
Journal of
Mathematical

Inequalities

Volume 9, Number 4 (2015), 1365–1375 doi:10.7153/jmi-09-104

JENSEN’S INEQUALITY FOR FUNCTIONS

SUPERQUADRATIC ON THE COORDINATES

S. BANIĆ AND M. KLARIČIĆ BAKULA

(Communicated by S. Varošanec)

Abstract. Jensen’s type inequalities for functions superquadratic on the coordinates are given.
Obtained results are used to prove several Hölder-type inequalities.

1. Introduction

A function ϕ : C → R is said to be convex on a convex subset C of a real linear
space X if

ϕ (txxxx+(1− t)yyyy) � tϕ (xxxx)+ (1− t)ϕ (yyyy) (1.1)

holds for all xxxx,yyyy ∈ C and 0 � t � 1. A function ϕ is said to be strictly convex if the
inequality in (1.1) is strict whenever xxxx �= yyyy and 0 < t < 1.

A function ϕ : I × J → R, I × J ⊂ R
2 , is called convex on the coordinates if the

partial mappings ϕy : I → R defined by ϕy (u) := ϕ (u,y) , and ϕx : J → R defined by
ϕx (v) := ϕ (x,v) , are convex for all y ∈ J and x ∈ I . Analogously we define functions
which are concave on the coordinates.

Therefore, for the function ϕ convex on the coordinates, we have (by the well
known characterizations of convex functions) the following.

For each u ∈ I there exists Cu ∈ R such that

ϕy (z) � ϕy (u)+Cu (z−u) , ∀z ∈ I, (1.2)

and for each v ∈ J there exists Dv ∈ R such that

ϕx (w) � ϕx (v)+Dv (w− v) , ∀w ∈ J. (1.3)

for all y ∈ J and x ∈ I .
Obviously, if the function ϕ : I×J →R is convex (concave), then it is also convex

(concave) on the coordinates, but functions which are convex (concave) on the coordi-
nates need not to be convex (concave) in the standard sense. For instance, the function
ϕ : [0,∞〉2 → R defined by

ϕ (x,y) = xpyq,
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where p,q � 1, is convex on the coordinates, but it is not convex in the standard sense.
This means that the class of convex functions is a proper subclass of the class of func-
tions which are convex on the coordinates. Analogously, for 0 < p < 1 and 0 < q < 1
the function ϕ is concave on the coordinates, but not concave in the standard sense
unless p+q � 1.

Jensen’s inequality has many integral analogues. Here we recall the simplest one
expressed in the language of the abstract Lebesgue integral (see [6, p. 45] or [5, p. 10]):
if (Ω,A ,μ) is a measure space with 0 < μ (Ω) < ∞ and if f : Ω → I is from L1 (μ)
then

ϕ
(

1
μ (Ω)

∫
Ω

f dμ
)

� 1
μ (Ω)

∫
Ω

(ϕ ◦ f )dμ (1.4)

holds for any convex function ϕ : I → R . In the case when ϕ is strictly convex we
have equality in (1.4) if and only if ϕ is constant. Of course, if set I is bounded then
function f needs to be measurable only. This inequality is well known as the integral
Jensen’s inequality.

The following inequality, proved by M. L. Slater in the paper [4], is also related to
Jensen’s inequality (1.4).

If (Ω,A ,μ) is probability measure space and the function ϕ : I → R is a con-
vex and increasing (decreasing) on interval I ⊆ R, then for any measurable function
f : Ω → I such that ϕ ◦ f , ϕ ′

+ ◦ f ,
(
ϕ ′

+ ◦ f
)

f ∈ L1 (μ) and
∫

Ω
(
ϕ ′

+ ◦ f
)
dμ �= 0 the

inequality ∫
Ω

(ϕ ◦ f )dμ � ϕ

(∫
Ω
(
ϕ ′

+ ◦ f
)

f dμ∫
Ω
(
ϕ ′

+ ◦ f
)
dμ

)
(1.5)

holds. If, in addition, ϕ is strictly convex, then (1.5) becomes equality if and only if
ϕ = const. μ -a.e. on Ω. This inequality remains valid if instead of ϕ ′

