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HOW DO SINGULARITIES OF FUNCTIONS AFFECT THE

CONVERGENCE OF q–BERNSTEIN POLYNOMIALS?

SOFIYA OSTROVSKA, AHMET YAŞAR ÖZBAN AND MEHMET TURAN

(Communicated by I. Raşa)

Abstract. In this article, the approximation of functions with a singularity at α ∈ (0,1) by the
q -Bernstein polynomials for q > 1 has been studied. Unlike the situation when α ∈ (0,1) \
{q− j} j∈N, in the case when α = q−m, m ∈ N, the type of singularity has a decisive effect
on the set where a function can be approximated. In the latter event, depending on the types
of singularities, three classes of functions have been examined, and it has been found that the
possibility of approximation varies considerably for these classes.

1. Introduction

It is a common practice to consider the Bernstein polynomials and their various
analogues only for the continuous functions on [0,1]. Despite the fact pointed out by G.
Lorentz that, for the Bernstein polynomials, “Remarkable phenomena can occur for un-
bounded functions” (cf. [6, Ch.1, Sec.1.9]), researchers so far have barely turned their
attention to the q -Bernstein polynomials of discontinuous functions. Consequently,
this topic has not been explored widely, and only a very few papers are available (see
[11] and references therein). The present article, being a continuation of [11], aims to
fill this gap.

Let q > 0. For any non-negative integer n, the q-integer [n]q is defined by

[n]q := 1+q+ · · ·+qn−1 (n = 1,2, . . .), [0]q := 0;

and the q-factorial [n]q! by

[n]q! := [1]q[2]q · · · [n]q (n = 1,2, . . .), [0]q! := 1.

For integers 0 � k � n, the q-binomial coefficient
[ n

k

]
q is defined by

[n
k

]
q
:=

[n]q!
[k]q![n− k]q!

.
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Clearly, for q = 1,

[n]1 = n, [n]1! = n!,
[n
k

]
1
=

(n
k

)
.

Also, the following notations

(a;q)0 := 1, (a;q)k :=
k−1

∏
s=0

(1−aqs), (a;q)∞ :=
∞

∏
s=0

(1−aqs)

from [2, Ch.10] will be used. Based on the q -integers, the q -Bernstein polynomials
have been introduced by G. M. Phillips:

DEFINITION 1. [14] For any f : [0,1]→C, the q-Bernstein polynomials of f are
defined by

Bn,q( f ;x) =
n

∑
k=0

f

(
[k]q
[n]q

)
pnk(x), n ∈ N,

and the q -Bernstein basis polynomials by

pnk(x) :=
[n
k

]
q
xk(x;q)n−k, k = 0,1, . . .n. (1)

Alternatively – [13, formulae (6) and (7)] – the q -Bernstein polynomials can be ex-
pressed as

Bn,q( f ;x) =
n

∑
k=0

cknx
k, ckn = λkn f [x0, . . . ,xk],

where

λ0n = λ1n = 1, λkn =
k−1

∏
j=1

(
1− [ j]q

[n]q

)
, k = 2, . . . ,n

and f [x0, . . . ,xk] denotes the k -th order divided difference of f with k + 1 distinct
nodes x0, . . . ,xk. Correspondingly, for z ∈ C, Bn,q( f ;z) = ∑n

k=0 cknzk .
The case q = 1 corresponds to the classical Bernstein polynomials, and we follow

the commonly accepted terminology by using “q -Bernstein polynomials” only for q �=
1.

Owing to their unusual convergence properties, the q -Bernstein polynomials in-
spired many researchers and led to further investigations of the Bernstein-type operators
based on the q -integers. See, for example, [1, 3, 4, 5, 8, 9, 10, 16]. The tribute for the
discovery of this fruitful research area must be paid to A. Lupaş, who pioneered the
exploration of the subject (cf. [7]).

Throughout the paper, only fixed q > 1 is considered. Further, the notations

Jq := {0}∪{q− j}∞
j=0 and xk = [k]q/[n]q for k = 0, . . . ,n (2)

adopted in [11], will be used. In addition, let Φk and Ψk be defined as

Φk(x) =
k

∏
j=1

(
1− x j

x

)
and Ψk(x) =

∞

∏
j=k

(
1− 1

q jx

)
. (3)
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In the sequel, for any a > 0, the open disc {z ∈ C : |z| < a} and its closure {z ∈ C :
|z| � a} will be denoted by Da and Da, respectively.

Let f be a function defined on [0,1], possessing an analytic continuation from
[0,α) into Dα , 0 < α < 1, and having a singularity at x = α. It is well-known that
the Taylor series of f converges to f uniformly on any compact set in Dα regardless
of the type of singularity. In distinction, for the approximation by the q -Bernstein
polynomials, the following factors must be taken into account:

• whether or not α ∈ Jq;

• if affirmative, then the type of singularity.

