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Abstract. The subject of this paper is a systematic study of inequalities of the form

(1−μ)M1 + μM3 � M2 � (1−ν)M1 +νM3

which cover Neuman-Sándor mean and some classical means. Furthermore, following inequali-
ties with optimal parameters were proved:
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1. Introduction

The Neuman-Sándor mean is a bivariate mean

NS(s,t) =
s− t

2arcsinh
(

s−t
s+t

) .

first defined by Neuman and Sándor [21]. Beside this mean, our analysis will include
following well known means: harmonic mean (H), geometric mean (G), logarithmic
mean (L), arithmetic mean (A), centroidal mean (C), root mean square (Q), and contra-
harmonic mean (N).
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2st
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√
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t − s

logt − logs
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s+ t
2

,

C(s,t) =
2
3
· s2 + st + t2

s+ t
, Q(s,t) =

√
s2 + t2

2
,

N(s,t) =
s2 + t2

s+ t
.
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Neuman-Sándor mean has been subject of investigation in various papers recently.
Inequalities

μQ+(1− μ)A < NS < νQ+(1−ν)A (1.1)

and
μN +(1− μ)A < NS < νN +(1−ν)A. (1.2)

were studied in [20].
In [28] authors proved that double inequalities

μ1H(s, t)+ (1− μ1)Q(s,t) <NS(s,t) < ν1H(s,t)+ (1−ν1)Q(s,t) (1.3)

μ2G(s, t)+ (1− μ2)Q(s,t) <NS(s,t) < ν2G(s, t)+ (1−ν2)Q(s,t) (1.4)

μ3H(s, t)+ (1− μ3)N(s,t) <NS(s,t) < ν3H(s,t)+ (1−ν3)N(s,t) (1.5)

hold for all s, t > 0 with s �= t if and only if μ1 � 2/9, ν1 � 1−1/[
√

2log(1+
√

2)] ,
μ2 � 1/3, ν2 � 1−1/[

√
2log(1+

√
2)] , μ3 � 1−1/[2log(1+

√
2)] and ν3 � 5/12.

Qian, Chu [23] proved that the double inequality

μC(s, t)+ (1− μ)A(s,t) < NS(s,t) < ν(s, t)C +(1−ν)A(s, t) (1.6)

holds for all s, t > 0 with s �= t if and only if μ � (3− 3log(1 +
√

2))/ log(1 +
√

2)
and ν � 1

2 . Other similar results can be found in [16, 22, 24, 25, 26, 27].
The aim of this paper is to give a systematic study of double inequalities of the

type
(1− μ)M1 + μM3 � M2 � (1−ν)M1 + νM3 (1.7)

which apart from Neuman-Sándor mean also contains two classical means from the list
given at the beginnig of this section. The analysis of these inequalities will be made
using technique of asymptotic expansions which was subject of research in [10]–[15].
After finding coefficients in asymptotic expansion of Neuman-Sándor mean we will be
able to establish asymptotic inequalities between means of our interest. That technique
will provide us to easily cover large number of relations between means.

2. Asymptotic expansion of Neuman-Sándor mean

Asymptotic expansion of any of these means has the following form

M(x+ s,x+ t)∼ x+ c1(s,t)+
c2(s,t)

x
+

c3(s, t)
x2 + . . . (2.1)

where cn(s, t) is a homogeneous polynomial of order n .
The coefficients cn will have simpler form if they are presented in terms of vari-

ables α and β where

α =
t + s

2
, β =

t− s
2

.

Let’s assume for a moment that α = 0 and that mean M has asymptotic expansion.
Because of the homogeneity we have

M(x+s,x+t) = M(x−β ,x+β ) = βM

(
x
β
−1,

x
β

+1

)
∼ β

(
x
β

+c1+c2
β
x

+c3
β 2

x2 + . . .

)
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i. e. coefficient by x−n equals β n+1 multiplied by constant. Now using Theorem 7.1
from [14] we obtain that for general α , cn is a homogeneous polynomial of degree n
in variables α and β and thus in variables s and t .

We shall need the first few coefficients in asymptotic expansion of the above men-
tioned means. These expansions were derived in [14]:

H(x+ s,x+ t)∼ x+ α −β 2x−1 + αβ 2x−2−α2β 2x−3 + . . .

G(x+ s,x+ t)∼ x+ α − 1
2

β 2x−1 +
1
2

αβ 2x−2− 1
8

β 2(4α2 + β 2)x−3 + . . .