+ (x) we take any
value Cx ∈

[
ϕ ′− (x) ,ϕ ′

+ (x)
]
. Of course, if ϕ is differentiable then we take ϕ ′. In the

rest of the paper we call this inequality – Slater’s inequality.
Jensen-type inequalities for functions which are convex on the coordinates were

investigated in [3]. In the same paper the following two theorems were proved:

THEOREM A. Suppose that

(i) (Ω1,A ,μ) and (Ω2,B,ν) are measure spaces;

(ii) p : Ω1 →R, p∈ L1 (μ) , and w : Ω2 →R, w∈ L1 (ν) , are nonnegative functions
such that

∫
Ω1

pdμ �= 0 and
∫

Ω2
wdν �= 0 ;

(iii) g : Ω1 → I , g ∈ L∞ (μ) , and h : Ω2 → J , h ∈ L∞ (ν) , I,J ⊂ R;

(iv) ϕ : I× J → R is convex on the coordinates on I× J.

Then the following inequalities hold:

ϕ
(
g,h
)

� 1
2

{
1
P

∫
Ω1

pϕ
(
g,h
)
dμ +

1
W

∫
Ω2

wϕ (g,h)dν
}

� 1
PW

∫
Ω1

∫
Ω2

pwϕ (g,h)dμdν, (1.6)
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where

P =
∫

Ω1

pdμ , W =
∫

Ω2

wdν

g =
1
P

∫
Ω1

pgdμ , h =
1
W

∫
Ω2

whdν.

If the function ϕ is concave on the coordinates inequalities (1.6) are reversed. The
above inequalities are sharp.

THEOREM B. Let I = [m,M] and J = [n,N] , where −∞ < m < M < ∞ and −∞ <
n < N < ∞ . Let the functions p and w be as in Theorem A, and let the functions
g : Ω1 → I, h : Ω2 → J be measurable. If the function ϕ : I× J → R is continuous and
convex on the coordinates on I× J, then the following inequalities hold:

1
PW

∫
Ω1

∫
Ω2

pwϕ (g,h)dμdν

� 1
2

{
N−h
N−n

1
P

∫
Ω1

pϕ (g,n)dμ +
h−n
N−n

1
P

∫
Ω1

pϕ (g,N)dμ

+
M−g
M−m

1
W

∫
Ω2

wϕ (m,h)dν +
g−m
M−m

1
W

∫
Ω2

wϕ (M,h)dν
}

� M−g
M−m

N−h
N−n

ϕ (m,n)+
g−m
M−m

N−h
N−n

ϕ (M,n)

+
M−g
M−m

h−n
N−n

ϕ (m,N)+
g−m
M−m

h−n
N−n

ϕ (M,N) . (1.7)

If the function ϕ is concave on the coordinates inequalities (1.7) are reversed. The
above inequalities are sharp.

Now, we give a version of Slater’s inequality (1.5) for functions which are convex
on the coordinates.

THEOREM 1. Suppose that:

(i) (Ω1,A ,μ) and (Ω2,B,ν) are probability measure spaces;

(ii) I,J ⊂ R, ϕ : I× J → R is convex on the coordinates on I× J ;

(iii) C and D are as in (1.2) and (1.3) ;

(iv) g : Ω1 → I and h : Ω2 → J are measurable functions such that

ϕ (g,h) ∈ L1 (μ ×ν) ,

Cg, gCg ∈ L1 (μ) , Dh, hDh ∈ L1 (ν) ,
∫

Ω1
Cgdμ �= 0 and

∫
Ω2

Chdν �= 0 .

If

G =

∫
Ω1

gCgdμ∫
Ω1

Cgdμ
∈ I, H =

∫
Ω2

hDhdν∫
Ω2

Dhdν
∈ J,
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then the following inequalities

∫
Ω1

∫
Ω2

ϕ (g,h)dμdν � 1
2

[∫
Ω1

ϕ (g,H)dμ +
∫

Ω2

ϕ (G,h)dν
]

� ϕ (G,H) .

(1.8)
hold.

Proof. Applying inequality (1.5) twice to the first and the second variable of the
function ϕ respectively (with Cf and Df instead of ϕ ′

+ ◦ f , respectively), we get:

∫
Ω1

∫
Ω2

ϕ (g,h)dμdν �
∫

Ω1

ϕ (g,H)dμ � ϕ (G,H) ,∫
Ω1

∫
Ω2

ϕ (g,h)dμdν �
∫

Ω2

ϕ (G,h)dν � ϕ (G,H) ,

and hence the inequalities in (1.8) immediately follow . �

In paper [1], the concept of superquadratic functions of one variable was intro-
duced.