If α ∈ (0,1)\ Jq, then the investigation of the q -Bernstein polynomials of f can
be reduced to that for continuous functions. More precisely, the statement below holds.

THEOREM 1. Let α ∈ (0,1) \ Jq; that is, α ∈ (q−(m+1),q−m) for some m ∈ N0,
and let f : [0,1]→R be a function possessing an analytic continuation from [0,α) into
an open disc Dα . In addition, let f be continuous from the left at {q−1, . . . ,q−m} ⊂ Jq.
Then, f is uniformly approximated by its q-Bernstein polynomials on any compact set
in (−α,α).

Proof. If f is continuous on [0,1] , the statement has been proved in [12]. Oth-
erwise, choose any ρ ∈ (q−(m+1),α) and ε ∈ (0,α − ρ). Consider a function f̃ ∈
C[0,1] such that f̃ (x) = f (x) for x ∈ [0,ρ + ε] and in “small” left neighborhoods
of q−m, . . . ,q−1. Then, f̃ admits an analytic continuation into the closed disc Dρ+ε
and, by Theorem 2.2 of [12], Bn,q( f̃ ;x) → f̃ (x) = f (x) on any compact set in (−ρ −
ε,ρ + ε) and, hence, on any compact set in (−α,α). In addition, for n large enough,
Bn,q( f ;x) = Bn,q( f̃ ;x). This proves the claim. �

REMARK 1. The result is sharp in the sense that there exist functions satisfying
the conditions of Theorem 1 which are not approximated by their q -Bernstein polyno-
mials on any interval outside of (−α,α). One such function is f (x) = 1

x−α for x �= α
and f (α) ∈ R.

Although, the result for α ∈ Jq given by Theorem 1 is formally new, it is, in
fact, merely a direct conclusion of the previously known one. The situation changes if
α ∈ Jq. Previously obtained results (e.g. [11]) reveal that, in this case, the interval of
approximation may shrink to (−α1,α1), where 0 < α1 < α.

In this work, the impact of the type of singularity at α = q−m for some m ∈
N on the behavior of the q -Bernstein polynomials has been studied. To be specific,
we discuss the convergence of Bn,q for the functions f : [0,1] → R continuous on
[0,1] \ {α} and possessing an analytic continuation from [0,α) into Dα . The set of
such functions will be denoted by F . Persuant to the type of singularity, the following
subsets of F are considered:

• A = { f ∈ F : there exists γ > 0 such that lim
x→α− f (x)(α − x)γ = K ∈ R\ {0}}.
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• B = { f ∈ F : lim
x→α− f (x)(α − x)γ = ∞ for all γ > 0}.

• C = { f ∈ F : lim
x→α− f (x)(α − x)γ = 0 for all γ > 0}.

Based on this classification, the sets of convergence for the q -Bernstein polyno-
mials have been examined, and it has been shown that these sets depend on whether
f ∈ A ,B, or C .

The rest of the paper is organized as follows. The main outcomes are formulated in
Section 2, while Sections 4 and 5 contain their proofs. Section 3 comprises supporting
lemmas.

2. Main results

The theorems presented in this section reveal some qualitative characteristics of
classes A , B, and C in terms of the behavior of polynomials Bn,q( f ; ·). As a com-
mon feature for all these classes, it has been found that limn→∞ Bn,q( f ;x) = f (x) for
x∈ {1,q−1, . . . ,q−(m−1)}⊂ Jq. In contrast, the behavior inside of (−α,α) strongly de-
pends on whether f belongs to A , B, or C . More specifically, outside of the points
1,q−1, . . . ,q−(m−1), the interval of approximation for f ∈ C is the same as for the Tay-
lor polynomials, while for f ∈B, the polynomials Bn,q diverge for all x �= 0. The case
f ∈ A falls in between these two. Generally speaking, B is the worst and C is the
best class in terms of the approximation by the q -Bernstein polynomials, whereas A
is an intermediate one.

The first main result is concerned with class A . It turns out that γ, the parameter
describing the singularity of f at α, plays a crucial role in finding the interval of
convergence for polynomials Bn,q( f ; ·).

THEOREM 2. Let f ∈ A . Then

(i) Bn,q( f ;x) → f (x) uniformly on any compact set in (−αq−γ ,αq−γ);

(ii) if |x| > αq−γ and x /∈ Jq, then |Bn,q( f ;x)| → ∞ as n → ∞.

As it has already been mentioned, for functions belonging to B, the q -Bernstein
polynomials have very poor convergence properties. This fact is expressed by

THEOREM 3. Let f ∈ B. Then |Bn,q( f ;x)| → ∞ for x /∈ {1,q−1, . . . ,q−(m−1),0}
as n → ∞ while, obviously, Bn,q( f ;0) = f (0).