L(x+ s,x+ t)∼ x+ α − 1
3

β 2x−1 +
1
3

αβ 2x−2− 1
45

β 2(15α2 +4β 2)x−3 + . . .

A(x+ s,x+ t)∼ x+ α

C(x+ s,x+ t)∼ x+ α +
1
3

β 2x−1− 1
3

αβ 2x−2 +
1
3

α2β 2x−3 + . . .

Q(x+ s,x+ t)∼ x+ α +
1
2

β 2x−1− 1
2

αβ 2x−2 +
1
8

β 2(4α2−β 2)x−3 + . . .

N(x+ s,x+ t)∼ x+ α + β 2x−1−αβ 2x−2 + α2β 2x−3 + . . .

(2.2)

The following lemma will be used for obtaining asymptotic expansion of Neuman-
Sándor mean. It is a special case of Lemma 1.1 from [15].

LEMMA 2.1. Let function f (x) have following asymptotic expansion (a0 �= 0):

f (x) ∼
∞

∑
n=0

anx
−n, x → ∞.

Then
1

f (x)
∼

∞

∑
n=0

bnx
−n,

where coefficients bn are defined by

b0 =
1
a0

,

bn = − 1
a0

n

∑
k=1

akbn−k.

Now for α = 0 we have

NS(x+ s,x+ t) = NS(x−β ,x+ β ) =
β

arcsinh(β/x)
= x

∞

∑
n=0

bkx
−k.

Coefficients (bk) can be calculated by inverting Maclaurin series of arcsinh func-
tion, using Lemma 2.1 with

ak = (−1)k
(

k− 1
2

k

)
β 2k+1

2k+1
.
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Then the coefficients in the case α �= 0 can be obtained using Theorem 7.1 from the
paper [14]. It holds

c0 = 1,

c1 = α,

cn+2 =
n

∑
k=0

(−1)n−k
(

n
k

)
bk+2αn−k.

The first few coefficients of the Neuman-Sándor mean are:

c0 = 1, c4 =
1

360
β 2(60α2−17β 2),

c1 = α, c5 = − 1
120

αβ 2(20α2−17β 2),

c2 =
β 2

6
, c6 =

1
15120

β 2(2520α4−4284α2β 2 +367β 4),

c3 = −αβ 2

6
,

...

3. Comparison of means. Asymptotic inequalities

It is natural to define a relation between means based on asymptotic expansion,
see [11] for details.

DEFINITION 3.1. Let M1 and M2 be any two means, and

M1(x+ s,x+ t)−M2(x+ s,x+ t) = ck(t,s)x−k+1 +O(x−k). (3.1)

If ck(s, t) > 0 for all s and t , then we say that mean M1 is asymptotically greater than
mean M2 , and write

M1 � M2.

Equivalently, we can say mean M2 is asymptotically smaller than mean M1 and write

M2 ≺ M1.

We can easily see that asymptotic inequality is a necessary relation between two
comparable means.

THEOREM 3.2. If M1 � M2 , then M1 � M2 .

Proof. For x large enough, the sign of the difference M1(x + s,x + t)−M2(x +
s,x+ t) is the same as the sign of the first term in its asymptotic expansion. �

Consider the asymptotic expansion of linear combination of three means:

M2(x−β ,x+ β )− (1− μ)M1(x−β ,x+ β )− μM3(x−β ,x+ β )∼
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cm(μ)x−m+1 + cm+1(μ)x−m + cm+2(μ)x−m−1 · · · (3.2)

where c j equals the corresponding combination of j -th coefficients of means Mi , that
is

c j(μ) = M( j)
2 − (1− μ)M( j)

1 − μM( j)
3 , j ∈ N0, (3.3)

and cm denotes the first coefficient that is not zero function of μ . Since we deal here
with comparable means, we shall assume M1 � M2 � M3 . From the Theorem 3.2 and
formula (3.3) follows that cm(μ) is decreasing. Now suppose that mean M2 is greater
than convex combination of means M1 and M3 :

M2(s,t) � (1− μ)M1(s,t)+ μM3(s,t) (3.4)

for all values of arguments (s,t) , and let μ be such that cm(μ) = 0. Taking smaller
μ will decrease cm(μ) to some negative value and the following asymptotic inequality
will hold

M2(s,t) ≺ (1− μ)M1(s,t)+ μM3(s,t) (3.5)

which along with the Theorem 3.2 contradicts the inequality (3.4). Hence, μ such that
cm(μ) = 0 is optimal. Analogous conclusion is made for the reverse inequality in (3.4).
In the following table optimal values of parameter μ are given.