DEFINITION 1. A function ϕ : [0,∞〉 → R is said to be superquadratic if for any
t � 0 there exist a constant Ct ∈ R such that

ϕ (s) � ϕ (t)+Ct (s− t)+ ϕ (|s− t|) (1.9)

holds for all s � 0.

Note that if ϕ (x) = x2 the condition above reduces to the identity

s2 − t2− (s− t)2 = 2t (s− t) .

At first glance the condition (1.9) seems to be much stronger than the convexity
condition, but if ϕ takes negative values it may be considerably weaker. In [1] it was
proved that if ϕ � 0, then ϕ is convex.

Recently, in paper [2] authors have investigated superquadratic functions of m
variables, which were defined in the following way.

DEFINITION 2. A function ϕ : [0,∞〉m → R is said to be superquadratic if for
every xxxx ∈ [0,∞〉m there exists a vector cccc(xxxx) ∈ R

m such that

ϕ(yyyy) � ϕ(xxxx)+ 〈cccc(xxxx),yyyy− xxxx〉+ ϕ(|yyyy− xxxx|) (1.10)

holds for all yyyy ∈ [0,∞〉m , where |yyyy− xxxx| = (|y1 − x1| , . . . , |ym− xm|) . ϕ is said to be
strictly superquadratic if (1.10) is strict for all xxxx �= yyyy .

Analogously as it was done for convex functions, we define functions which are
superquadratic on the coordinates in the following way:
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DEFINITION 3. We say that a function ϕ : [0,∞〉2 → R is superquadratic on the
coordinates if the partial mappings ϕy : [0,∞〉 → R defined by ϕy (u) := ϕ (u,y) , and
ϕx : [0,∞〉 → R defined by ϕx (v) := ϕ (x,v) , are superquadratic for all y ∈ [0,∞〉 and
x ∈ [0,∞〉 .

Therefore, by Definition 1, for the function ϕ which is superquadratic on the
coordinates (for arbitrary x,y � 0) the following holds: for each u � 0, there exists
Cu ∈ R such that

ϕy (z) � ϕy (u)+Cu (z−u)+ ϕy (|z−u|) , ∀z � 0, (1.11)

and for each v � 0, there exists Dv ∈ R such that

ϕx (w) � ϕx (v)+Dv (w− v)+ ϕx (|w− v|) , ∀w � 0. (1.12)

Obviously, we do not have to restrict ourselves to the case n = 2 (that is, we can
do everything with n variables) but for the sake of the simplicity we proceed with two
variables only.

According to (1.2) and (1.3) it is obvious that any nonnegative function which is
superquadratic on the coordinates is exactly convex on the coordinates. This fact allows
us to get refinements of the inequalities which are valid for the functions convex on the
coordinates.

In this class we can also find functions which are superquadratic on the coor-
dinates, but not superquadratic in the standard sense. For instance, the function ϕ :
[0,∞〉2 → R defined by

ϕ (x,y) = xpyq,

where p,q � 2, is superquadratic on the coordinates, but not superquadratic. We must
emphasize here that functions of several variables which are superqadratic are not nec-
essary superqadratic on the coordinates.

In paper [1] the following two theorems were proved.

THEOREM C. The inequality

ϕ
(∫

f dμ
)

�
∫

ϕ ◦ f −ϕ
(∣∣∣∣ f −

∫
f dμ

∣∣∣∣
)

dμ (1.13)

holds for all probability measures μ and all nonnegative, μ -integrable functions f if
and only if a function ϕ is superquadratic.

THEOREM D. Suppose that ϕ is superquadratic and that C is given as in (1.9) .
If μ is a probability measure, f is a nonnegative μ -measurable function,

∫
Cf dμ �= 0,

and m and M are defined by

m =
∫

f dμ , M =
∫

fCf dμ∫
Cf dμ

,

then

ϕ (m)+
∫

ϕ (| f −m|)dμ �
∫

ϕ ◦ f dμ � ϕ (M)−
∫

ϕ (| f −M|)dμ . (1.14)
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It is obvious that if function −ϕ is superquadratic inequalities (1.13) and (1.14)
are reversed.