Finally comes the case where f ∈ C . Since, in this case, f possesses a relatively
‘mild’ singularity at α, it is found that the approximation by the q -Bernstein polyno-
mials occurs on the same interval as the approximation by the Taylor’s.

THEOREM 4. Let f ∈ C . Then, Bn,q( f ;x) → f (x) uniformly on any compact set
in (−α,α).
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It can be observed that the statement of Theorem 4 has a form different from the
previous ones, as it contains no information on the convergence of {Bn,q( f ; ·)} outside
of (−α,α). This is because, in general, the functions of class C may have a wider
interval of approximation than (−α,α), such as f (x) = sin(x−α)/(x−α), f (α) �= 1,
which is approximated by Bn,q( f ;x) on any compact set in R \ {α}. Therefore, it
is worth complementing the last theorem with the demonstration of its sharpness. In
essence, it has to be shown that there is f ∈ C such that its q -Bernstein polynomials
diverge for all |x| > α, x /∈ Jq. The next assertion fulfills this purpose.

THEOREM 5. Let f ∈ C and f (x) = g(x) ln |x− α| for x ∈ [0,α), where the
function g admits an analytic continuation from [0,α) into Dβ with β > α. Then,
|Bn,q( f ;x)| → ∞ for |x| > α with x /∈ Jq.

3. Auxiliary results

In the forthcoming discussion, C stands for a non-zero constant whose exact value
is inconsequential in the context of reasoning and, as such, the same letter may denote
different constants. Subscripts are placed to emphasize the dependence on certain pa-
rameters whenever such an emphasis is essential. All constants are assumed to be
independent of n and k.

LEMMA 1. For any β > α,

1
Φn−m−1(x)

→ 1
Ψm+1(x)

as n → ∞ (4)

uniformly on [α,β ], where Φn−m−1 and Ψm+1 are as defined by (3).

Proof. Firstly, notice that when x ∈ [α,β ],

Φn−m−1(x) � Ψm+1(x) �
∞

∏
j=m+1

(
1− 1

q jα

)
= Ψm+1(α) > 0. (5)

The mean value theorem for f (t) = ln(1− t) on any interval [t1,t2] ⊂ [0,1/q] leads to

ln(1− t1)− ln(1− t2) � q(t2− t1)
q−1

. (6)

Now, for any x∈ [α,β ] and j = m+1, . . . ,n−1, first setting t1 = xn− j/x, t2 = 1/(q jx)
and then t1 = 0, t2 = 1/(q jx) in (6) yield

∣∣∣∣ln
(
1− xn− j

x

)
− ln

(
1− 1

q jx

)∣∣∣∣ � q
α(q−1)(qn−1)

and

∣∣∣∣ln
(

1− 1
q jx

)∣∣∣∣ � q1− j

α(q−1)
,
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respectively. Therefore,

∣∣∣∣ln 1
Φn−m−1(x)

− ln
1

Ψm+1(x)

∣∣∣∣ =

∣∣∣∣∣
n−1

∑
j=m+1

ln
(
1− xn− j

x

)
−

∞

∑
j=m+1

ln

(
1− 1

q jx

)∣∣∣∣∣
�

n−1

∑
j=m+1

∣∣∣∣ln
(
1− xn− j

x

)
− ln

(
1− 1

q jx

)∣∣∣∣+
∞

∑
j=n

∣∣∣∣ln
(

1− 1
q jx

)∣∣∣∣
� q

α(q−1)
n−m−1

qn−1
+

q
α(q−1)

∞

∑
j=n

1
q j → 0 as n → ∞. �

COROLLARY 1. Let β ∈ (α,qα), ωn,v(x) = (x− xn−m+1) · · · (x− xn−m+v), and
ωv(x) = (x−qα) · · ·(x−qvα) for v = 1,2, . . . with ωn,0(x) = ω0(x) = 1. Set

Φ̃n,v(x) := Φn−m−1(x)ωn,v(x) and Ψ̃v(x) := Ψm+1(x)ωv(x) for v = 0,1, . . . ,m. (7)

Then,
1

Φ̃n,v(x)
→ 1

Ψ̃v(x)
as n → ∞ uniformly on [α,β ].

Proof. The statement follows from Lemma 1 since, for v = 0, . . . ,m, 1/ωn,v(x)→
1/ωv(x) as n → ∞ uniformly on [α,β ]. �

Although, the next lemma is merely a slight modification of Lemma 3.1 from [11]
and its proof refers to some properties of polynomials (1) considered in [11, 13], to
make the presentation self-explanatory, the adjusted proof is outlined briefly.