H G L A NS C Q N ×β 4/x3 � 0

4/7 −1 3/7 11/105 +
3/7 −1 4/7 13/210 +
−1/7 1 −6/7 17/420 [26]
1/8 −1 7/8 17/360 [25]
−2/9 1 −7/9 1/20 [28]
5/12 −1 7/12 17/360 [28]

−3/4 1 −1/4 1/60 −
−1/4 1 −3/4 1/15 +
1/5 −1 4/5 1/45 −
−1/3 1 −2/3 7/90 [28]
−5/9 1 −4/9 1/45 [24]

−1/3 1 −2/3 11/180 +
1/4 −1 3/4 1/40 −
−2/5 1 −3/5 19/300 +
−5/8 1 −3/8 1/120 +

1/2 −1 1/2 17/360 [23]
2/3 −1 1/3 1/180 [20]
5/6 −1 1/6 17/360 [20]

−1/2 1 −1/2 31/360 +
−4/5 1 −1/5 17/450 +
3/5 −1 2/5 29/300 [22]
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For example, the fourth row reads as

1
8
H +

7
8
C−NS ∼ 17

360
β 4x−3 + · · ·

wherefrom it follows
1
8
H +

7
8
C � NS. (3.6)

There are combinations of means in the table for which the real inequality does
not hold such as geometric and logarithmic mean and other marked with the − sign.
The reference is given for those inequalities which are proved in literature. Other in-
equalities, marked with + are proved using computer algebra system (CAS).

By this procedure we get one side of the double inequality (1.7).
Optimal parameter for the other side of that inequality can be derived from the

values of means at (0,1) . Because of homogeneity and symmetry of means it suffices
to observe relations between means on the line segment {(s,1− s) : s ∈ [0,1/2]} . Now
the main inequality (1.7) is equivalent to

μ � M2(s,1− s)−M1(s,1− s)
M3(s,1− s)−M1(s,1− s)

� ν (3.7)

and the problem reduces to finding infimum and supremum of the function in the mid-
dle. For the most of the combinations of classical means mentioned in the introduction,
this function appear to be monotone on the [0, 1

2 ] and takes the minimum and maximum
value at the edges of that interval. Therefore, we can impose the condition

(1−ν)M1(0,1)+ νM3(0,1) = M2(0,1)

which makes sense if the value of M1 differs from value of M3 at point (0,1) . In
the following table we give such parameters. Inequalities with those parameters were
verified through CAS and + sign stands for those which appeared to be true. Some of
them were already proved and the references are given in the introduction and in the
previous table. Other still wait for analytic proof. To the best of our knowledge the
following inequalities, with the best possible constants, have not been proved yet:

H � G � 4
7H + 3

7NS (3.8)

H � L � 3
7H + 4

7NS (3.9)
1
4G+ 3

4NS � A � (1−σ)G+ σNS (3.10)
1
3L+ 2

3NS � A � (1−σ)L+ σNS (3.11)

2
5L+ 3

5Q � NS �
√

2σ−1√
2σ L+ 1√

2σ Q (3.12)

5
8L+ 3

8N � NS � 2σ−1
2σ L+ 1

2σ N (3.13)

1
2NS+ 1

2Q � C � (3
√

2−4)σ
3
√

2σ−3
NS+ 3−4σ

3−3
√

2σ Q (3.14)

4
5NS+ 1

5N � C � 2σ
6σ−3NS+ 3−4σ

3−6σ N (3.15)

where σ = arcsinh(1) .
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H G L A NS C Q N ×β 2/x � 0

−1 1 0 1
2 +

−1 1 0 2
3 +

1−σ −1 σ 7σ−6
6 +

3−4σ
4σ 1 − 3

4σ
7σ−6
6σ +√

2σ−1√
2σ

−1 1√
2σ

9
√

2−14σ
12σ +

1−2σ
2σ 1 − 1

2σ
7σ−6
6σ +

−1 1 0 1
6 +

1−σ −1 σ 4σ−3
6 +

4σ−3
4σ −1 3

4σ
15−16σ

24σ +√
2σ−1√
2σ

−1 1√
2σ

3
√

2−4σ
6σ +

2σ−1
2σ −1 1

2σ
9−8σ
12σ +

1−σ −1 σ 3σ−2
6 +

4σ−3
4σ −1 3

4σ
1−σ
2σ +√

2σ−1√
2σ −1 1√

2σ
5
√

2−6σ
12σ +

2σ−1
2σ −1 1

2σ
4−3σ
6σ +

3−4σ
σ 1 3σ−3

σ
7σ−6
6σ +

1−√
2σ

(
√

2−1)σ
1 (σ−1)