In Section 2 we use Theorem C and Theorem D to establish results analogous to
those given in Theorem A, Theorem B and Theorem 1, but now for functions which are
superquadratic on the coordinates. In Section 3 we show how we can use those results
to obtain several Hölder-type inequalities.

2. Main result

Throughout the rest of this section we assume that:

(i) (Ω1,A ,μ) and (Ω2,B,ν) are probability measure spaces;

(ii) g : Ω1 → [0,∞〉 , g ∈ L1 (μ) , and h : Ω2 → [0,∞〉 , h ∈ L1 (ν) ;

(iii) ϕ : [0,∞〉2 → R is superquadratic on the coordinates on [0,∞〉2 and ϕ (g,h) ∈
L1 (μ ×ν) .

THEOREM 2. Let ϕ ,g and h be as the above. Then the following inequalities
hold:

ϕ
(
g,h
)

� 1
2

[∫
Ω2

ϕ (g,h)−ϕ
(
g,
∣∣h−h

∣∣)dν +
∫

Ω1

ϕ
(
g,h
)−ϕ

(|g−g| ,h)dμ
]

� 1
2

∫
Ω1

∫
Ω2

2ϕ (g,h)−ϕ
(
g,
∣∣h−h

∣∣)−ϕ (|g−g| ,h)dμdν

− 1
2

[∫
Ω1

ϕ
(|g−g| ,h)dμ +

∫
Ω2

ϕ
(
g,
∣∣h−h

∣∣)dν
]

(2.1)

where
g =

∫
Ω1

gdμ , h =
∫

Ω2

hdν.

Proof. Since the function ϕ is superquadratic on the coordinates, we can use
(1.13) on the first and on the second variable to obtain

ϕ
(
g,h
)

�
∫

Ω1

ϕ
(
g,h
)−ϕ

(|g−g| ,h)dμ ,

ϕ
(
g,h
)

�
∫

Ω2

ϕ (g,h)−ϕ
(
g,
∣∣h−h

∣∣)dν,

from which we can easily obtain the first inequality in (2.1) . Applying (1.13) twice
again (i.e. on ϕ (g,h) and ϕ

(
g,h
)
) we obtain∫

Ω1

ϕ
(
g,h
)
dμ �

∫
Ω1

∫
Ω2

ϕ (g,h)−ϕ
(
g,
∣∣h−h

∣∣)dμdν,∫
Ω2

ϕ (g,h)dν �
∫

Ω1

∫
Ω2

ϕ (g,h)−ϕ (|g−g| ,h)dμdν,

and the second inequality in (2.1) immediately follows. �
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REMARK 1. It can be easily seen that if the function ϕ is also nonnegative (and
therefore convex on the coordinates) Theorem 2 represents a refinement of Theorem A
(with p = w = 1).

THEOREM 3. Let ϕ ,g and h be as in the previous theorem. Let C and D be as in
(1.11) and (1.12) and suppose that Cg, gCg ∈ L1 (μ) , Dh, hDh ∈ L1 (ν) ,

∫
Ω1

Cgdμ �=
0 and

∫
Ω2

Dhdν �= 0 . If

G =

∫
Ω1

gCgdμ∫
Ω1

Cgdμ
� 0, H =

∫
Ω2

hDhdν∫
Ω2

Dhdν
� 0,

then the following inequalities hold:∫
Ω1

∫
Ω2

ϕ (g,h)dμdν

� 1
2

[∫
Ω1

ϕ (g,H)dμ +
∫

Ω2

ϕ (G,h)dν

−
∫

Ω1

∫
Ω2

ϕ (g, |h−H|)+ ϕ (|g−G|,h)dνdμ
]

(2.2)

� ϕ (G,H)− 1
2

[∫
Ω1

ϕ (|g−G|,H)dμ +
∫

Ω2

ϕ (G, |h−H|)dν
]

− 1
2

∫
Ω1

∫
Ω2

ϕ (|g−G|,h)+ ϕ (g, |h−H|)dμdν.