LEMMA 2. If f ∈ F , one has limn→∞ Bn,q( f ;q−l) = f (q−l) for l = 0,1, . . . ,m−
1. Additionally, if f ∈ A , then limn→∞ Bn,q( f ;q−l) = f (q−l) for integers l > m+ γ,
and if f ∈ C , then limn→∞ Bn,q( f ;q−l) = f (q−l) for integers l > m.

Proof. It is easy to see from (1) that pn,n−k(q;q−l) = 0 when l < k, implying that

Bn,q( f ;q−l) =
min{n,l}

∑
k=0

f (xn−k)pn,n−k(q;q−l). (8)

On the other hand, for l � k, one has

pn,n−k(q;q−l) ∼ qn(k−l) · (ql−k+1;q)k

(q;q)k
, n → ∞, (9)

and, therefore, limn→∞ pn,n−k(q;q−l) = δkl for all k and l. Since, xn−k → q−k as n →
∞, it follows that

lim
n→∞

f (xn−k)pn,n−k(q;q−l) = f (q−k)δkl,

whenever k �= m and f ∈ F . Along with (9), the latter shows that

lim
n→∞

Bn,q( f ;q−l) = f (q−l) for l < m, f ∈ F .
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In addition, for f ∈A , we have f (xn−m)∼K(α−xn−m)−γ ∼Cqnγ , n→∞, and hence,
f (xn−m)pn,n−m(q;q−l) ∼Cq(γ+m−l)n → 0 when l > m+ γ. Consequently, for f ∈ F
and l > m+ γ,

lim
n→∞

Bn,q( f ;q−l) = lim
n→∞

[
f (xn−m)pn,n−m(q;q−l)+ f (xn−l)pn,n−l(q;q−l)

]
= f (q−l).

In the case f ∈ C , limn→∞ f (xn−m)q−nγ = 0 for all γ > 0. With this and (9), one gets
f (xn−m)pn,n−m(q;q−l) → 0 as n → ∞ for all l > m. Thus,

lim
n→∞

Bn,q( f ;q−l) = lim
n→∞

f (xn−l)pn,n−l(q;q−l) = f (q−l),

as claimed. �

Notwithstanding the next proof being the same as that of Lemma 3.5 in [11], it has
been included here to the reader’s convenience.

LEMMA 3. If f has an analytic continuation from [0,α) into Dα , then for all
ε > 0, the following inequalities hold:

|ckn| � Cf ,εq
(m+ε)k, k = 0,1, . . . ,n−m−1.

Proof. For any ε ∈ (0,1), the nodes xk, k = 0,1, . . . ,n−m−1 are inside the circle
{z : |z| = ρ}, where ρ = q−m−ε . Therefore (cf. e.g., [6, Sec. 2.7, p. 44, formula (4)]),
one has

| f [x0, . . . ,xk]| =
∣∣∣∣ 1
2π i

∮
|ζ |=ρ

f (ζ )dζ
ζ (ζ − x1) · · · (ζ − xk)

∣∣∣∣ � 1
2π

∮
|ζ |=ρ

| f (ζ )dζ |
|ζ k+1Φk(ζ )| , (10)

where f (ζ ), as stated before, is an analytic continuation of f into Dα . Note that
|1− xk

ζ |� 1− xk
ρ , k = 0,1, . . . ,n−m−1 and, employing (5), one obtains that |Φk(ζ )|�

Φk(ρ) � Ψm+1(ρ). So,

| f [x0, . . . ,xk]| � ρ−k

Ψm+1(ρ)
max
|ζ |=ρ

| f (ζ )|. (11)

Since λkn ∈ (0,1] for all k and n, it can be readily seen that

|ckn| = |λkn f [x0,x1, . . . ,xk]| � Cρ−k = Cf ,εq
(m+ε)k. (12)

For any ε � 1, the inequality (12) implies the required result. �

LEMMA 4. If f ∈ A ∪B, then for v = 0,1, . . . ,m,

cn−m+v,n ∼Cv f (xn−m)α−n as n → ∞.
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Proof. By the divided difference formula,

f [x0,x1, . . . ,xn−m+v] =
n−m+v

∑
r=0

f (xr)
n−m+v

∏
s=0
s �=r

(xr − xs)

=
n−m−1

∑
r=0

+
f (xn−m)

n−m+v

∏
s=0

s �=n−m

(xn−m − xs)
+

n−m+v

∑
r=n−m+1

=: S1 +S2 +S3. (13)

Notice that S3 = 0 when v = 0. Next, if f (ζ ) is an analytic continuation of f into Dα ,
then

S1 =
1

2π i

∮
|ζ |=ρ

f (ζ )dζ
ζ n−mΦn−m−1(ζ )(ζ − xn−m)wn,v(ζ )

whenever ε ∈ (0,1) and ρ = q−(m+ε). Moreover, since xn−m →α as n→∞, it follows
that xn−m > q−(m+ε/2) for n large enough. Thence, for such values of n,

|xn−m+ j − ζ | � |xn−m− ζ | � q−(m+ε/2)−q−(m+ε) > 0,

and, consequently,

|(ζ − xn−m)ωn,v(x)| �
[
q−(m+ε/2)−q−(m+ε)

]v
> 0.