(
√

2−1)σ
(2+

√
2)σ−3

6(
√

2−1)σ +

1−2σ
σ 1 σ−1

σ
7σ−6
6σ +

(3
√

2−4)σ
3
√

2σ−3
−1 3−4σ

3−3
√

2σ
(8−3

√
2)σ−3

18(
√

2σ−1) +

2σ
6σ−3 −1 3−4σ

3−6σ
7σ−6
18σ−9 +

(
√

2−2)σ
2σ−1 1 1−√

2σ
2σ−1

3−(5
√

2−4)σ
12σ−6 +

For the combination of harmonic and centroidal mean with Neuman-Sándor mean
we read from the table:

(
1− 3

4σ

)
H +

3
4σ

C ≺ NS. (3.16)

Combining (3.6) with (3.16) suggests that the inequality

(
1− 3

4σ

)
H +

3
4σ

C � NS � 1
8
H +

7
8
C (3.17)
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should be true. Expression like this, with sharp inequalities, was proved in [25]. Now
some known inequalities are immediate consequence. Inequality (1.7) is equivalent to

μ � M2(1,t)−M1(1,t)
M3(1,t)−M1(1,t)

� ν. (3.18)

Since the means are symmetric, it suffices to consider the case t � 1. Because of the
arc-hyperbolic sine function in the definition of Neuman-Sándor mean it is convenient
to make a substitution

t =
1+ sinhϕ
1− sinhϕ

, ϕ ∈ [0,arcsinh(1)〉 . (3.19)

Let

MHNSC(ϕ) =
NS(1,t)−H(1, t)
C(1,t)−H(1, t)

(3.20)

with t defined above. Now we have

MHNSC(ϕ) =
sinhϕ

ϕ(1−sinhϕ) − (sinhϕ +1)
sinhϕ+3

3(1−sinhϕ) − (sinhϕ +1)
=

3
4

(
1+

1
ϕ sinhϕ

− 1

sinh2 ϕ

)
. (3.21)

Denote

M(ϕ) = 1+
1

ϕ sinhϕ
− 1

sinh2 ϕ
=

4
3
MHNSC(ϕ) (3.22)

Then result from [25]:

3
4σ

< MHNSC(ϕ) <
7
8
, ϕ ∈ 〈0,arcsinh(1)〉 (3.23)

implies
1
σ

< M(ϕ) <
7
6
, ϕ ∈ 〈0,arcsinh(1)〉 . (3.24)

In the same manner we define functions

MHANS(ϕ) =
A(1,t)−H(1,t)
NS(1,t)−H(1,t)

=
1

M(ϕ)
, (3.25)

MHNSN(ϕ) =
NS(1,t)−H(1,t)
N(1,t)−H(1,t)

=
1
2
M(ϕ), (3.26)

MANSC(ϕ) =
NS(1,t)−A(1,t)
C(1,t)−A(1,t)

= 3(M(ϕ)−1), (3.27)

MANSN(ϕ) =
NS(1,t)−A(1,t)
N(1,t)−A(1,t)

= M(ϕ)−1, (3.28)

MNSCN(ϕ) =
C(1,t)−NS(1,t)
N(1,t)−NS(1,t)

=
4−3M(ϕ)
6−3M(ϕ)

. (3.29)
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Inequality (1.5), stated as Theorem 1.3. in [28], follow easily since (3.26) and
(3.24) yield

1
2σ

< MHNSN (ϕ) <
7
12

and further

1
2σ

N(1, t)+
(

1− 1
2σ

)
H(1,t) < NS(1,t) <

7
12

N(1,t)+
5
12

H(1, t).

For the arithmetic and centroidal mean we have

3

(
1
σ
−1

)
< MANSC(ϕ) <

1
2

and

3

(
1
σ
−1

)
C(1,t)+

(
4− 3

σ

)
A(1,t) < NS(1, t) <

1
2
C(1,t)+

1
2
A(1,t).

Hence, the inequality (1.6) holds.
Similarly,

1
σ
−1 < MANSN(ϕ) <

1
6

gives

(
1
σ
−1

)
N(1,t)+

(
2− 1

σ

)
A(1,t) < NS(1, t) <

1
6
N(1,t)+

5
6
A(1,t)

which was proved in [20] as Theorem 3.2. Theorem 6 in [26] is a consequence of (3.25)
and (3.24).

