J. Comput. Anal. Appl., 13, 4 (2011), 785–795.
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