Applying operations similar to those in the proof of Lemma 3, one obtains that

|S1| � Cq(m+ε)k. (14)

On the other hand, as it has been proved in [11, formulae (3.6) and (3.7)],

1
(xn−m − x0)(xn−m − x1) · · · (xn−m − xn−m−1)

∼Cqmn = Cα−n as n → ∞ (15)

implying S2 ∼C f (xn−m)α−n as n → ∞.
To estimate S3, we refer to Corollary 3.3 of [11], which says that

n−m+v

∏
s=0

s �=n−m+u

1
xn−m+u− xs

∼Cu,vq
n(m−u), (16)

yielding
|S3| � Cqn(m−1). (17)

It is worth pointing out that (14), (15), and (17) are valid for all f ∈F . Also, if f ∈A ,
then

qεn = o( f (xn−m)) as n → ∞ (18)

for ε < γ, while if f ∈ B, then (18) holds for all ε > 0. As a result, for f ∈ A ∪B,
by virtue of (14) and (17), one has S1 = o(S2) and S3 = o(S2) as n → ∞. Hence,

cn−m+v,n ∼ λn−m+v,nS2 ∼Cvλn−m+v,n f (xn−m)α−n ∼Cv f (xn−m)α−n as n → ∞. �
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COROLLARY 2. If f ∈ A ∪B, then lim
n→∞

cn−m+v,n

cn−m,n
= Cv �= 0, v = 1,2, . . . ,m.

REMARK 2. It can be proved that lim
n→∞

cn−m+v,n

cn−m,n
= (−1)v

[m
v

]
qv(v−1)/2.

LEMMA 5. If f ∈ C , then for all ε > 0, there exists C = Cf ,ε such that |ckn| �
Cq(m+ε)k for all k = 0,1, . . . ,n.

Proof. For k � n−m−1, the claim is contained in Lemma 3. For the remaining
case k � n−m, f [x0, . . . ,xk] = f [x0, . . . ,xn−m+v] = S1 +S2 +S3, like in (13). Choose
ε ∈ (0,1) and ρ = q−(m+ε). Then, the inequalities for S1 and S3 are the same as
in (14) and (17), while, by virtue of (15), S2 ∼ C f (xn−m)α−n as n → ∞. Since f ∈
C , it follows that, for n large enough, | f (xn−m)| � (α − xn−m)−ε � Cqnε , whence
|S2| � Cq(m+ε)n. Collecting the estimates for S1, S2, and S3, one derives |cn−m+v,n| �
Cq(m+ε)n, v = 0, . . . ,m, as required. �

4. Proofs of Theorems 2-4

Proof of Theorem 2.
(i) Since, f (xn−m) ∼ Cqnγ for f ∈ A , from Lemmas 3 and 4 one has |ckn| �

C(α−1qγ)k for all k = 0,1, . . . ,n. Hence, for |z| � ρ < α−1qγ , there holds:

|Bn,q( f ;z)| �
n

∑
k=0

|ckn|ρk � C
n

∑
k=0

(α−1qγρ)k � C
1−α−1qγρ

,

that is, polynomials Bn,q( f ;z) are uniformly bounded in Dρ . Together with Lemma 3,
this implies that {Bn,q( f ;z)} satisfies the conditions of Vitali’s Convergence Theorem
(cf. [15, Ch.5, Th.5.21]) and, thus, is uniformly convergent on any compact set in Dρ
for any ρ ∈ (0,αq−γ).

(ii) Let Bn,q( f ;x) = ∑n
k=0 cknxk = ∑n−m−1

k=0 +∑n
k=n−m := σ1(x)+σ2(x). By Lemma

3, for ε ∈ (0,γ) and |x| > q−(m+ε),

|σ1(x)| � Cε
n−m−1

∑
k=0

q(m+ε)k|x|k = Cε
(qm+ε |x|)n−m −1

qm+ε |x|−1
� Cε,x

(
qm+ε |x|)n

. (19)

Meanwhile,

σ2(x) =
m

∑
v=0

cn−m+v,nx
n−m+v = cn−m,nx

n−m {1+ c̃1,nx+ · · · c̃m,nx
m} ,

which, by Corollary 2, yields

lim
n→∞

(1+ c̃1,nx+ · · · c̃m,nx
m) = 1+d1x+ · · ·dmxm. (20)
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The right-hand side of (20) vanishes for, at most, m points, say y1, . . . ,ys, s � m.
Therefore, if x /∈ {y1, . . . ,ys}, then