Proof. From (1.14) we have∫
Ω1

∫
Ω2

ϕ (g,h)dμdν �
∫

Ω2

[
ϕ (G,h)−

∫
Ω1

ϕ (|g−G| ,h)dμ
]
dν,

∫
Ω1

∫
Ω2

ϕ (g,h)dμdν �
∫

Ω1

[
ϕ (g,H)−

∫
Ω2

ϕ (g, |h−H|)dν
]
dμ ,

and from these we can easily obtain the first inequality in (2.2) . Applying again (1.14)
on the right sides of the above inequalities, we obtain∫

Ω2

[
ϕ (G,h)−

∫
Ω1

ϕ (|g−G|,h)dμ
]
dν

� ϕ (G,H)−
∫

Ω2

ϕ (G, |h−H|)dν −
∫

Ω1

∫
Ω2

ϕ (|g−G| ,h)dμdν,

and ∫
Ω1

[
ϕ (g,H)−

∫
Ω2

ϕ (g, |h−H|)dν
]
dμ

� ϕ (G,H)−
∫

Ω1

ϕ (|g−G|,H)dμ −
∫

Ω1

∫
Ω2

ϕ (g, |h−H|)dμdν,

from which the second inequality in (2.2) immediately follows. �
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REMARK 2. If the function ϕ is also nonnegative, then it is also convex on the
coordinates, so the conditions of the both Theorem 3 and Teorem 1 are satisfied. Since
in this case all the integrals in (2.2) are nonnegative it is obvious that the result of
Theorem 3 represents a refinement of the result of Theorem 1.

3. Applications

In this section we show how Theorem A, Theorem B, Theorem 1, Theorem 2 and
Theorem 3 can be used to obtain some Hölder-type inequalities.

EXAMPLE 1. Let ϕ : 〈0,∞〉2 → R be defined by ϕ (x,y) = x
1
p y

1
q , where p,q ∈

〈−∞,1]\ {0} , and let (Ω1,A ,μ) and (Ω2,B,ν) be probability measure spaces. Let
the functions g : Ω1 → 〈0,∞〉 and h : Ω2 → 〈0,∞〉 be such that gp ∈ L1 (μ) and hq ∈
L1 (ν) . Since the function ϕ is convex on the coordinates, from Theorem A we have:

(∫
Ω1

gpdμ
) 1

p
(∫

Ω2

hqdν
) 1

q

� 1
2

{(∫
Ω1

gpdμ
) 1

p
∫

Ω2

hdν +
(∫

Ω2

hqdν
) 1

q
∫

Ω1

gdμ

}

�
∫

Ω1

∫
Ω2

ghdμdν. (3.1)

If the functions gp and hq are bounded, i.e., gp : Ω1 → [m,M] and hq : Ω2 → [n,N] ,
where 0 � m < M < ∞ and 0 � n < N < ∞, then from Theorem B we also have∫

Ω1

∫
Ω2

ghdμdν

� 1
2

{(
N−hq

N−n
n

1
q +

hq−n
N−n

N
1
q

)∫
Ω1

gdμ

+
(

M−gp

M−m
m

1
p +

gp−m
M−m

M
1
p

)∫
Ω2

hdν
}

(3.2)

� M−gp

M−m
N−hq

N−n
m

1
p n

1
q +

gp−m
M−m

N−hq

N−n
M

1
p n

1
q

+
M−gp

M−m
hq−n
N−n

m
1
p N

1
q +

gp−m
M−m

hq−n
N−n

M
1
p N

1
q ,

where
gp =

∫
Ω1

gpdμ , hq =
∫

Ω2

hqdν.

If p,q ∈ [1,+∞〉 inequalities (3.1) and (3.2) are reversed.

EXAMPLE 2. Let ϕ , g, h, μ and ν be defined as in the previous example, and
let p,q ∈ 〈0, 1

2

]
. In this case the function ϕ is superquadratic on the coordinates, so
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from Theorem 2 we get:

(∫
Ω1

gpdμ
) 1

p
(∫

Ω2

hqdν
) 1

q

� 1
2

[(∫
Ω1

gpdμ
) 1

p
∫

Ω2

h−
∣∣∣∣hq−

∫
Ω2

hqdν
∣∣∣∣

1
q

dν

+
(∫

Ω2

hqdν
) 1

q
∫

Ω1

g−
∣∣∣∣gp−

∫
Ω1

gpdμ
∣∣∣∣

1
p

dμ

]