Finally, by combining (3.24) and (3.29) we obtain new double inequality for cen-
troidal, Neuman-Sándor and contraharmonic mean.

THEOREM 3.3. Inequality

(1− μ)NS(s,t)+ μN(s,t) < C(s,t) < (1−ν)NS(s,t)+ νN(s,t)

holds for all s, t > 0 , with s �= t , if and only if μ � 1
5 and ν � 4σ−3

6σ−3 .

4. Reciprocal of means

Besides the classical combinations we can observe convex combinations of recip-
rocal of means:

μ
1

M1
+(1− μ)

1
M3

� 1
M2

� ν
1

M1
+(1−ν)

1
M3

(4.1)
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which cover Neuman-Sándor mean. If the mean M has asymptotic expansion of the
form (2.1) with α = 0, then by Lemma 2.1 reciprocal of the mean M has the following
asymptotic expansion

M(x−β ,x+ β )∼ x− c2x
−1 +(c2

2− c4)x−3 + · · · .
As a consequence, we can find optimal parameter for the one side of the inequality (1.7)
in the first table. Same as before, observing linear combinations near point (0,1) will
should provide optimal parameter for the other side.

In this case some new inequalities can be proved.

THEOREM 4.1. Inequality

μ
1

H(s, t)
+ (1− μ)

1
NS(s,t)

<
1

A(s,t)
< ν

1
H(s, t)

+ (1−ν)
1

NS(s,t)
(4.2)

holds for all s, t ∈ 〈0,∞〉 , s �= t , if and only if μ = 0 and 1
7 � ν � 1 .

Proof. Similarly as before, define function R(ϕ)

R(ϕ) =
1/A(1,t)−1/NS(1,t)
1/H(1,t)−1/NS(1,t)

, ϕ ∈ 〈0,σ〉

and t is defined by (3.19). R(ϕ) after arranging becomes

R(ϕ) =
(sinhϕ −ϕ)(1− sinh2 ϕ)
−ϕ + sinhϕ + ϕ sinh2 ϕ

= 1− 1
ϕ

sinhϕ M(ϕ)
.

It is easily seen that ϕ
sinhϕ takes values between σ and 1 which together with (3.24)

gives

0 < R(ϕ) <
1
7
.

Optimality of the parameters is assured by discussion before the theorem. �

THEOREM 4.2. Inequality

μ
1

H(s, t)
+ (1− μ)

1
N(s,t)

<
1

NS(s,t)
< ν

1
H(s,t)

+ (1−ν)
1

N(s, t)
(4.3)

holds for all s, t ∈ 〈0,∞〉 , with s �= t , if and only if μ = 0 and 5
12 � ν � 1 .

Proof. Let

R(ϕ) =
1/NS(1,t)+1/N(1,t)
1/H(1,t)−1/N(1,t)

, ϕ ∈ 〈0,σ〉 (4.4)

where t is defined by (3.19). It is easily seen that

lim
ϕ→0

R(ϕ) =
5
12

and lim
ϕ→σ

R(ϕ) = 0. (4.5)
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It remains to prove R is decreasing.

R′(ϕ) =
1

2sinh4(ϕ)
(sinhϕ − sinh5 ϕ + sinh(2ϕ)−ϕ coshϕ(3+ sinh4 ϕ))

=
1

2sinh4(ϕ)
g(ϕ)

Taylor series for the function g equals

g(ϕ) =
3
8

sinhϕ + sinh(2ϕ)+
5
16

sinh(3ϕ)− 1
16

sinh(5ϕ)

−ϕ
[
25
8

coshϕ − 3
16

cosh(3ϕ)+
1
16

cosh(5ϕ)
]

=
∞

∑
n=0

[
3
8

+22n+1 +
5
16

32n+1− 1
16

52n+1

− (2n+1)
(

25
8

− 3
16

32n +
1
16

52n
)]

ϕ2n+1

(2n+1)!

The first two coefficients of this series is equal to zero, and for n � 2 we have

6+32 ·22n+15 ·32n−5 ·52n

< 6+32 ·22n+15 ·32n−5 ·22n−15n ·22n− 20n
3

·32n−5 ·32n < 0

and also
50−3 ·32n+52n > 0

which makes all coefficients negative. Hence, R is strictly decreasing and the statement
of theorem is proved. �
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