σ2(x) ∼Cxcn−mxn−m ∼Cxq
(m+γ)n|x|n as n → ∞

and, hence, σ1(x)= o(σ2(x)) as n→∞ for x /∈{y1, . . . ,ys}. This shows that |Bn,q( f ;x)|
→ ∞ as n → ∞ for |x| > αq−γ , x /∈ {y1, . . . ,ys}. On the other hand, by Lemma
2, Bn,q( f ;x) → f (x) as n → ∞ for x ∈ {1,q−1, . . . ,q−(m−1)}, whence {y1, . . . ,ys} =
{1,q−1, . . . ,q−(m−1)}. �

Proof of Theorem 3. Similar to the proof of Theorem 2, let

Bn,q( f ;x) =
n−m−1

∑
k=0

cknx
k +

n

∑
k=n−m

cknx
k =: σ1(x)+ σ2(x).

Since Lemma 3 holds for all f ∈ F , estimate (19) is valid for any ε > 0, that is

σ1(x) � C(qm+1|x|)n for x �= 0. (21)

As for σ2(x) , by applying the reasoning used in the proof of Theorem 2 (ii), one can
derive

σ2(x) ∼Cxcn−mxn−m as n → ∞ (22)

for all x �= 0 except, possibly, for at most m points, y1, . . . ,ys, s � m . Take x /∈ {0,1,
q−1, . . . ,q−(m−1)} and choose γ = γ(x) > 1 in such a way that qm+γ |x| > 1. Now,
f (xn−m)(α − xn−m)γ → ∞, since f ∈ B. Bearing in mind that α − xn−m ∼ Cq−n as
n −→ ∞ , one obtains | f (xn−m)| � Cqnγ for any C > 0, when n is large enough. Later,
applying Lemma 4 to equation (22) yields |σ2(x)| � C(qm+γ |x|)n for n large enough.
The choice γ > 1 stipulates σ1(x) = o(σ2(x)) as n → ∞ due to (21). The stated result
follows because qm+γ |x| > 1. �

Proof of Theorem 4. Let ρ ∈ (0,α), i.e., ρ = q−(m+δ ) . By Lemma 4, |ckn| �
Cq(m+δ/2) for all k = 0, . . . ,n, or, for |z| � ρ ,

|Bn,q( f ;z)| �
n

∑
k=0

|ckn|ρk � C
n

∑
k=0

(
q−δ/2

)k
� C

1−q−δ/2
.

The last inequality demonstrates that polynomials Bn,q( f ;z) are uniformly bounded
in Dρ . Along with Lemma 5, this means that

{
Bn,q( f ;z)

}
satisfies the conditions of

Vitali’s Theorem and, as a result, converges uniformly to f (z) on any compact set in
Dρ . Due to the fact that ρ ∈ (0,α) has been chosen arbitrarily, the proof is complete.

5. Proof of Theorem 5

For the ease of presentation, the proof of this theorem has been split into a se-
quence of lemmas. While Corollary 3, Lemma 8, and Corollary 4 provide estimates
for the coefficients of Bn,q( f ;x) when f ∈ C , Lemmas 6 and 7 contain the necessary
technical background. It should be pointed out that these lemmas are applicable not
only for functions in the class C , but also for a more general setting.
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LEMMA 6. Let f ∈ F and f (ζ ) be an analytic continuation of f from [0,α)
into Dα . If there exist γ > 0 and C > 0 such that

max
|ζ |�|z|

| f (ζ )| � C
(α −|z|)γ for all z ∈ Dα , (23)

then, for k = 0,1, . . . ,n−m−1, one has

|ckn| � C(k+ γ)γα−k = C(k+ γ)γqmk.

Proof. For ε ∈ (0,1), set ρ = q−(m+ε). Incorporating (23) into (11) gives

| f [x0, . . . ,xk]| � Cρ−k

(α −ρ)γΨm+1(ρ)
� C

ρk(α −ρ)γ .

Let k0 = �γ/(qε −1)	. If k � k0, then ρk := kα
k+γ ∈ (αq−ε ,α). For k � k0, plug-

ging ρ = ρk in the latter inequality yields

|ckn| � C(k+ γ)γα−k(1+ γ/k)k � C(k+ γ)γα−k.

On the other hand, for k < k0, there holds:

|ckn| � | f [x0, . . . ,xk]| � max
0�k�k0

⎛
⎝ max

0�ξ�αq−1

∣∣∣ f (k)(ξ )
∣∣∣

k!

⎞
⎠ = C,

which completes the proof. �

COROLLARY 3. Let f be as in Theorem 5. Then, for k = 0,1, . . . ,n−m−1,

|ckn| � Cγ(k+1)γα−k for all γ > 0.

The next Lemma offers asymptotic estimates concerned with the properties of
nodes xk = [k]q/[n]q, k = 0, . . . ,n, and functions Φ̃n,v and Ψ̃v defined by (7).