� 1
2

∫
Ω1

∫
Ω2

2gh−g

∣∣∣∣hq−
∫

Ω2

hqdν
∣∣∣∣

1
q

−h

∣∣∣∣gp−
∫

Ω1

gpdμ
∣∣∣∣

1
p

dμdν

− 1
2

[(∫
Ω2

hqdν
) 1

q
∫

Ω1

∣∣∣∣gp−
∫

Ω1

gpdμ
∣∣∣∣

1
p

dμ

+
(∫

Ω1

gpdμ
) 1

p
∫

Ω2

∣∣∣∣hq−
∫

Ω2

hqdν
∣∣∣∣

1
q

dν

]
. (3.3)

Also, if Cgp , gpCgp ∈L1 (μ) , Dhq , hqDhq ∈L1 (ν) ,
∫

Ω1
Cgpdμ �= 0 and

∫
Ω2

Dhqdν �= 0,
then for

G =

∫
Ω1

gpCgpdμ∫
Ω1

Cgpdμ
� 0, H =

∫
Ω2

hqDhqdν∫
Ω2

Dhqdν
� 0,

applying Theorem 3, we get:

∫
Ω1

∫
Ω2

ghdμdν

� 1
2

[∫
Ω1

gH
1
q dμ +

∫
Ω2

G
1
p hdν

−
∫

Ω1

∫
Ω2

g |hq−H| 1
q + |gp−G| 1

p hdνdμ
]

� G
1
p H

1
q − 1

2

[∫
Ω1

|gp−G| 1
p H

1
q dμ +

∫
Ω2

G
1
p |hq−H| 1

q dν
]

− 1
2

∫
Ω1

∫
Ω2

|gp−G| 1
p h+g |hq−H| 1

q dμdν. (3.4)

If p,q ∈ [ 1
2 ,+∞

〉
inequalities (3.3) and (3.4) are reversed.

REMARK 3. As we can see, in the case p,q ∈ 〈0, 1
2

]
inequalities in (3.3) are the

refinements of inequalities in (3.1) . If p,q ∈ 〈 1
2 ,1
〉

combining (3.3) and (3.1) we

obtain the following sequence of four inequalities with
(∫

Ω1
gpdμ

) 1
p
(∫

Ω2
hqdν

) 1
q

in
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the middle of it:∫
Ω1

∫
Ω2

ghdμdν

� 1
2

{(∫
Ω1

gpdμ
) 1

p
∫

Ω2

hdν +
(∫

Ω2

hqdν
) 1

q
∫

Ω1

gdμ

}

�
(∫

Ω1

gpdμ
) 1

p
(∫

Ω2

hqdν
) 1

q

� 1
2

[(∫
Ω1

gpdμ
) 1

p
∫

Ω2

h−
∣∣∣∣hq−

∫
Ω2

hqdν
∣∣∣∣

1
q

dν

+
(∫

Ω2

hqdν
) 1

q
∫

Ω1

g−
∣∣∣∣gp−

∫
Ω1

gpdμ
∣∣∣∣

1
p

dμ

]

� 1
2

∫
Ω1

∫
Ω2

2gh−g

∣∣∣∣hq−
∫

Ω2

hqdν
∣∣∣∣

1
q

−h

∣∣∣∣gp−
∫

Ω1

gpdμ
∣∣∣∣

1
p

dμdν

− 1
2

[(∫
Ω2

hqdν
) 1

q
∫

Ω1

∣∣∣∣gp−
∫

Ω1

gpdμ
∣∣∣∣

1
p

dμ

+
(∫

Ω1

gpdμ
) 1

p
∫

Ω2

∣∣∣∣hq−
∫

Ω2

hqdν
∣∣∣∣

1
q

dν

]
.

REMARK 4. In the case p,q ∈ 〈0, 1
2

]
inequalities (3.4) refine

∫
Ω1

∫
Ω2

ghdμdν � 1
2

[∫
Ω1

gH
1
q dμ +

∫
Ω2

G
1
p hdν

]
� G

1
p H

1
q ,

which are obtained applying Theorem 1 for the function ϕ : 〈0,∞〉2 → R defined by

ϕ (x,y) = x
1
p y

1
q for p,q∈ 〈−∞,1]\{0} under the above conditions (for (3.4) ) and with

the substitutions
g ↔ gp and h ↔ hq.
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