LEMMA 7. (i) For all δ > 0,

∫ α+δ

α

dx
xn−m(x− xn−m)

∼ αm lnq ·nα−n as n → ∞. (24)

(ii) If β ∈ (α,qα) and ϕ is any function continuous on [α,β ] with ϕ(α) �= 0, then,
for v = 0,1, . . . ,m,

∫ β

α

ϕ(x)dx

Φ̃n,v(x)xn−m(x− xn−m)
∼ αmϕ(α) lnq

Ψ̃v(α)
·nα−n as n → ∞. (25)
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Proof. (i) By partial fraction decomposition,

∫ α+δ

α

dx
xn−m(x− xn−m)

=
n−m−1

∑
j=1

1
j
· 1

xn−m− j
n−m

(
1

(α + δ ) j −
1

α j

)

+
1

xn−m
n−m

[
ln

(
1− xn−m

α + δ

)
− ln

(
1− xn−m

α

)]
.

Clearly, ∣∣∣∣∣
n−m−1

∑
j=1

∣∣∣∣∣ �
n−m−1

∑
j=1

1
j
· 1

xn−m− j
n−m

· 1
α j � 1

xn−m
n−m

n−m−1

∑
j=1

1
j

� e1/ lnq lnn
αn−m .

Meanwhile,

1

xn−m
n−m

[
ln

(
1− xn−m

α + δ

)
− ln

(
1− xn−m

α

)]

∼ 1
αn−m

[
ln

(
1− α

α + δ

)
− ln

(
1− qn−m−1

α(qn−1)

)]
∼ αm lnq ·nα−n as n → ∞.

(ii) Without loss of generality, assume that ϕ(α) > 0. By Corollary 1, for any
ε > 0, there exist δ > 0 and N ∈ N such that∣∣∣∣ ϕ(x)

Φ̃n,v(x)
− ϕ(α)

Ψ̃v(α)

∣∣∣∣ <
(−1)vϕ(α)

Ψ̃v(α)
· ε for x ∈ [α,α + δ ] and n > N. (26)

Consider

Ψ̃v(α)
ϕ(α)

αn−m

n lnq

∫ β

α

ϕ(x)
Φ̃n,v(x)

dx
xn−m(x− xn−m)

=
Ψ̃v(α)
ϕ(α)

αn−m

n lnq

{∫ α+δ

α
+

∫ β

α+δ

}
.

Since, for n large enough, xn−m+1 � (β + αq)/2, one has |ωn,v(x)| � [(αq−β )/2]v

for x ∈ [α,β ]. Therefore,
∣∣∣∣
∫ β

α+δ

∣∣∣∣ � max
x∈[α ,β ]

∣∣∣∣ ϕ(x)
Φ̃n,v(x)

∣∣∣∣ ·
(

2
αq−β

)v

·
(

1
α + δ

)n−m

· β −α
δ

= o(α−n), as n → ∞,

whence

lim
n→∞

Ψ̃v(α)
ϕ(α)

αn−m

n lnq

∫ β

α+δ
= 0. (27)

It follows from (26) that, for n large enough,

(1− ε) <
Ψ̃v(α)
ϕ(α)

· ϕ(x)
Φ̃n,v(x)

< (1+ ε), x ∈ [α,α + δ ],

implying

(1−ε)
∫ α+δ

α

dx
xn−m(x− xn−m)

<
Ψ̃v(α)
ϕ(α)

∫ α+δ

α
< (1+ε)

∫ α+δ

α

dx
xn−m(x− xn−m)

. (28)
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Then, (27) and (28) along with (24) result in

limsup
n→∞

Ψ̃v(α)
ϕ(α)

αn−m

n lnq

∫ β

α

ϕ(x)
Φ̃n,v(x)

dx
xn−m(x− xn−m)

= limsup
n→∞

Ψ̃v(α)
ϕ(α)

αn−m

n lnq

∫ α+δ

α

� limsup
n→∞

(1+ ε)αn−m

n lnq

∫ α+δ

α

dx
xn−m(x− xn−m)

= (1+ ε).

Likewise,

liminf
n→∞

Ψ̃v(α)
ϕ(α)

αn−m

n lnq

∫ β

α

ϕ(x)
Φ̃n,v(x)

dx
xn−m(x− xn−m)

� (1− ε).

Finally, since ε > 0 has been chosen arbitrarily, the statement is justified. �

LEMMA 8. If f is as in Theorem 5, then, for v = 0,1, . . . ,m,

cn−m+v,n ∼−λn−m+v,n
αmg(α) lnq

Ψ̃v(α)
·nα−n as n → ∞. (29)

Proof. From the divided differences formula,

f [x0, . . . ,xn−m+v] =
n−m+v

∑
r=0

f (xr)
x(x− x1) · · · (x− xn−m+v)

=
n−m

∑
r=0

+
n−m+v

∑
r=n−m+1

.

Notice that the second sum is taken as 0 when v = 0. Using the contour given in Fig-
ure 1, with ρ ∈ (xn−m,α) and β ∈ (α,qα), one has:

α β

|ζ|=ρ

.. Re

Im

Figure 1: Contour of integration used in Lemma 8.

n−m

∑
r=0

=
1

2π i

∮
|ζ |=ρ

f (ζ )dζ
ζ (ζ − x1) · · · (ζ − xn−m+v)

=
1

2π i

∮
|ζ |=ρ

f (ζ )dζ
ζ n−m(ζ − xn−m)Φ̃n,v(ζ )

= −
∫ β

α

f (x)dx

xn−m(x− xn−m)Φ̃n,v(x)
+

1
2π i

∮
|ζ |=β

f (ζ )dζ
ζ n−m(ζ − xn−m)Φ̃n,v(ζ )

=: I1 + I2.
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By Lemma 7 (ii),

I1 ∼−αmg(α) lnq

Ψ̃v(α)
·nα−n as n → ∞. (30)

To estimate I2, note that |Φ̃n,v(ζ )| � Ψm+1(β ) > 0, |ζ −xn−m|� β −α, and |ωn,v(ζ )|
→ |ωv(ζ )| � (αq−β )v, as n → ∞ for v = 0,1, . . . ,m. Therefore,

|I2| � 1
2π

2πβ max|ζ |=β | f (ζ )|
β n−m(β −α)Φ̃n,v(β )[(αq−β )/2]v

= O(β−n) = o(α−n) asn → ∞.

As a result,
n−m

∑
r=0

∼ I1 as n → ∞.

In order to estimate ∑n−m+v
r=n−m+1, recall (16) and obtain

∣∣∣∣∣
n−m+v

∑
r=n−m+1

∣∣∣∣∣ �
v

∑
r=1

| f (xr)|
n−m+v

∏
s=0

s �=n−m+r

1
|xn−m+r − xs| � Cqn(m−1) = o(α−n), n → ∞.

Thus, cn−m+v,n = λn−m+v,n f [x0, . . . ,xn−m+v] ∼ λn−m+v,nI1 as n → ∞ and, by means of
(30), estimate (29) comes out. �

COROLLARY 4. If f is as in Theorem 5, then, for v = 1,2, . . . ,m,

lim
n→∞

cn−m+v,n

cn−m,n
= (−1)v

[m
v

]
q
qv(v−1)/2. (31)

Proof. Taking into account that

[m
v

]
q
=

(qm −1) · · ·(qm−v+1−1)
(qv −1) · · ·(q−1)

,

one has

lim
n→∞

cn−m+v,n

cn−m,n
=

Ψ̃0(α)
Ψ̃v(α)

lim
n→∞

λn−m+v,n

λn−m,n
=

1
ωv(α)

(1−q−m) · · · (1−q−m+v−1)

=
qmv

(1−q) · · ·(1−qv)
(qm −1) · · ·(qm−v+1−1)

qmv−v(v−1)/2
= (−1)v

[m
v

]
q
qv(v−1)/2,

as claimed. �
At this stage, all preliminary work has been completed and the way to reach the

proof, which is presented below, has been paved.

Proof of Theorem 5. Consider

Bn,q( f ;x) =
n

∑
k=0

cknx
k =

n−m−1

∑
k=0

cknx
k +

n

∑
k=n−m

cknx
k =: S1(x)+S2(x).
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Select γ ∈ (0,1). By Corollary 3, there exists C > 0 so that |S1(x)| � C∑n−m−1
k=0 (k +

1)γα−kxk. Then, for |x| > α,

|S1(x)| � Cnγ
n−m−1

∑
k=0

(
α−1|x|)k � Cxn

γ(α−1|x|)n = o
(
n(α−1|x|)n)

as n → ∞. Meanwhile, by the Rothe Identity ([2, Ch. 10])

(x;q)m =
m

∑
v=0

(−1)v
[m

v

]
q
qv(v−1)/2xv,

and by virtue of Corollary 4,

S2(x) ∼ cn−m,nx
n−m(x;q)m as n → ∞.

If x �= 1,q−1, . . . ,q−(m−1), then (x;q)m �= 0 and

S2(x) ∼ λn−m,n(x;q)m · α−mg(α) lnq

Ψ̃0(α)
·nα−nxn−m ∼Cxnα−nxn as n → ∞.

Hence, S1(x) = o(S2(x)) , n → ∞. Thus, when x /∈ {1,q−1, . . . ,q−(m−1)}, we arrive at

|Bn,q( f ;x)| ∼ |S2(x)| → ∞ as n → ∞ since |x| > α. �
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